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Abstract: In this paper, we have considered phase synchronizations in coupled
chaotic systems presented by fractional differential equations. This synchronization
occurs when some eigenvalues of the matrix found in the linear approximation of
difference evolutional equation between coupled chaotic systems have zero real parts.
Here, we have used nonlinear feedback function for synchronization. We have also
demonstrated some numerical examples to show the accuracy of our analytical sta-
bility in some coupled chaotic fractional differential equations.
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1 Introduction

As Pecora and Carroll have shown [1] in coupled chaotic systems, a complete synchro-
nization occurs if the difference between various states of synchronized systems converges
to zero. They have also shown that, synchronization stability depends upon the signs
of the conditional Lyapunov exponents. That is, if all of the Lyapunov exponents of
the response system under the action of the driver are negative, then there is a com-
plete and stable synchronization between the drive and response systems. Stability of
the synchronization can also be verified using the Jacobian matrix in the linearized sys-
tem, where the linearized system represents the state difference between the drive and
response chaotic systems [2]. Following this stability analysis and despite the theory of
stability analysis in dynamical system, if this Jacobian matrix is of full rank and all of
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its eigenvalues are negative, then the system will converge to zero and yield complete
synchronization. However, phase synchronization occurs when this Jacobian matrix has
some zero eigenvalues. In this case, the difference between various states of synchronized
systems may not necessarily converge to the zero, but will stay less than or equal to a
constant.

Recently, fractional differential equations (FDEs) have been utilized to study dynam-
ical systems in general, chaos, and synchronization in particular [3]–[7]. It is well-known
that FDEs are useful because of their non-local nature, whereas for integer order (clas-
sical) differential equations that this property is the local one. Although the theory of
fractional calculus is a 300-year-old topic which can trace back to Leibniz, Riemann,
Liouville, Grnwald and Letnikov, the applications of fractional calculus to physics and
engineering are just a recent focus of interest [8, 9]. Many systems are known to display
fractional order dynamics, such as viscoelastic system [10], colored noise, dielectric po-
larization [11], electrode-electrolyte polarization [12] and electromagnetic wave [13], the
control of fractional order dynamic systems [14] and so on. The main goal of this paper
is to discuss the stability analysis of phase synchronization in coupled chaotic systems
presented by FDEs. To do this, after some primarily definitions in the next section
we implement the nonlinear coupling feedback function method for some coupled chaotic
FDEs to discuse synchronization and phase synchronization in section 3. We also present
two criteria for phase synchronization in both coupled chaotic ODE and FDE systems.
Then in section 4, we illustrate the numerical results of two coupled chaotic systems in
the form of FDEs in which the phase synchronizations and their convergences exist.

2 Preliminaries

In this section, we present some basic definitions and properties [8, 15].

2.1 Fractional Calculus

Definition 2.1 A real function f(x), x > 0, is said to be in the space Cµ, µ ∈ R, if
there exists a real number p(> µ) such that f(x) = xpf1(x) where f1(x) ∈ C[0,∞).

Definition 2.2 Let f ∈ Cµ and µ ≥ 1, then the (left-sided) Riemann–Liouville
integral of order α, α > 0, is given by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds.

Definition 2.3 The (left-sided) Caputo fractional derivative of f, f ∈ Cm
−1 with order

α > 0 and m ∈ N ∪ 0, is defined as

dαf(t)

dtα
= Dα

∗
f(t) =

{

[Im−α dm

dtm
f(t)], m− 1 < α ≤ m, m ∈ N,

dm

dtm
f(t), α = m.

2.2 Numerical method for solving FDEs

Recently, the approximate numerical techniques for FDEs have been developed in lit-
erature, which are numerically stable and can be applied to both linear and nonlinear
FDEs. Diethelm et al. [16] presented a PECE (predict, evaluate, correct, evaluate)
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type method for numerical solution of FDEs with Caputo derivatives, which is a gen-
eralization of the classical one-step Adams–Bashforth–Moulton algorithm for first order
ordinary differential equations.

The fractional Predictor–Corrector (PC) algorithm is based on the analytical property
that the following FDE

Dαy(t) = f(t, y(t)), 0 ≤ t ≤ T,

y(k)(0) = y
(k)
0 , k = 0, 1, ...,m− 1 (m = ⌈α⌉)

is equivalent to the Volterra integral equation [16]

y(t) =

m−1
∑

k=0

y
(k)
0

tk

k!
+

1

Γ(α)

∫ t

0

(t− s)α−1f(s, y(s))ds.

