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Abstract: We present an in-host HIV/AIDS model with saturation effect and a
discrete time delay. It is shown that infection is endemic when R0 > 1 but dies out
when R0 < 1. The switching phenomenon for the stable equilibria is observed when
a discrete time delay is incorporated. The parameters that can control the disease
transmission are also discussed. Numerical simulations are carried out to verify and
support the analytical results and illustrate possible behavior scenarios of the model.
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1 Introduction

Throughout the ages and despite all medical and sanitary progress humankind has
severely been afflicted by infectious diseases. The spread of human immune virus (HIV)
is alarming today and becomes a global crisis of the modern era. No other disease engen-
ders as much fear, revulsion, despair and utter helplessness as acquired immunodeficiency
syndrome (AIDS). In a survey carried out in 2009, it was noted that about 33.3 million
people are living with HIV/AIDS and 2.6 million people have newly been infected during
this year only. Further, in this 2009 the number of AIDS-related deaths is estimated as
1.8 million [1]. The sexually active and risk groups such as truck drivers, commercial
sex workers, bathhouse customers, and drinkers are known to play a central role in HIV
population dynamics.
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HIV infection typically begins when an HIV particle containing two copies of the
HIV RNA encounters a cell with a surface molecule called cluster designation 4 (CD4).
Although these CD4+ T cells appear to be the main targets of HIV, other immune system
cells with and without CD4 molecules on their surfaces are infected as well. Among these
cells, monocytes and macrophages act as reservoirs of HIV by harboring a large amount
of the virus without being killed. CD4+ T cells also serve as important reservoirs of
HIV; a small proportion of these cells harbor HIV in a stable and inactive form. Normal
immune processes may activate these cells, which leads to the production of new HIV
virions [2]. HIV causes AIDS by destroying a type of white blood cells (T cells or CD4
cells) that the immune system must have to fight infection. AIDS is the final stage of
HIV infection. It can take about 5 to 15 years for a person infected with HIV, even
without treatment, to reach this stage [3]. In brief, HIV carries copies of its DNA and
inserts this into the host cell’s (mainly CD4+ T cells) DNA. The host cell after being
stimulated to reproduce, it reproduces copies of HIV virus. Further the count of CD4+
T cells is a primary indicator used to measure progression of HIV infection. Chronic
HIV infection causes gradual depletion of the CD4+ T cells’ pool, and thus progressively
compromises the host’s immune response to opportunistic infections, leading to AIDS.
Three main stages of disease progression after HIV virus is introduced into the body are
as follows: the first one is the initial transient — a relatively short period of time when
both the T cell population and the virus population increase greatly. This is followed
by the second stage, clinical latency — a period of time when there are extremely large
numbers of virus and T cells undergoing incredible dynamics, the overall result of which
is an appearance of latency (disease steady state). The AIDS stage follows finally, and
it is characterized by a drop in T cells to a very low number (or zero) and the virus
grows without any bound and leads to death. In particular cell-cell fusions also have an
important pathogenic role in vivo [4].

