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1 Introduction

In 1964, S. Bochner introduced almost automorphic functions in one of his landmark pa-
per [10]. Almost automorphic functions are more general than almost periodic functions.
Many authors had established the almost periodic solution of differential equations in
abstract spaces ([8, 9, 13, 15], etc.). The theory has been generalized by many authors
for almost automorphic solutions ([11, 12, 14], etc.). Goldstein [14] has considered the
following differential equation in a Banach space X

dx(t)

dt
= Ax(t) + f(t, x(t)), t ∈ R, (1)

where A generates an exponentially stable C0- semigroup and f be a jointly continuous
function and shown the existence of almost automorphic solution of the problem if f is
almost automorphic.
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These days, functional differential equations have been of very great interest, for many
mathematicians. Bahuguna [1] studied a class of partial functional differential equtations
and its application to population dynamics. Analytical techniques of semigroup theory
have been applied in [2], [3] and [4], which we are also going to use in this paper.

Bahuguna and Muslim [5] also considered the second order history valued delay dif-
ferential equations [4] and used evolution equations and semigroup theory to find approx-
imation of a solution. Recently, D.N. Pandey, A. Ujlayan and D. Bahuguna [6] proved
existence and uniqueness of a hyperbolic integrodifferential equation with a nonlocal
condition.

Abbas and Bahuguna [7] considered the following nonautonomous neutral functional
differential equations

d

dt
(x(t) − F1(t, x(t − g(t)))) = A(t)x(t) + F2(t, x(t), x(t − g(t))), (2)

where A(t) generates an exponentially stable evolution systems and g is a continuous
function. The authors have shown the existence of an almost periodic mild solutions
using Kransnoselskii’s fixed point theorem and theory of evolution operator. They also
assumed the well known Acquistapace–Terreni conditions which ensure the existence of
evolution family.

In the present work we study the existence of an almost automorphic solution of
equation (2) using the evolution semigroup and the Banach fixed point approach.

2 Preliminaries

Let X be a complex Banach space endowed with the norm ‖.‖X . N, R and C stand for
Natural, Real and Complex numbers respectively. Let B(X) be a Banach space of all
bounded linear operators from X to itself; endowed with norm ‖.‖B(X) given by

‖L‖B(X) = sup{‖Lx‖X : x ∈ X and ‖x‖X ≤ 1}.

Now, we will recall certain definitions to be used subsequently in this paper.

Definition 2.1 A continuous function f : R → X is said to be almost automorphic
if for every sequence {sn}n∈N of real numbers there exists a subsequence {τn}n∈N such
that limn→∞ f(t+ τn) = g(t) and limn→∞ g(t− τn) = f(t) for all t ∈ R.

We denote by AA(X) the set of all such functions.

Definition 2.2 A continuous function f : R×X → X is said to be almost automor-
phic if f(t, x) is almost automorphic for each t ∈ R uniformly for all x ∈ Y , where Y is
any bounded subset of X.

Equivalently, for every sequence of real numbers {sn}n∈N we can extract a subse-
quence {τn}n∈N such that g(t, x) = limn→∞ f(t+ τn, x) is well defined for all t ∈ R and
for all x ∈ Y and f(t, x) = limn→∞ g(t − τn, x) is well defined for all t ∈ R and for all
x ∈ Y .

Lemma 2.1 (AA(X), ‖.‖AA(X)) is a Banach space with supremum norm, given by
‖f‖AA(X) = supt∈R ‖f(t)‖.

Lemma 2.2 If f : R → X is almost automorphic, then f is bounded.
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For the proof of the above two lemmas, we refer to [12].

Lemma 2.3 Suppose Z and W are Banach spaces. Let F : R×Z → W be an almost
automorphic function in t ∈ R, for each z ∈ Z and assume that F satisfies Lipschitz
condition in z uniformly in t ∈ R. Let φ : R → Z be an almost automorphic function,
then the function Φ : R → W, defined by Φ(t) = f(t, φ(t)) is almost automorphic.

In [18], Acquistapace and Terreni gave conditions on A(t), t ∈ R, which ensure the
existence of unique evolution family {U(t, s) : t ≥ s > −∞} on X, such that

u(t) = U(t, 0)u(0) +

∫ t

0

U(t, ξ)f(ξ)dξ,

where u(t) satisfies
du(t)

dt
= A(t)u(t) + f(t), t ∈ R.