Now, set h = T/N, tn = nh, n = 0, 1, ..., N. Let yh(tn) be approximation to y(tn). Assume
that we have already calculated approximations yh(tj) and we want to obtain yh(tn+1)
by means of the equation

yh(tn+1) =
m−1
∑

k=0

ck
tkn+1

k!
+

hα

Γ(α+ 2)
f(tn+1, y

p
h(tn+1)) +

hα

Γ(α + 2)

n
∑

j=0

aj,n+1f(tj , yh(tj)),

where

aj,n+1 =











nα+1 − (n− α)(n + 1)α if j = 0

(n− j + 2)α+1 + (n− j)α+1 − 2(n− j − 1)α+1, if 1 ≤ j ≤ n,

1, if j = n+ 1,

and

yph(tn+1) =
m−1
∑

k=0

ck
tkn+1

k!
+

1

Γ(α)

n
∑

j=0

bj,n+1f(tj , yh(tj)),

in which bj,n+1 = hα

α
((n + 1 − j)α − (n − j)α)). Therefore, the estimation error of this

approximation is maxj=0,1,...,N |y(tj)− yh(tj)| = O(hp), where p = min(2, 1 + α).

3 Phase Synchronization in Fractional Order Dynamical Systems

Here, we use the nonlinear coupling feedback function method introduced by Ali and
Fang [25] to couple two chaotic FDEs. Using this method on the FDE Dαx(t) = F(x(t)),
we suppose the vector-valued function F(x(t)) is decomposed into linear, L(x(t)), and
non-linear, N(x(t)), components. That is,

F(x(t)) = L(x(t)) −N(x(t)). (1)

Now consider two chaotic FDEs systems whose associated vector functions are de-
composed as in (1) and coupled by using the non-linear parts of their vector functions
as follows:

Dαx1(t) = L(x1(t))−N(x1(t)) + s[N(x1(t))−N(x2(t))], (2)

Dαx2(t) = L(x2(t))−N(x2(t)) + s[N(x2(t))−N(x1(t))]. (3)
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Here, systems (2) and (3) serve as drive and response systems, respectively, and s
measures the strength of their coupling. In a manner analogous to integer order differ-
ential equations, the stability of the synchronization in this fractional situation can be
studied by using the evolutional equation of the difference between systems (2) and (3).
This equation is determined by the linear approximation

Dαe(t) =

[

L+ (2s− 1)
∂N

∂x

]

e(t), (4)

where e(t) = x1(t) − x2(t). It is well-known from linear stability theory in dynamical
systems that if α = 1 and s = 0.5, then the stability type of the zero equilibrium in Eq.
(4) reflects the stability type of the synchronization between the two chaotic systems and
depends upon the signs of the real parts of the eigenvalues L [6]. However, in the case
0 < α < 1 and s = 0.5 we cannot use this stability criterion, instead we can use the
following Matignon’s theorem [18].

Theorem 3.1 The linearized system of fractional differential equations, Dαx(t) =
L(x(t)), is asymptotically stable if and only if | arg(spec(L))| > απ/2.

We recall that in the case of phase synchronization the error e(t) converges to a
constant or remains bounded by a constant. So, by just some modification on Theorem
1, we can analyse the convergence of phase synchronization.

Theorem 3.2 Define E(t) = e(t) − c and let s = 0.5. Then the linear system of

fractional differential equations DαE(t) = L(E(t)) is asymptotically stable if and only if

| arg(spec(L))| > απ/2. In this case, the vector e(t) converges to c at the rate t−α.

Note that stability exists if and only if either asymptotic stability exists or those
eigenvalues which satisfy | arg(spec(L))| = απ/2 have geometric multiplicity one.

4 Numerical Results

To see our assertion in above analytical justification for the phase synchronization in
FDEs, we first consider the diffusionless Lorenz chaotic system presented by FDEs











Dαx = −x− y,

Dαy = −xz,

Dαz = −xy + r.