Wodarz and Nowak [5] showed through a diversity threshold model that evolution
of virus can drive disease progression and also destruct the immune system. They also
pointed out that mathematical models may be used to correlate the long-term immuno-
logical control of HIV and designing of therapy that convert a progressing patient into
a state of long-term non-progression. Culshaw and Ruan [6] modified the model pro-
posed by Perelson et al. [7] by introducing discrete time delay and studied the effect
of time delay on the stability of equilibria. Further, Nelson and Perelson [8] developed
and studied a set of models that include intercellular delays, combination antiretroviral
therapy and the dynamics of both infected and uninfected T cells. The role of drug
efficacy was highlighted along with general stability results of non-linear delay differen-
tial equation while Bachar and Dorfmayr [9] modeled the latent period and the delayed
onset of positive treatment effects in the patients and carried out stability analysis of
the system with numerical simulations depending on the size of the treatment-induced
delay. On the other hand Banks and Bortz [10] studied cellular HIV infection models
by using sensitivity methodology for non-linear delay system and carried out a typical
sensitivity investigation. Zhou et al. [11] investigated the dynamics of a model of HIV
infection of CD4+ T-cells with cure rate and obtained threshold conditions onR0 for per-
sistence and periodic solutions. Mukandavire et al. [12] analyzed a mathematical model
for HIV/AIDS with time delay due to incubation period and remarked that prolonged
incubation period due to medical interventions may yield higher HIV/AIDS prevalence
whereas Pastore [13] studied an HIV model incorporating mutation and discussed the
effects of a virus attack on the human immune system in the presence of HIV infection
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and the break down of the immune system. Stilianakis and Schenzle [14] studied an
intra-host dynamics of HIV-1 infection by incorporating the effect of the permanently
increasing susceptibility of CD4+T cell clones and suggested that the HIV evolutionary
speed plays a crucial role in the progression of disease. Li and Shu investigated an in-
host viral model with intracellular delay [15] and observed that for R0 > 1, the infection
persists and the chronic-infection equilibrium is locally as well as globally asymptotically
stable. They further stated that without cell division no sustained oscillations regime
exists even if in the presence of intracellular delays.

The interaction between HIV and the human immune system is a highly dynamic
and multifactorial process and as a result it is essential to base therapeutic interventions
on a more solid theoretical ground than it has been the case until now. Previous studies
considered different aspects on models of HIV/AIDS, namely, effect of mutation, cellular
HIV infection, inter-cellular delays, delay due to incubation period only to mention a
few. To the best of our knowledge, none of the studies considered the saturation effects
and latent class. For in-host models of HIV/AIDS to be more realistic, the saturation
effects should be incorporated together with the effect of delay on the latently infected
class. Actually saturation effect is applicable because of the presence of large number of
virions. Hence we incorporate both these effects into the model system and our interest
is to explore the effects of various parameters involved in the development of infection
using analytic and numerical methods. The main thrust of the paper is to highlight the
effect of delay and also the role of the rate of production of new virions.

The paper is organized as follows: in Section 2 we present the mathematical model
and assumptions made in the formulation. Conditions for boundedness and existence
of equilibria of the model are derived in Section 3. The basic reproductive number,
R0, is also computed in this section. The local stability behaviour of the infection-free
and endemic equilibria of the model in the absence of delay is discussed in Section 4
where global stability behaviour of the endemic equilibrium is also studied. In Section
5, stability switching behaviour is addressed. A brief discussion rounds up the paper in
Section 6 with numerical simulations.

2 Mathematical Model

In [16] we note that some cells after being infected by the HIV, enter a latent class.
Although these cells do not produce new virions while in this class, they are reactivated
later to do so. On basis of these views, here we formulate an in-host HIV model with a
latent infected class and incorporate a discrete time delay along with saturation effect.

The relationship between the virus and the uninfected cells is similar to the relation-
ship between predator and prey in ecological problem and with this analogy βX is the
functional response of the viruses to the uninfected cells. Further, we assume that the
function that describes the rate at which uninfected cells are produced by the host is a
decreasing function of virions. When the numbers of virions tend to zero then the unin-
fected cells are produced at a constant rate. Thus one can infer that virions affect the
production of uninfected cells by the host. In other words uninfected cells are produced
by the organism at the rate c

k+V
which depends on the number of virions in an organism.

This is analogous to assuming that not all newborn cells are uninfected. Then infected
cells and latent cells are produced by the organism at certain rates (vertical transmission
of HIV/AIDS). Consequently, we consider uninfected cells being produced by the host
at the rate c

k+V
.
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The following system of differential equations specifies the model

dV

dt
= aY1 − bV,

dX

dt
=

c

k + V
− dX − βXV,

dY1

dt
= q1βXV − f1Y1 + δY2 (t− τ) ,

dY2

dt
= q2βXV − f2Y2 − δY2,

(1)

where V (t), X(t), Y1(t), Y2(t) represent the number of virions, number of uninfected target
cells, number of productive infected cells and number of latent infected cells respectively
at any time, in a host.