Lemma 2.4 ATC (Acquistapace–Terreni condition). Let

Sθ = {λ ∈ C : | argλ| ≤ θ} ∪ {0} ⊂ ρ(A(t)), θ ∈ (
π

2
, π).

If there exist a constant K0 and a set of real numbers α1, ..., αk, β1, ...βk with 0 ≤ βi <

αi ≤ 2, i = 1, 2, ...k, such that

‖A(t)(λ−A(t))−1(A(t)−1 −A(s)−1)‖B(X) ≤ K0 Σk
i=1(t− α)αi |λi|βi−1

for t, s ∈ R and λ ∈ Sθ\{0} and there exists constant M ≥ 0 such that

‖(λ−A(t))−1‖ ≤ M

1 + |λ| , λ ∈ Sθ,

then there exists a unique evolution family {U(t, s) : t ≥ s > −∞} on X.

These conditions resulting from Theorem 2.3 of [17] are known as ”Acquistapace–
Terreni conditions”.

Definition 2.3 A mild solution of (2) is a continuous function x : R → X, satisfying

x(t) − F1(t, x(t− g(t)) = U(t, s)(x(s) − F1(s, x(s− g(s))))

+

∫ t

a

U(t, ξ)F2(ξ, x(ξ), x(ξ − g(ξ)))dξ (3)

for t ≥ s all s ∈ R.

Note: We say, an evolution family {U(t, s)}t≥s>−∞ is exponentially stable, if ∃M ≥
1 and δ > 0 such that ‖U(t, s)‖ ≤ Me−δ(t−s) for t ≥ s. When s → −∞ the above
equation takes the form

x(t) = F1(t, x(t − g(t))) +

∫ t

−∞
U(t, ξ)F2(ξ, x(ξ), x(ξ − g(ξ)))dξ.
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Assumptions:

(C1) : F1(t, x), F2(t, x, y) are almost automorphic.

(C2) : F1 and F2 are Lipschitz continuous that is there exist positive numbers LF1
(t)

and LF2
(t) such that

‖F1(t, x) − F1(t, y)‖ ≤  LF1
(t)‖x− y‖AA(X),

‖F2(t, x, u) − F2(t, y, v)‖ ≤ LF2
(t)(‖x − y‖AA(X) + ‖u− v‖AA(X)).

(C3) : {U(t, s) : t ≥ s} is an exponentially stable evolution family on X.

(C4) : For every sequence {sn} of real numbers there exists a subsequence {τn} and for
any fixed s ∈ R , ǫ > 0, there exists N ∈ N such that for all n ≥ N, it follows that

‖U(t+ τn, s+ τn) − U(t, s)‖ ≤ ǫe−
δ

2
(t−s)

and
‖U(t− τn, s− τn) − U(t, s)‖ ≤ ǫe−

δ

2
(t−s) for all t ≥ s ∈ R.

3 Almost Automorphic Solution

We define the mapping F by

(Fx)(t) = F1(t, x(t− g(t))) +

∫ t

−∞
U(t, s)F2(s, x(s), x(s) − g(s)))ds.

Lemma 3.1 For x(.) ∈ AA(X), we have Fx is also almost automorphic.

Proof Since F1 is Lipschitz and F1 ∈ AA(R, X); by Lemma 2.3, we have

F1(t, x(t− g(t))) = K(t) ∈ AA(X).

By (C2), we have F2(., x(.), y(.)) ∈ AA(R×X ×X,X), also we have assumed that F2 is
Lipschitz with respect to both variables x and y, further using the fact that X × X is
Banach space; hence from Lemma 2.3, one can easily see that F2(., x(.), y(.)) ∈ AA(X).

Next, we define F2(t, x(t), y(t)) = H(t), where H(.) ∈ AA(X). Now we show that

‖Fx‖AA(X) < ∞,

‖Fx(t)‖X ≤ ‖K(t)‖X +

∫ t

−∞
‖U(t, s)‖‖F2(s, x(s), x(s − g(s)))‖Xds

≤ M1 +

∫ t

−∞
Me−δ(t−s)‖H(s)‖Xds

≤ M1 + M2
M

δ
<∞. where sup

t∈R

‖H(t)‖ = M2.

