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Abstract: In this paper, Internal Multiple Model Control (IMMC) based on Robust
Clustering Algorithm (RCA) is proposed. The IMMC requires, firstly, the definition
of set a of local models each one valid in a given region. Different strategies exist
in the literature dealing with the determination of the local models base. However,
most of these strategies need a priori knowledge of the system. In order to overcome
this difficulty, a RCA is proposed to find the optimum number of clusters. In the
second step, the obtained data relative to each cluster will be used to build the local
models base. Finally, the internal model control (IMC) structure will be developed
using the models base where a linear controller will be constructed for every model.
The efficiency of the IMMC based on RCA is demonstrated through an uncertain
linear system and by the control of a neutralization of PH reaction in a Continuously
Stirred Tank Reactor (CSTR).
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1 Introduction

In the case of linear plants, IMC have been extensively studied due to its robustness prop-
erties against disturbances and a model mismatch [21, 17, 7]. It uses the process model
as the internal model to predict the process output. However, many industrial systems
exhibit strong nonlinear behavior and they may be required to operate over a wide range
of operating conditions. Additionally, there are situations where the nonlinear plants
are extremely difficult to model and they exhibit high uncertainties [2, 3]. Under these
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conditions, the multi-model approach is an efficient and a powerful way to resolve prob-
lem of modeling and control of complex and non-linear processes [14, 15, 20, 10, 18, 16].
The past few years have shown an increase in the use of the multi-model representation
combined with the IMC. The modeling concept includes a number of approaches such as:
Takagi and Sugeno Fuzzy Inference Systems [14], local neural networks [1, 22]. However,
these approaches remain so confronted with several difficulties such as the determination
of the local models base. To resolve this problem, a RCA is proposed to determine the
models base for complex systems. This approach is an unsupervised classification which
does not require a priori knowledge about the system and uses a robust estimator to find
the optimal number of clusters by repeatedly merging similar clusters [4]. The IMMC
can be summarizing in three steps. The first step consists in dividing the systematic
space in some subspaces using the RCA where a criterion is developed to find the opti-
mal partition. In the second step, a local model is built for every subspace. Finally, the
local models base will be combined with the IMC structure. We will show that IMMC
has strong robustness under the conditions of modelling uncertainties. It can effectively
compensate the modeling error of the plant by using this error as a feedback signal.

The remainder of this paper is organized as follows. In Section 2, we present the
RCA. Section 3 presents a description of the IMMC and the validities computations.
In Section 4, to check the ability of the proposed approaches, two examples have been
considered. Finally, Section 5 provides the conclusion.

2 Robust Clustering Algorithm

The Robust Competitive Agglomeration (RCA) algorithm [5, 6] is a fuzzy partitional
algorithm which does not require the number of clusters to be specified. Let X =
{xi/i ∈ {1 . . . N}} be a set of N inputs vectors. Let V = {Vj/j ∈ {1 . . . C}} represent
prototypes of the clusters. The RCA algorithm minimizes the following objective func-
tion:

JR(U, V ) =

C∑
j=1

N∑
i=1

(uji)
2
ρj
(
d2ji
)
− α

C∑
j=1

[
N∑
i=1

wjiuji

]2
. (1)

In (1), dji stands for the distance from the input vector xi to the center vj and uji is
the membership of xi to cluster j. ρj() is a robust loss function associated with cluster j,

and wji = wj
(
d2ji
)

=
∂ρj(d2ji)
∂d2ji

represents the typicality of point xi with respect to cluster

j. The function ρj () corresponds to the loss function used in M-estimators of robust
statistics and wj () represents the weight function of an equivalent W-estimator [4]. By
minimizing both terms in (1) simultaneously, the data set will be partitioned into the
optimal number of clusters while clusters will be arranged in order to minimize the sum
of intracluster distances [4].

Membership of cluster s can be written as [5]:

ust =

1
ρs(d2st)

C∑
j=1

1
ρj(djt)

2

+
α

ρs (d2st)
(Ns −Nt) = uRRst + uBiasst , (2)

where Ns represents the robust cardinality of the cluster s. It is defined by [5]:



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (1) (2011) 99–112 101

Ns =

N∑
i=1

wsiusi, (3)

where Nt is the weighted average of cardinalities and it is defined by the following equa-
tion [5]:

Nt =

C∑
j=1

1
ρj(djt)

2Nj

C∑
j=1

1
ρj(djt)

2

. (4)

The first term in equation (2) is the membership term in the FCM algorithm using a
robust distance. The second term leads to a reduction of cardinality of spurious clusters,
which are discarded if their cardinality drops below a threshold [6]. So only good clusters
are conserved. For clusters with cardinality higher than the average, the bias term is
positive, thus appreciating the membership value. On the other hand, for low cardinality
clusters, the bias term is negative, thus depreciating the membership value. It should
be noted that when a feature point xt is close to only one cluster s, and far from other
clusters, we have:

Ns ≈ Nt ⇔ uBiasst = 0. (5)

In this case the membership value, ust is independent of the cluster cardinalities, and is
reduced to uRRst . In other words, if a point is close to only one cluster, it will have high
membership value in this cluster and no competition is involved. On the other hand,
if a point is close to many clusters, these clusters will compete for this point based on
cardinality.