The virus is replicated by the infected cells, so its rate of production, a is assumed to
be proportional to Y1. Virions die at a specific rate b. The uninfected cells are produced
by the host at a specific rate c

k+V
. They die at a rate d, and become infected by the

virus at a specific rate βV , entering Y1 class and Y2 class respectively,in proportions.
A proportion q1 of the infected cells become productively infected while the remaining
proportion, q2 = (1− q1) become latently infected. Productive infected cells and latent
infected cells die at specific rates f1 = e1+d and f2 = e2+d, respectively, where d is the
natural death rate, e1 and e2 are the additional death rates due to infection. Only the
Y1 cells produce virions, and Y2 cells move to the Y1 class at a per capita rate δ. Further,
τ (0 < τ < ∞) is the delay due to the formation of productive infected class from the
latent infected class. The parameter c is a constant and k is the half saturation constant.

3 Boundedness and Equilibria

In this section we first show that the solutions of model system (1) are bounded.

Lemma 3.1 If a < f1 then the solutions of model system (1) are bounded.

Proof Define the function U = V +X + Y1 + Y2. Now

U̇ <
c

k
− bV − dX + (a− f1)Y1 − f2Y2.

For each λ > 0 the following inequality is fulfilled:

U̇ + λU ≤
c

k
− (b− λ)V − (d− λ)X − (f1 − a− λ))Y1 − (f2 − λ)Y2.

If we choose λ < min{b, d, f1 − a, f2}, then right hand side is bounded ∀(V,X, Y1, Y2) ∈
R

4
+. Thus, U̇ + λU ≤ c

k
. Applying a theorem on differential inequality we have

0 ≤ U ≤
c

kλ
+

1

eλt
U(V (0), X(0), Y1(0), Y2(0))

and 0 ≤ U ≤ c
kλ

for t → 0. Thus, all solutions of system (1) enter the region

B = {(V (t), X(t), Y1(t), Y2(t)) : U ≤
c

kλ
+ ǫ, ∀ǫ > 0}.
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The assumption a < f1 indicates that to keep the population under control, the
production rate of virions must be below the specific death rate of productive infected
cells. The system has two equilibrium points given by:

(1) E1(0,
c
kd
, 0, 0), (2) E2(

aY ∗

1

b
, b2c
(kb+aY ∗

1
)(bd+aβY ∗

1
) , Y

∗

1 ,
f1q2Y

∗

1

f2q1+δq1+δq2
), provided

a > bdkf1(f2+δ)
βc(f2q1+δq1+δq2)

, Y ∗

1 = 1
2a2β

[

−ad(d+ kβ)+
√

a2b2(d− kβ)2 + 4a3bcβ2(f2q1+δq1+δq2)
f1(f2+δ)

]

.

Latent infected cells Y2, become productive infected cells Y1, at a rate δ after a
period of time 1

δ+f2
. Hence, adding contributions from cells Y1and Y2 cells, the basic

reproductive number becomesR0 = βac
bdkf1

(q1+q2
δ

δ+f2
). The inequalityR0 > 1 represents

the same threshold condition as the expression a > bdkf1(f2+δ)
βc(f2q1+δq1+δq2)

. Hence E2 exists only

when R0 > 1.

4 Stability Analysis without Delay

In this section we investigate the local stability characteristics of the infection-free equi-
librium point, E1 and endemic equlibrium point, E2 of the system. Global stability of
E2 is also discussed.

4.1 Local stability analysis

The Jacobian matrix of model system (1) is as follows:

J =









−b 0 a 0
−βX − c

(k+V )2 −(d+ βV ) 0 0

q1βX q1βV −f1 δ
q2βX q2βV 0 −(f2 + δ)









.

Theorem 4.1 The infection-free equilibrium E1 is locally asymptotically stable if
R0 < 1 and is unstable if R0 > 1.

