
Nonlinear Dynamics and Systems Theory, 11 (3) (2011) 239–251

Quasilinearization Method Via Lower and Upper

Solutions for Riemann–Liouville Fractional Differential

Equations

Z. Denton, P.W. Ng and A.S. Vatsala ∗

Department of Mathematics, University of Louisiana Lafayette, Lafayette, LA 70504 USA

Received: February 18, 2011; Revised: July 20, 2011

Abstract: Existence and comparison results of the linear and nonlinear Riemann–
Liouville fractional differential equations of order q, 0 < q < 1, are recalled and
modified where necessary. Generalized quasilinearization method is developed for
nonlinear fractional differential equations of order q, using upper and lower solutions.
Quadratic convergence to the unique solution is proved via weighted sequences.

Keywords: fractional differential equations; lower and upper solutions; quasilin-

earization method.

Mathematics Subject Classification (2000): 34A34, 34A45.

1 Introduction

Fractional differential equations have various applications in widespread fields of science,
such as in engineering [9], chemistry [10, 17, 18], physics [3, 4, 11], and others [12, 13].
In the majority of the literature existence results for Riemann–Liouville fractional differ-
ential equations are proven by a fixed point method. Initially we will recall existence by
lower and upper solution method, which is more comparable to our main results. Despite
there being a number of existence theorems for nonlinear fractional differential equations,
much as in the integer order case, this does not necessarily imply that calculating a solu-
tion explicitly will be routine, or even possible. Therefore, it may be necessary to employ
an iterative technique to numerically approximate a solution to a needed solution. In
this paper we construct such a method.

The iterative technique we manufacture is the method of quasilinearization for non-
linear Riemann–Liouville fractional differential equations of order q, 0 < q < 1. This
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method was first developed in [1, 2, 16], the method we construct is more closely related
to those found in [15], that is a generalized quasilinearization method via lower and upper
solutions. This particular method is much like the monotone method in that we construct
monotone sequences from lower and upper solutions of the original equation. Further,
each iterate is the solution of the linear fractional differential equation, but unlike in the
monotone method, these iterates are not of the form with constant coefficients. In the
case of the Riemann–Liouville fractional derivative, the variable coefficient case compli-
cates our method. Therefore, we will recall existence, comparison, and inequality results
for this case, including a generalized Gronwall type inequality, which will be paramount
to our main result. Further, we will present modifications to these results where pertinent
to our work.

Further, in the construction of the quasilinearization method we require a much
stronger hypothesis than the monotone iterative technique. We still require the exis-
tence of lower and upper solutions v, w such that v ≤ w, but specifically we require the
nonlinear function f(t, x) to be convex (or concave) in x. Though this requirement may
initially seem superfluous, with its application we are able to prove that the sequences
we construct converge quadratically. Therefore, the sequences we construct may be more
unwieldy, and the requirements more strict, than with the monotone method, but with
this method the convergence is far faster. Further, with the assumption that f is convex
automatically ensures that our solution is unique, which is not necessarily the case with
the monotone method.

We note that this method has been studied in [8], but the authors have considered
differential equations of the Caputo case. However the Caputo derivative only exists for
C1 functions. We do not make this assumption with the Riemann–Liouville derivative.
In fact, the functions we consider generally have a singularity at the left-most endpoint,
therefore they are only C0 on a half open interval, with a special Cp property we will define
below. One consequence of using the Riemann–Liouville derivative is that, in general,
the sequences we construct, {αn}, {βn} do not converge uniformly to the unique solution,
but the weighted sequences {tpαn}, {t

pβn} converge uniformly and quadratically to tpx,
where x is the unique solution of the original equation and p = 1− q.

Finally, we consider the case when f is not convex (nor concave), but there exists a
function φ such that f + φ is convex. We construct the quasilinearization for this case
and note that a function φ will always exist, therefore extending this method to any
nonlinear fractional differential equation, provided f is C2 in x. For more information on
the method of quasilinearization via lower and upper solutions as it relates to ordinary
differential equations, see [15].