The parameter α should provide a balance between the two terms of (1), so α at
iteration k is defined by [6]:

α (k) = η0 exp

(
−k
τ

) C∑
j=1

N∑
i=1

(
u
(k 1)
ji

)2
ρj
(
d2ji
)

C∑
j=1

[
N∑
i=1

w
(k−1)
ji u

(k−1)
ji

]2 , (6)

where η0 is the initial value, and τ is the time constant. The exponential factor makes
the second term preponderant in a first time to reduce the number of cluster, and then
the first term dominates to seek the best partition of the data.

2.1 Weight function

The RCA technique proposed by Frigui and Krishnapuram [4, 5] tried to make the
data partitioning robust by using the weight functions of a robust statistical law. The
argument of the weight function consists of the squares of the distances. The weight
function is chosen a monotonically nonincreasing function as defined below [4]:

wj
(
d2ji
)

=


1− d4ji

2T 2
j
, if d2ji ∈ [0, Tj ] ,

[d2ji−(Tj+cSj)]
2

2cS2
j

, if d2ji ∈ ]Tj , Tj + cSj ] ,

0, if d2ji � Tj + cSj ,

(7)
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where Tj = MEDj

(
d2ji
)

and Sj = MADj

(
d2ji
)
, MEDj is the median of the residuals

of the j-th cluster and MADj is the median of absolute deviations of the j-th cluster.

The loss function associated with this weight function can be derived by integrating
(7). This yields:

ρj
(
d2ji
)

=


d2ji −

d6ji
6T 2

j
, if d2ji ∈ [0, Tj ] ,

[d2ji−(Tj+cSj)]
3

6cS2
j

+
5Tj+cSj

6 , if d2ji ∈ ]Tj , Tj + cSj ] ,
5Tj+cSj

6 +Kj , if d2ji � Tj + cSj .

(8)

In (8) Kj is a constant used to make all ρj () functions reach the same maximum value.

Kj = max
1≤j≤C

{
5Tj + cSj

6

}
− 5Tj + cSj

6
. (9)

The constants Kj are added to prevent assigning all noise points to the most compact
cluster. By forcing all functions to have the same maximum value, all noise points will
have the same membership value in all clusters.

2.2 Algorithm outline

The RCA can be summarized by the following steps:
Step 1 : Fix the maximum number of clusters, initialise the vector center, and set k = 1,
wji=1 and c0=12.
Step 2 : Compute dji , estimate Tj and Sj .
Step 3 : Update the weight wj , α(k) and the partition matrix U (k).
Step 4 : Compute the robust cardinality Nj , if Nj ≺ ε discard cluster j.
Step 5 : Update the number of cluster C and k = k + 1.
Step 6 : Update the tuning factor ck = max(4, ck−1 − 1) and the center parameters.
Step 7 : Test of the convergence: if the center parameters stabilize then stop otherwise
go to step 2.

The Mahanobis distance given by (10) has been used in this investigation. The update
equations for the centers vj and the covariance matrices are given by (11) and (12):

d2 (xi, vj) = |Aj |
1
n (xi − vj)T A−1j (xi − vj) , (10)

vj =

N∑
i=1

(
uji
)2
wjixi

N∑
i=1

(
uji
)2
wji

, (11)

Aj =

N∑
i=1

(
uji
)2

(xi − vj)T (xi − vj)

N∑
i=1

(
uji
)2
wji

. (12)
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2.3 Validity criteria

To assure an accurate modeling step, a robust competitive criterion Dc has been intro-
duced. It is based on the comparison between the global cardinality and the average
cardinality. The global cardinality of a partition is defined by:

CG =
1

N

N∑
i=1

C∑
j=1

1

ρj(d2ji)
Nj

C∑
j=1

1

ρj(d2ji)

. (13)

The cardinality for one class represents the average distribution of the points around
the center. Then the average cardinality is computed from the cardinality of all the
classes in order to obtain a value which translates the distribution of the points around
the center of the classes. The average cardinality of the created clusters is defined by:

CV =
1

C

C∑
j=1

N∑
i=1

wjiuji (14)

The average and the global cardinality are equivalent on condition that the partitioning
is optimal. That is to say when the obtained clusters correspond to the real classes, the
ratio between average and global cardinality tends towards one.