Proof The characteristic equation of the Jacobian matrix of model system (1) at E1

is λ3 +Aλ2 +Bλ+ C = 0, where

A = b+f1+f2+δ, B = (b+f1)(f2+δ)+bf1−
acβq1
kd

, C = (δ+f2)(bf1−
acβq1
kd

)−
acβδq2
kd

.

Now C > 0 implies that a < bdkf1(f2+δ)
βc(f2q1+δq1+δq2)

. Again if a < bdkf1(f2+δ)
βc(f2q1+δq1+δq2)

then

AB − C > 0.
Further the inequality R0 < 1 represents the same threshold condition as the expres-

sion a < bdkf1(f2+δ)
βc(f2q1+δq1+δq2)

. Hence, the result follows by Routh-Hurwitz criterion for the

equilibrium point E1.

Theorem 4.2 The equilibrium point E2 is locally asymptotically stable if Di > 0, for
i = 1, 2, 3, 4; where D1 = P,D2 = PQ−R,D3 = P (QR− PS)− P 2 and D4 = SD3.

Proof The characteristic equation of the Jacobian matrix of model system (1) at E2

is given by
λ4 + Pλ3 +Qλ2 +Rλ+ S = 0,
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where P = b+ d+ δ + f1 + f2 + βV ∗,
Q = bf1 + (b + f1)(d+ βV ∗ + f2 + δ) + (d+ βV ∗)(f2 + δ)− aq1βX

∗,
R = bf1(d+βV ∗+ f2+ δ)+ (b+ f1)(d+βV ∗)(f2+ δ)+aq1βV

∗{βX∗+ c
(k+V ∗)2 }−a(d+

βV ∗)q1βX
∗ − aq1βX

∗(f2 + δ)− aq2δβX
∗,

S = a{q1βV
∗(f2 + δ) + q2δβV

∗}{βX∗ + c
(k+V ∗)2 } − aδq2βX

∗(d+ βV ∗) − aq1βX
∗(f2 +

δ)(d+ βV ∗) + bf1(d+ βV ∗)(f2 + δ).

Hence, by Routh–Hurwitz criterion E2 is locally asymptotically stable if Di > 0 , for
i = 1, 2, 3, 4; where D1 = P,D2 = PQ−R,D3 = P (QR− PS)− P 2 and D4 = SD3.

4.2 Global stability analysis of the endemic equilibrium

We now show that the endemic equilibrium point E2(V
∗, X∗, Y ∗

1 , Y
∗

2 ) is globally asymp-
totically stable in the set B as its domain of attraction under certain conditions as follows.
Define

W (V,X, Y1, Y2) =
1

2
(V − V ∗)2 +

1

2
(X −X∗)2 +

1

2
(Y1 − Y ∗

1 )
2 +

1

2
(Y2 − Y ∗

2 )
2.

The time derivative of W along the solution of model system (1) is

Ẇ = (V − V ∗)V̇ + (X −X∗)Ẋ + (Y1 − Y ∗

1 )Ẏ1 + (Y2 − Y ∗

2 )Ẏ2

= (V − V ∗)(aY1 − bV ) + (X −X∗)(
c

k + V
− dX − βXV )

+(Y1 − Y ∗

1 )(q1βXV − f1Y1 + δY2) + (Y2 − Y ∗

2 )(q2βXV − f2Y2 − δY2)