2 Preliminary Results

In this section we consider results regarding the Riemann-Liouville (R-L) differential
equations of order q, 0 < q < 1. Specifically we recall existence and comparison results
which will be used in our main result. In the next section we will apply these preliminary
results to developing quasilinearization method for R-L fractional differential equations
of order q. Note, for simplicity we only consider results on the interval J = (0, T ], where
T > 0. Further, we will let J0 = [0, T ], that is J0 = J̄ .

Definition 2.1 Let p = 1− q, a function φ(t) ∈ C(J,R) is a Cp function if tpφ(t) ∈
C(J0,R). The set of Cp functions is denoted Cp(J,R). Further, given a function φ(t) ∈
Cp(J,R) we call the function tpφ(t) the continuous extension of φ(t).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (3) (2011) 239–251 241

Remark 2.1 By the definition of Cp continuity and the properties of continuous
functions it can be shown that the uniform limit of Cp functions is Cp, also Cp(J,R) has
a completeness property in that any uniformly Cauchy sequence of Cp functions converges
uniformly to a Cp function. Further Cp(J,R) is closed under continuous products, that
is, if x ∈ Cp(J,R) and y ∈ C(J0,R) then xy ∈ Cp(J,R).

Now we define the R-L integral and derivative of order q on the interval J .

Definition 2.2 Let φ ∈ Cp(J,R), then Dq
tφ(t) is the q-th R-L derivative of φ with

respect to t ∈ J defined as

Dq
tφ(t) =

1

Γ(p)

d

dt

∫ t

0

(t− s)−qφ(s)ds,

and Iqt φ(t) is the q-th R-L integral of φ with respect to t ∈ J defined as

Iqt φ(t) =
1

Γ(q)

∫ t

0

(t− s)q−1φ(s)ds.

Note that in cases where the initial value may be different, or ambiguous, we will write
out the definition explicitly. The next definition is related to the solution of linear R-L
fractional differential equation and is also of great importance in the study of the R-L
derivative.

Definition 2.3 TheMittag–Leffler function with parameters α, β ∈ R, denotedEα,β ,
is defined as

Eα,β(z) =

∞
∑

k=0

zk

Γ(αk + β)
,

which is entire for α, β > 0.

Remark 2.2 We note that the Cp weighted Mittag–Leffler function

tq−1Eq,q(λt
q) =

∞
∑

k=0

λktkq+q−1

Γ(kq + q)
,

where λ is a constant, converges uniformly on J . This can be shown by using the fact
that Eq,q is entire and noting that there exists an N > 0 such that nq+ q− 1 > 0 for all
n ≥ N . From here one can show that the sequence of partial sums of the above series is
uniformly Cauchy.

The next result gives us that the q-th R-L integral of a Cp continuous function is also
a Cp continuous function. This result will give us that the solutions of R-L differential
equations are also Cp continuous.

Lemma 2.1 Let f ∈ Cp(J,R), then Iqt f(t) ∈ Cp(J,R), i.e. the q-th integral of a Cp

continuous function is Cp continuous.

Note the proof of this theorem for q ∈ R
+ can be found in [7]. Now we consider

results for the nonhomogeneous linear R-L differential equation

Dq
tx(t) = y(t)x(t) + z(t) (1)

with initial condition Γ(q)tpx(t)
∣

∣

t=0
= x0, where x0 is a constant, y ∈ C(J0,R), and

z ∈ Cp(J,R).
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Theorem 2.1 If y ∈ C(J0,R) and z ∈ Cp(J,R) then equation (1) has a unique
solution x ∈ Cp(J,R), given explicitly by

x(t) =

∞
∑

k=0

x0

Γ(q)
T k
y

[

tq−1
]

+ T k
y

[

Iqt z(t)
]

,

which converges uniformly on J and where Ty is the operator defined by

Tyφ(t) = Iqt y(t)φ(t).

Proof The proof of the homogeneous case, and that tpx(t) converges uniformly on
J0 can be found in [6], the refinement that x(t) converges uniformly on J can be found in
[5]. Note the nonhomogeneous case follows in exactly the same way as in [6]. Further in
[5] it was assumed that z ∈ Cp(J,R) such that Iqt z ∈ C(J0,R), here we have relaxed this
condition. The proof follows along the same lines as in [5] with appropriate modifications.
That is, using that z ∈ Cp, and the fact that Eq,q is entire, we can show the partial sums
of the series x are uniformly Cauchy on J . That x ∈ Cp(J,R) follows from applying
Remark 2.1 and Lemma 2.1. Note that if z(t) = 0 for all t ∈ J then we get that

x(t) =
x0

Γ(q)

∞
∑

k=0

T k
y

[

tq−1
]

.