Thus, we have shown that Fx is bounded.
Now, we show that (Fx)(t) is almost automorphic with respect to t ∈ R. Since

H(.) ∈ AA(X) for all sequence {sn} of real numbers, there exists a subsequence {τn}
such that
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(H1) : h(t) = limn→∞H(t+ τn) is well defined for all t ∈ R.

(H2) : H(t) = limn→∞ h(t− τn) is well defined for all t ∈ R.

As we are going to use Lebesgue dominated convergence theorem to show that
(Fx)(t + τn) → (Gx)(t) as n → ∞; we need to show |Fx(t + τn)| < l(t) for all n ∈ N;
where l is some integrable function. Consider

(Fx)(t + τn) = F1(t+ τn, x(t+ τn − g(t+ τn))

+

∫ t+τn

−∞
U(t+ τn, s)F2(s, x(s), x(s − g(s)))ds.

= F1(t+ τn, x(t+ τn − g(t+ τn))

+

∫ t

−∞
U(t+ τn, s+ τn)F2(s+ τn, x(s+ τn), x(s+ τn − g(s+ τn)))ds.

Taking the norm on both sides, we have

‖(Fx)(t + τn)‖ ≤ ‖K‖AA(X) +

∫ t

−∞
‖U(t+ τn, s+ τn)‖‖H(s+ τn)‖ds

≤ M1 +
M2M

δ
(‖H‖ ≤M2).

By (H1), for any fixed s ∈ R, ǫ > 0 there exists N1 ∈ N such that for all n > N1 we have

‖H(s+ τn) − h(s)‖ ≤ ǫ.

In addition by (C4) for s and ǫ as above there exists N2 ∈ N such that for all n > N2

‖U(t+ τn, s+ τn) − U(t, s)‖ < ǫe
−δ

2
(t−s).

Let N = max{N1, N2}, then

‖U(t+ τn, s+ τn)H(s+ τn) − U(t, s)h(s)‖
≤ ‖U(t+ τn, s+ τn) − U(t, s)‖‖H(s+ τn)‖ + ‖U(t, s)‖‖H(s+ τn) − h(s)‖
≤M2ǫe

−δ

2
(t−s) +Mǫe

−δ

2
(t−s)

⇒ U(t+ τn, s+ τn)H(s+ τn) → U(t, s)h(s)

as n → ∞ for all fixed s ∈ R and t ≥ s. Since K(.) ∈ AA(X), for any sequence {sn} of
real numbers there exists a subsequence {τn} such that

lim
n→∞

K(t+ τn) = k(t), lim
n→∞

k(t− τn) = K(t).

Thus, we have K(t+τn) → k(t) as n→ ∞. By Lebesgue dominated convergence theorem
we get (Fx)(t+τn) → Gx(t) as n→ ∞. In a similar way we can show that (Gx)(t−τn) →
(Fx)(t) as n→ ∞ for all t ∈ R ⇒ Fx ∈ AA(X).

Theorem 3.1 Let x(.) be an almost automorphic function and F1, F2 and U(t, s) sat-
isfy all conditions from (C1) to (C4). Then equation (2) has unique almost automorphic
mild solution, whenever (LF1

+ 2LF2

M
δ

) < 1.
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Proof It follows by Lemma 3.1, that Fx ∈ AA(X), whenever x does. Let us assume
that

LF1
= sup

t∈R

LF1
(t), LF2

= sup
t∈R

LF2
(t).

For x, y ∈ AA(X), we have:

‖(Fx)(t) − (Fy)(t)‖
≤ ‖F1(t, x(t− g(t))) − F1(t, y(t− g(t)))‖

+

∫ t

−∞
‖U(t, s)F2(s, x(s), x(s − g(s))) − U(t, s)F2(s, y(s), y(s− g(s)))‖ds

≤ LF1
(s)‖x− y‖

+LF2
(s){‖x(s) − y(s)‖ + ‖x(s− g(s)) − y(s− g(s))‖}

∫ t

−∞
Me−δ(t−s)ds

≤ LF1
‖x− y‖AA(X) + 2LF2

‖x− y‖AA(X)

∫ t

−∞
Me−δ(t−s)ds

≤ LF1
‖x− y‖AA(X) + 2LF2

M

δ
.