The robust criterion validity Dc which reflects the state of the partition is given by:

Dc =

∣∣∣∣1− CG
CV

∣∣∣∣ . (15)

When the optimal partition is attained the ratio in (15) tends to 1 and so the criterion
Dc is minimal. So, the optimal partition is obtained for the minimum value of Dc.

3 The Principle of IMMC Based on Classifier

In IMC, a plant model is placed in parallel with the real plant [17]. The difference between
the plant and the model outputs is used for feedback purposes. The feedback signal is an
estimate of the plant disturbances or the model mismatch. For linear plant, IMC have
been shown good robustness properties against disturbances and model mismatches [19].
In this paper, the linear IMC strategy will be investigated to control uncertain systems
using multiple models. According to the characteristics of the controlled plant, the design
principle of IMMC based on RCA is as follows, firstly, divide the data into some subspaces
using the RCA. The second step is a structural and parametric estimations step in order
to determine the local base models. In fact, a partional linear model is built to every
subspace. In the third step, the IMC structure will be combined with the local models
base where a linear controller will be constructed for every local model.

The filter F in the IMC structure is employed to introduce robustness into the con-
troller to deal with plant uncertainty [11].

3.1 Development of local linear models

The core idea is to represent the uncertain nonlinear dynamic system by a set of locally
valid sub-linear models across the operating range. Each model is developed around
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Figure 1: Structure of IMMC.

an operation range. A structural and a parametric identification must be carried out
to elaborate the related local model. The established models are constructed using the
ARX structure given by the following relation:

y(k) = −
n∑
i=1

aiy(k − i) +

m∑
j=1

bju(k − j), (16)

where u is the input to the unknown system, y is the output system, ai and bj are the
parameters of the ARX model. The parametric identification uses the Recursive Least
Square (RLS) method and exploits the observation-vectors related to every cluster.

3.2 Development of local controllers

For minimum-phase processes (stable with no time delay or zeros outside the unit circle),
IMC can produce perfect control based on a controller designed as the inverse of the
process. When dealing with a non minimum phase process, this procedure cannot be

used directly since the transfer function of plant
∧
G is not invertible. One approach to

handle a noninvertible process model is to apply the following factorization

∧
G (z) =

∧
G−

∧
G+, (17)

where
∧
G+ contains all the zeros outside the unit circle and all the time delays and

∧
G− is

then inverted for controller design [9].

3.3 Control strategies

In IMMC, two control strategies are considered. The first one is based on the switching
between different models. This method consists in choosing the nearest model to the
process which leads to the least modelling error. The appropriate controller is then
obtained from the validated inverse model. In the second strategy, the internal model
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and the controller outputs are obtained by fusion of generated models and controllers
pondered by a validity criterion. The global model and control outputs are presented by
the following equations.
In the first strategy:

ym(k) = ymj(k), where djk = min
1≤t≤C

(dtk), (18)

uc(k) = uj(k), where djk = min
1≤t≤C

(dtk). (19)

In the second strategy:

ym(k) =

C∑
j=1

rj(k) ymj(k), (20)

uc(k) =

C∑
j=1

rj(k) uj(k), (21)

where C is the number of models in the library. ymj and uj are respectively the outputs
of model Mj and its corresponding controller. rj is the validity criterion.

Several validities computation methods were proposed in the literature [8, 13, 12].
All these methods are based on measuring the distance between the current state of the
process and the model Mj . The proposed method of validities computation is inspired
from the fuzzy version where the cluster’s parameters obtained from the RCA are ex-
ploited. It evaluates the contribution of the model to describe the system behaviors in
its full range

rj(k) =

1− dji
C∑

j=1
dji

C − 1
. (22)

4 Simulation Results

In order to evaluate the performances of the presented algorithms, two examples will be
considered. The first one concerns the control of an uncertain linear system. The second
example treats the control of a chemical process which is a PH neutralization process.

4.1 Uncertain linear system

Let us consider a linear system with uncertain parameters described by [20]:

yp(k) = −a1(k)yp(k − 1)− a2(k)yp(k − 2) + b1(k)u(k − 1) + b2(k)u(k − 2), (23)

a1(k) = −0.8 + 0.08 sin

(
2πk

200

)
, (24)

a2(k) = 0.1 + 0.01 sin

(
2πk

200

)
, (25)

b1(k) = 0.5 + 0.04 sin

(
2πk

200

)
, (26)

b2(k) = 0.2 + 0.02 sin

(
2πk

200

)
. (27)
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The system is excited by a random sequence [0, 3] to generate the necessary data
base. 2000 samples are used where [yp(k), yp(k − 1), u(k − 1), u(k − 2)] is the vector to
be clustered. The minimization of the criterion Dc allows to find the optimal partition
corresponding to the number of clusters. Table 1 illustrates the results obtained for this
example where the minimum is detected for two clusters.