≤ −b(V − V ∗)2 − (d+ βV ∗)(X −X∗)2 − f1(Y1 − Y ∗

1 )
2 − (f2 + δ)(Y2 − Y ∗

2 )
2

+
c

k
(

1

k + V ∗
+

β

d
) |V − V ∗| |X −X∗|+ (a+

q1βc

dk
) |V − V ∗| |Y1 − Y ∗

1 |

+
q2βc

dk
|V − V ∗| |Y2 − Y ∗

2 |+ q1βV
∗ |X −X∗||Y1 − Y ∗

1 |+ q2βV
∗ |X −X∗| |Y2 − Y ∗

2 |

+δ |Y1 − Y ∗

1 | |Y2 − Y ∗

2 |

= −a11(V − V ∗)2 − a22(X −X∗)2 − a33(Y1 − Y ∗

1 )
2 − a44(Y2 − Y ∗

2 )
2

+2a12 |V − V ∗| |X −X∗|+ 2a13 |V − V ∗| |Y1 − Y ∗

1 |+ 2a14 |V − V ∗| |Y2 − Y ∗

2 |

+2a23 |X −X∗| |Y1 − Y ∗

1 |+ 2a24 |X −X∗| |Y2 − Y ∗

2 |+ 2a34 |Y1 − Y ∗

1 | |Y2 − Y ∗

2 |

= −XTMX,
(2)

where XT = {|V − V ∗| , |X −X∗| , |Y1 − Y ∗

1 | , |Y2 − Y ∗

2 |} and M = [aij ]4×4. Elements
of the matrix M are given by: a11 = b, a22 = d + βV ∗, a33 = f1, a44 = f2 + δ,

a12 = a21 = − c
2k

(

1
V ∗+k

+ β
d

)

, a13 = a31 = − 1
2 (a+

q1βc
dk

),a14 = a41 = − q2βc
2dk ,a23 = a32 =

− q1βV
∗

2 ,a24 = a42 = − q2βV
∗

2 , a34 = a43 = − δ
2 .

Here, M is positive definite if the following inequalities

∣

∣

∣

∣

a11 a12
a21 a22

∣

∣

∣

∣

> 0,

∣

∣

∣

∣

∣

∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣

∣

∣

∣

∣

∣

> 0,

∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

∣

∣

∣

∣

∣

∣

∣

∣

> 0

hold simultaneously.
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Theorem 4.3 Suppose a < f1, E2 is globally asymptotically stable, if M is positive
definite where M = [aij ]4×4.

Proof Since B is a global attractor we may restrict our attention to solutions ini-

tiating in
◦

B. From the above inequalities, the right hand side of equation (2), which is
considered as a quadratic form in the variables |V − V ∗|, |X −X∗|, |Y1 − Y ∗

1 |, |Y2 − Y ∗

2 |is

negative definite for (V,X, Y1, Y2) ∈
◦

B. Hence Ẇ (V,X, Y1, Y2) is negative definite about

E2 and consequently W (V,X, Y1, Y2) is a Lyapunov function for (V,X, Y1, Y2) ∈
◦

B. This
completes the proof.

5 Stability Analysis with Delay

In this section, dynamical behaviour of the system near the equilibrium points E1 and
E2 are discussed in the presence of delay.

5.1 Local stability analysis

Before stating the theorems we require the following result in Kuang [17]. For a scalar
differential equation

n
∑

k=0

ak
dk

dtk
X(t) +

m
∑

k=0

bk
dk

dtk
X(t− τ) = 0, an 6= 0, n ≥ m.

The characteristic equation takes the form

P (λ) +Q(λ)e−λτ = 0, P (λ) =
n
∑

k=0

akλ
k, Q(λ) =

m
∑

k=0

bkλ
k. (3)

Theorem 5.1 Consider equation (3), where P (λ) and Q(λ) are analytic functions
in Reλ > 0 and satisfy the following conditions:

(i) P (λ)and Q(λ) have no common imaginary root;

(ii) P̄ (−iy) = P (iy), Q̄(−iy) = Q(iy) for real y; ’-’ denotes complex conjugate;

(iii) P (0) +Q(0) 6= 0;

(iv) lim sup [|Q(λ)/P (λ)| : |λ| → ∞, Reλ ≥ 0] < 1;

(v) F (y) = |P (iy)|2 − |Q(iy)|2 for real y has at most a finite number of real zeros.