By Banach contraction principle, F has a unique fixed point x ∈ AA(X) such that
Fx = x.

Fixing s ∈ R, we have

x(t) = F1(t, x(t− g(t))) +

∫ t

−∞
U(t, s)F2(s, x(s), x(s − g(s)))ds.

Since U(t, s) = U(t, r)U(r, s) for t ≥ r ≥ s, let

x(ξ) = F1(ξ, x(ξ − g(ξ))) +

∫ ξ

−∞
U(ξ, s)F2(s, x(s), x(s − g(s)))ds

so

U(t, ξ)x(ξ) = U(t, ξ)F1(ξ, x(ξ − g(ξ))) +

∫ ξ

−∞
U(t, s)F2(s, x(s), x(s − g(s)))ds.

For t ≥ ξ,
∫ t

ξ

U(t, s)F2(s, x(s), x(s − g(s)))ds =

∫ t

−∞
U(t, s)F2(s, x(s), x(s − g(s)))ds

−
∫ ξ

−∞
U(t, s)F2(s, x(s), x(s − g(s)))ds

= x(t) − U(t, ξ)x(ξ) − F1(t, x(t− g(t)))

+U(t, ξ)F1(ξ, x(ξ − g(ξ))).

Hence we get

x(t) = F1(t, x(t − g(t))) − U(t, ξ)F1(ξ, x(ξ − g(ξ)))

+U(t, ξ)x(ξ) +

∫ t

ξ

U(t, s)F2(s, x(s), x(s − g(s)))ds. (4)
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Remark 3.1 Consider the following differential equation

d

dt
(x(t) − F1(t, x(t− g(t)))) = A(t)x(t) + F2(t, x(t),

∫ t

−∞
G(t− s)f(s, x(s))ds), (5)

where G ∈ L1(R) and f is almost automophic, Lipschitz with respect to second variable.
Now f ∈ AA(R×X,X) and f is Lipshitz by Lemma 2.3, we have f ∈ AA(X).
Let f(t, x(t)) = ψ(t).

If we can show
∫ t

−∞G(t− s)f(s, x(s)) is almost automorphic, then as a consequence
of the above theorem, equation (5) has a unique almost automorphic solution.
As ψ is almost automorphic for every sequence of real numbers {tn} there exists a sub-
sequence {τn} such that limn→∞ ψ(t + τn) = ψ1(t) is well defined for all t ∈ R and
ψ(t) = limn→∞ ψ1(t− τn) is well defined for all t ∈ R.

Consider

‖
∫ t+τn

−∞
G(t+ τn − s)ψ(s)ds−

∫ t

−∞
G(t− s)ψ1(s)ds‖

= ‖
∫ t

−∞
G(t− s)ψ(s+ τn)ds−

∫ t

−∞
G(t− s)ψ1(s)ds‖

≤ (‖ψ(s+ τn) − ψ1(s)‖)

∫ t

−∞
|G(t− s)|ds

≤M ′(‖ψ(s+ τn) − ψ1(s)‖)

for some M ′ <∞ → 0 as n→ ∞. Thus,
∫ t

−∞G(t− s)ψ(s)ds is almost automorphic and
we have the result.

4 Example

Consider the following equation

u′′ + (ε2u
2 + 1)u′ + u = ε1

d

dt

(

sin
( 1

sin t+ sin
√

2t

)

u2(t− g(t))
)

− ε2(cos t+ cos
√

2t).

Let u = u1 and u′1 = u2, then we can write the above equation in matrix form as
follows

(

u′1
u′2

)

=

(

0 1
−1 −1

)

×
(

u1
u2

)

+
d

dt
F1(t, U(t− g(t))) + F2(t, U(t), U(t− g(t))),

where

U =

(

u1
u2

)

,

F1(t, U(t− g(t))) =

(

0
sin( 1

sin t+sin
√
2t

)u21

)

,

F2(t, U(t), U(t− g(t))) =

(

0

ε2(cos t+ cos
√

2t) − ε2u
2
1u2

)

.

This is of the form (2). Thus we can apply our results to ensure the existence and
uniqueness of almost automorphic solutions.
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