Number of cluster 2 3 4 5 6
Dc 0.08 0.401 0.46 0.586 0.667

Table 1: Dc criterion of the first example.

The clustered data based on Dc criterion are presented in Figure 2.

Figure 2: Clustered data based on RCA (example 1).

The following stage is to estimate the parameters of each local model. A second order
ARX model has been used as the model structure. The parameters of each local model
are given in Table 2.

Models M1 M2

a1 1.2973 1.6661
a2 -0.4457 -0.7151
b1 0.5203 0.5064
b2 -0.1706 -0.396

Table 2: Model Parameters of the first example.

In order to compare performances of the control strategies, a criterion will be defined
and given by the following equation:

E =
1

N

N∑
k=1

[yr(k)− yp(k)]
2
. (28)

The responses of IMMC using the first and the second control strategies are given by
the following figures.
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Figure 3: IMMC output evolution using the first strategy for set point tracking.

Figure 4: IMMC control input evolution using the first strategy.

Figure 5: IMMC output evolution using the second strategy for set point tracking.

In the first strategy control E = 0.0658. In the second strategy control E = 0.0522.
These figures show that the plant output yp follows the desired output yr of the uncertain
process. The obtained performances show that second approach is slightly more accurate.
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Figure 6: IMMC control input evolution using the second strategy.

4.2 Uncertain nonlinear system: PH neutralization system

In order to show the performance of the IMMC, it will be applied to the case of the
PH neutralization system. It is a well-known benchmark problem and it has two input
streams: sodium hydroxide and acetic acid. For collection of the data, a sampling time
of 12 second has been used [1].

Parameters Description Nominal Value
v Volume of the tank 1000 [l]
q1 Flow rate of acetic acid 81 [l/min]
C2 Inlet concentration of NaOH 0.05 [mol/l]
C1 Inlet concentration of acetic acid 0.32 [mol/l]
CA Initial concentration of sodium in the CSTR 0.0432 [mol/l]
CB Initial concentration of acetate in the CSTR 0.0432 [mol/l]
Ka Acid equilibrium constant 1.753 10-5
Kb Inlet concentration of acetic acid 10-14

Table 3: Parameters description.

Number of cluster 2 3 4 5 6
Dc 0.5899 0.0303 0.2088 0.1307 0.156

Table 4: Dc criterion for the second example.

The process model consists of two nonlinear ordinary differential equations and a
nonlinear output equation for the PH.

v dCA

dt = q1C1 − (q1 + q2)CA,

v dCB

dt = q2C2 − (q1 + q2)CB ,

103PH + 102PH (Ka + CB) + 10PH(CBKa − CAKa −Kw)−Ka +Kw.

(29)
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Figure 7: Clustered data based on RCA (example 2).

Models M1 M2 M3

a1 1.15 1.16 1.131
a2 -0.2379 -0.2148 -0.1797
b1 0.01025 0.04474 0.009975
b2 0.001234 - 0.01256 - 0.004141

Table 5: Model Parameters of the second example.

Figure 8: IMMC output evolution for PH tracking using the first strategy.

The process output is the PH and the input is the sodium flowrate q2. The parameters
used in the simulations are described and given in Table 3. The system is excited by a
control input q2 of random amplitude in the range [512; 525] with duration of 20 sampling
periods; the total length of the sequence is 2000. Three clusters are identified. The
number of cluster was determined using the Table 4 where the minimum is detected for
three clusters. The clustering results of the PH neutralization system are presented in
the Figures 7.

The model basis considered consists of three local models. They are described by
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Figure 9: IMMC control input evolution using the first strategy.

Figure 10: IMMC output evolution for PH tracking using the second strategy.

Figure 11: IMMC control input evolution using the second strategy.

discrete transfer functions having the same structure where the parameters of the process
are given by the Table 5. The PH responses of the system using different strategies are
shown in Figures 8 and 10. In the first strategy control E = 0.0753. In the second
strategy control E = 0.0079.
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Using the first strategy, Figure 8 shows that there is clearly a poor performance.
However, when models are pondered more satisfactory tracking behavior (especially in
control action) is detected. Indeed, the obtained relative errors confirm the robustness
of the second strategy. The difference from the previous simulations can be attributed
to the model plant mismatch.

5 Conclusion

Considering the complexity to control uncertain plants, IMMC based on RCA is proposed
in view of all the advantage of multiple model and internal model control. The IMMC can
be applied in three steps. The primary step consists in determining the suitable number
of local base models using the RCA. The second step is parametric estimations step in
order to determine the local base models. In fact, a partional linear model is created to
every subspace. In the third step, the IMC structure will be combined with the local
base models where a controller will be constructed for every model. The application
of this approach is carried out on two simulation examples of uncertain systems. The
simulation results show that IMMC is more robust when the models and controllers are
weight on global model and controller.
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