Then the following statements are true:

(a) If F (y) = 0 has no positive roots, then no stability switch may occur;

(b) If F (y) = 0 has at least one positive root and each of them is simple, then as
τ increases, a finite number of stability switches may occur, and eventually the
considered equation becomes unstable.

Now we state and prove our results.
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Theorem 5.2 Stability switches occur or do not occur near the equilibrium point E1

as τ increases when R0 > 1 or R0 < 1 respectively.

Proof The characteristic equation of the system with delay at E1 is given by

λ4 + ǫ1λ
3 + η1λ

2 + µ1λ+ ω1 + ζ1λe
−λτ + ρ1e

−λτ = 0,

where ǫ1 = b+ d+ f1 + f2 + δ, η1 = bd+ (b+ d)(f1 + f2 + δ) + f1(f2 + δ)− aq1βc
kd

,

µ1 = bd(f1 + f2 + δ) + f1(b+ d)(f2 + δ)− aq1βc
kd

(d+ f2 + δ),

ω1 = (f2 + δ)(bdf1 −
aq1βc
kd

), ζ1 = −aq2δβc
kd

and ρ1 = −aq2δβc
k

.

Again this equation is of the form

P (λ) +Q(λ)e−λτ = 0,

where P (λ) = λ4 + ǫ1λ
3 + η1λ

2 + µ1λ + ω1 and Q(λ) = ζ1λ + ρ1. Clearly P (λ) and
Q(λ) have no common imaginary root. Obviously P̄ (−iy) = P (iy), Q̄(−iy) = Q(iy)
for real y. Also P (0) + Q(0) 6= 0. Now, lim sup[|Q(λ)/P (λ)| : |λ| → ∞, Reλ ≥ 0] < 1,
F (y) = |P (iy)|2 − |Q(iy)|2

= y8 + (ǫ21 − 2η1)y
6 + (η21 + 2ω1 − 2ǫ1µ1)y

4 + (µ2
1 − ζ21 − 2η1ω1)y

2 + (ω2
1 − ρ21).

Putting y2 = z we get

z4 + (ǫ21 − 2η1)z
3 + (η21 + 2ω1 − 2ǫ1µ1)z

2 + (µ2
1 − ζ21 − 2η1ω1)z + (ω2

1 − ρ21) = 0.

We have (ω2
1 − ρ21) > 0 which implies that a < bdkf1(f2+δ)

βc(f2q1+δq1+δq2)
. Consequently, F (y) = 0

has a positive root when a > bdkf1(f2+δ)
βc(f2q1+δq1+δq2)

, which is simple. Further when a <
bdkf1(f2+δ)

βc(f2q1+δq1+δq2)
, F (y) = 0 does not have a positive root. The result follows by the

application of Theorem 5.1.

Theorem 5.3 The endemic equilibrium E2 remains stable if σ > 1 and switches
from its stability to instability if σ < 1, where

σ =
(f2 + δ)2[bf1(d+ βV ∗) + aq1β[

cV ∗

(k+V ∗)2 − dX∗]]2

[aq2βδ[
cV ∗

(k+V ∗)2 − dX∗]]2
.

Proof Proceeding along the lines of proof of Theorem 5.2 we obtained the result.

6 Numerical Simulations and Discussion

We modeled the interaction inside the body between the HIV virus and uninfected target
cells. A virus particle (or virion) does absolutely nothing on its own. Virion hijacks the
machinery of the cell for its own replication when it gets entry to the host cell. It
then leaves the cell, and the process is repeated. In this way our immune system loses
its control over our body. In this study βX is the functional response of the virus
to the infected cell. Saturation effect due to virions and the effect of time delay due to
production of new virions from the latent infected class to the productive infected class are
also considered. The current study does not consider the effects of immune response but
this will be considered elsewhere. We now explain the dynamical behavior of the model
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using hypothetical set of parameter values for different situations and if experimental
data are available, one can give more insight of the dynamics of our model. All numerical
simulations are generated using MATLAB R© (The Mathworks, Inc., Version 7.10.0.499,
R2010a).