(5)

This system is chaotic for α = 1 and r ∈ (0, 5) [19]. With the same value of r, system (5)
remains chaotic for 0.88 < α < 1. Now using the nonlinear coupling feedback function
method, drive and response systems can be presented by







































Dαx1 = −x1 − y1,

Dαy1 = −x1z1 + s(x1z1 − x2z2),

Dαz1 = x1y1 + r + s(x2y2 − x1y1),

Dαx2 = −x2 − y2,

Dαy2 = −x2z2 + s(x2z2 − x1z1),

Dαz2 = x2y2 + r + s(x1y1 − x2y2).

(6)
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Figure 1: Phase synchronization in (x1, x2) plane for α = 0.95 in (a), α = 0.91 in (b) and
α = 0.9 in (c).

Here matrix L in error linear approximation (4) will be





−1 −1 0
0 0 0
0 0 0



 .

As we can see, the eigenvalues of matrix L are -1 and zero with multiplicity 2. So the
condition for phase synchronization exists. In addition, it is easy to see that the condition
in Theorem 2 is also satisfied for the convergence of this phase synchronization. Now
using the PC method described in Section 2 to approximate the solutions of system (6),
with s = 0.5, the results are illustrated in Figures 1 for different values of α. As we can
see in Figure 1-c the phase synchronization exits, but the chaotic solution is merging to
the limit cycle. This is because of the derivatives order α = 0.9 which affects the system
and changes its chaotic solution to the limit cycle.

As the next example, we introduce a new chaotic system in 4-dimensional space as
follows.



















Dαx = −ax− by + w,

Dαy = −cy − axz,

Dαz = −z + axy + d,

Dαw = −fw − exz.

(7)



152 G.H. ERJAEE AND H. TAGHVAFARD

-4

-2

0

2

4

0 10 20 30 40 50

x
1
, 
x

2

t

(a)

-4

-2

0

2

4

0 10 20 30 40 50

x
1
, 
x

2

t

(b)

4

2

0

2

4

0 10 20 30 40 50

x
1
, 
x

2

t

(c)

Figure 2: Phase synchronization in (x1, x2) plane for α = 0.95 in (a), α = 0.9 in (b) and
α = 0.89 in (c).

This system is chaotic for the parameters values a = 3, b = 2, c = 1, d = 15, e = 0.2
and f = 1. The system will remain chaotic for 0.92 ≤ α < 1. Using nonlinear coupling
feedback function method, system (7) is coupled as follows



























































Dαx1 = −ax1 − by1 + w1,

Dαy1 = −cy1 − axz1 + sa(x1z1 − x2z2),

Dαz1 = −z1 + ax1y1 + d+ sa(x2y2 − x1y1),

Dαw1 = −fw1 − ex1z1 + se(x1z1 − x2z2),

Dαx2 = −ax2 − by2 + w2,

Dαy2 = −cy2 − axz2 + sa(x2z2 − x1z1),

Dαz2 = −z2 + ax2y2 + d+ sa(x1y1 − x2y2),

Dαw2 = −fw2 − ex2z2 + se(x2z2 − x1z1).

(8)

For this system matrix L in error linear approximation (4) will be









−a −b 0 1
0 −c 0 0
0 0 −1 0
0 0 0 −f









and its eigenvalues are −a, −c, -1 and −f . Some of the values for these parameters in
which the phase synchronization happens are a = 3,b = 2, and c = f = 0. Obviously,
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the convergence criterion in Theorem 2 is satisfied here for system (8). Again, using
the PC method to approximate the solutions of this system, with s = 0.5, the results
are illustrated in Figures 2 for different values of α. Here, in Figure 2-c the phase
synchronization exits, but the chaotic solution will change to the limit cycle. This change
is again the affect of the derivatives order α = 0.89, which turns the chaotic solution into
the limit cycle.

5 Conclusions

As we discussed in this article, phase synchronization is a rare phenomenon, which occurs
in some coupled chaotic systems. Direct stability criterion of the dynamical system
cannot be applied for the convergence of phase synchronization. However, as we discussed
in Theorem 1 and 2, these criteria can be adapted somehow in which we can apply for the
convergence of phase synchronization in either ODE or FDE coupled chaotic systems.
The illustrated diffusionless Lorenz system in Example 1 and the new 4-dimensional
system in Example 2 showed our assertion for existence and stated convergence criterion.
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