Figure 1 demonstrates that infection free equilibrium exists and is locally asymptot-
ically stable as shown in Theorem 4.1. The parameter values used are: a = 0.5 per
month; b = 1 per month; c = 10 per month; k = 1; d = 1 per month; β = 0.2 per month;
q1 = 0.3; f1 = 1 per month; δ = 2 per month; q2 = 0.7; f2 = 0.1 per month. Here
R0 = 0.97 . In other words infection dies out in this situation.

0 20 40 60 80 100
0

1

2

3

4

5

6

7

8

9

10

Time

Po
pu

lat
ion

 

 

Virions
Uninfected target cells
Productive infected cells
Latent infected cells

Population vs Time in absence of delay

Figure 1: The figure shows that the infection-free equilibrium is locally asymptotically stable.

Existence of the endemic equilibrium is shown in Figure 2. Conditions for local
asymptotic stability of this equilibrium are obtained in Theorem 4.2. Figure 2 is gener-
ated with the choice of the parameter values a = 5 per month; b = 1 per month; c = 10
per month; k = 1; d = 1 per month; β = 0.2 per month; q1 = 0.3; f1 = 1 per month;
δ = 2 per month; q2 = 0.7; f2 = 0.1 per month. It is important to note that in this case
R0 = 9.7. Hence infection is endemic in nature and prevails in the human body.
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Figure 2: The figure demonstrates that the endemic equilibrium is locally asymptotically stable.
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With the choice of parameter values a = .5 per month; b = 1 per month; c = 10
per month; k = 1; d = 1 per month; β = 0.2 per month; q1 = 0.3; f1 = 1 per month;
δ = 2 per month; q2 = 0.7; f2 = 0.1 per month and τ = 18 months, we note from Figure
3 that infection-free equilibrium exists and is locally asymptotically stable without any
stability switching as shown in Theorem 5.2. This implies no possibility of infection
occurs. Further in this case R0 = 0.97.
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Figure 3: The figure depicts that the infection-free equilibrium remains stable in the presence
of delay

With the following choice of parameter values: a = 5 per month; b = 1 per month;
c = 10 per month; k = 1; d = 1 per month; β = 0.2 per month; q1 = 0.3; f1 = 1 per
month; δ = 2 per month; q2 = 0.7; f2 = 0.1 per month and τ = 18 months, Figure 4 is
obtained. From this set of values we get σ > 1 and R0 = 9.7. The figure shows that the
system remains asymptotically stable through slight oscillations. Again by increasing τ
no sustained oscillations are observed for the system. Biologically the disease prevails
within the human body with slight ups and downs.
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Figure 4: The figure shows that the endemic equilibrium, in the presence of delay, ultimately
remains stable when σ > 1.
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Figure 5 is obtained by using the following parameter values: a = 5 per month; b = 1
per month; c = 10 per month; k = 1; d = 1 per month; β = 200 per month; q1 = 0.3;
f1 = 1 per month; δ = 2 per month; q2 = 0.7; f2 = 0.1 per month and τ = 18 months.
This set of values of the parameters gives σ < 1. This figure depicts that the system
switches from its stability to instability to stability etc. in the presence of delay. On
the basis of Figure 5, we may interpret biologically that the disease spreads randomly
with unusual manner within the individual. It is important to note that R0 ≫ 1 in this
situation and β plays a vital role.
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Figure 5: The figure shows that the endemic equilibrium becomes unstable in the presence of
delay when σ < 1.

From the analysis and numerical simulations we observe that endemic establishment
of the infection occurs for R0 > 1 whereas the infection dies out when R0 < 1. Again, if
the rate of production of virus, a, is dominated by the specific death rate of productive
infected cells, f1, then the population cannot be explored although infection remains
there. In brief, from the analysis we observed that the rate of production of virus through
replication by infected cell has an important role over the stability of the system. Thus,
we may reduce HIV infection that leads to AIDS by controlling the rate of production
of virus through replication. It is important to note that delay has destabilizing effect
on the system in the presence of latent class. Hence the latent class has a major role
on the dynamics of the system which is clear from our analytical findings and numerical
simulations.Saturation effects give more intricate dynamics also. Further β, δ and q1
are also the key parameters of the system.Hence, in order to restore the outbreak of the
disease, we have to take some control measures on these parameters with great care.

A definite AIDS cure is still under research. The current model can be extended by
incorporating immune response, age structure and other modifications. We hope that
some interesting results will be found in near future to save us from this fatal disease.

Acknowledgements

ZM and CC are supported by the UF Science for Life Program, an interdisciplinary
program with support from the Howard Hughes Medical Institute.



136 P. DAS, D. MUKHERJEE, A. SEN, Z. MUKANDAVIRE AND C. CHIYAKA

References

[1] UNAIDS. Global Report-UNAIDS report on global AIDS epidemic 2010, P. 1-61.
(www.unaids.org/documents/20101123_GlobalReport_em.pdf).

[2] N.I.H. How HIV Causes AIDS. National Institute of Allergy and Infectious Diseases (NI-
AID), November 2004, P. 39-44.

[3] McCluskey, C.C. A model of HIV/AIDS with staged progression and amelioration. Math.
Biosci. 181 (2003) 1-16.

[4] Qingzhi, W. and Lou, J. The global dynamics of a model about HIV-1 infection in vivo.
Ricerche mat. 58 (2009) 77–90.

[5] Wodarz, D. and Nowak, M. A. Mathematical models of HIV pathogenesis and treatment.
BioEssays 24 (2002) 1178–1187.

[6] Culshaw, R.V. and Ruan, S. A delay-differential equation model of HIV infection of CD4+
T-cells. Math. Biosci. 165 (2000) 27–39.

[7] Perelson, A.S., Kirschner, D.E. and Boer, R.D. Dynamics of HIV infection of CD4+ T cells.
Math. Biosci. 114 (1992) 81–125.

[8] Nelson P.W. and Perelson, A.S. Mathematical analysis of delay differential equation models
of HIV-1 infection. Math. Biosci. 179 (2002) 73–94.

[9] Bachar, M. and Dorfmayr, A. HIV treatment models with time delay. Comptes Rendus
Biologies 327 (2004) 983–994.

[10] Banks, H.T. and Bortz, D.M. A parameter sensitivity methodology in the context of HIV
delay equation models. J. Math. Biol. 50 (2005) 607–625.

[11] Zhou, X., Song, X. and Shi, X. A differential equation model of HIV infection of CD4+
T-cells with cure rate. J. Math. Anal. and Appl. 342 (2008) 1342–1355.

[12] Mukandavire, Z., Garira, W. and Chiyaka, C. Asymptotic properties of an HIV/AIDS
model with a time delay. J. Math. Anal. Appl. 330 (2007) 916–933.

[13] Pastore, D.H. On the numerical simulation of a class of HIV models. Math. and Comp.
Modelling 47 (2008) 781–795.

[14] Nikolaos, I. S. and Dieter, S. J. On the intra-host dynamics of HIV-1 infections. Math.
Biosci. 199 (2006) 1–25.

[15] Li, M. Y. and Li, S. H. Global Dynamics of an In-host Viral Model with Intracellular Delay.
Bull. Math. Biol. 72 (2010) 1492–1505.

[16] Britton, N. F. Essential Mathematical Biology. Springer-Verlag London Limited, 2004.

[17] Kuang, Y. Delay differential equations with applications in population dynamics. Academic
Press, New York, 1993.

www.unaids.org/documents/20101123_GlobalReport_em.pdf

	Introduction
	Mathematical Model
	Boundedness and Equilibria
	Stability Analysis without Delay
	Local stability analysis
	Global stability analysis of the endemic equilibrium

	Stability Analysis with Delay
	Local stability analysis 

	Numerical Simulations and Discussion