In many cases we may have an explicit form of y that may prove too unwieldy to place
in a subscript. In this case we will use the following notation

E(y, f) =
∞
∑

k=0

T k
y

[

f
]

,

and since the case where f = tq−1 occurs so often we will define E with a single parameter
to be this case. That is E(y) = E(y, tq−1). Therefore the solution of (1) can be written
as

x(t) =
x0

Γ(q)
E(y) + E(y, Iqt z). (2)

Further, if y is identically a constant, say λ, it can be shown that (2) can be expressed
as

x(t) = x0tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)z(s) ds.

This is the result discussed in [14], hence Theorem 2.1 generalizes the constant coefficient
case, as expected.

Next we recall a comparison result we will utilize in our following results. Note this
result is similar to the well known comparison result found in literature, as in [14], but
we do not require the function to be Hölder continuous of order λ > q. We weaken this
requirement because in our main result we will construct sequences from the solutions
of linear R-L differential equations. As previously mentioned the solution to the linear
equation with constant coefficient can be rewritten as

x(t) =
x0

Γ(q)
tq−1 + x0

∞
∑

k=1

λktqk+q−1

Γ(qk + q)
+

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)f(s)ds,
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which is not Hölder continuous of any order due to the term containing tq−1. Therefore
we utilize the following result which weakens the Hölder continuity requirement, so that
we can incorporate it in our main results.

Lemma 2.2 Let m ∈ Cp(J,R) be such that for some t1 ∈ J we have m(t1) = 0 and
m(t) ≤ 0 for t ∈ (0, t1]. Then

Dq
tm(t)

∣

∣

t=t1
≥ 0.

The proof of this lemma can be found in [7], along with further discussion as to
why and how we weaken the Hölder continuous requirement of this known comparison
result. We use this Lemma in the proof of the later main comparison result which will
be paramount in the construction of the quasilinearization method. First we recall the
nonlinear R-L fractional differential equation.

Dq
tx = f(t, x), (3)

Γ(q)tpx(t)
∣

∣

t=0
= x0,

where f ∈ C(J0 × R,R). Note that a solution x ∈ Cp(J,R) of (3) also satisfies the
equivalent R-L integral equation

x(t) =
x0

Γ(q)
tq−1 +

1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s))ds. (4)

Thus if f ∈ C(J0 × R,R) then (3) is equivalent to (4). See [12, 14] for details. Now
we will recall a Peano type existence theorem for equation (3).

Theorem 2.2 Suppose f ∈ C(R0,R) and |f(t, x)| ≤ M on R0, where

R0 = {(t, x) : |tpx(t) − x0| ≤ η, t ∈ J0}.

Then the solution of (3) exists on J .

This result is presented in [14], and in [7] it was proven that the solution can be
extended to all of J , and the set R0 was modified for our succeeding results regarding
existence by method of upper and lower solutions. In the direction of this result we will
consider the following comparison result, which will in turn yield a general Gronwall type
inequality.

Theorem 2.3 Let f ∈ C(J0 × R,R) and let v, w ∈ Cp(J,R) be lower and upper
solutions of (3), i.e.

Dq
t v ≤ f(t, v),

Γ(q)tpv(t)
∣

∣

t=0
= v0 ≤ x0,

and

Dq
tw ≥ f(t, w),

Γ(q)tpw(t)
∣

∣

t=0
= w0 ≥ x0.

If f satisfies the following Lipschitz condition

f(t, x)− f(t, y) ≤ L(x− y), when x ≥ y,

where L > 0, then v(t) ≤ w(t) on J .
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The proof follows as in [14] with appropriate modifications, specifically we use Lemma 2.2
and do not require local Hölder continuity of order λ > q. Next we present a Gronwall
type inequality for R-L fractional differential equations. A similar result in terms of
fractional integral equations can be found in [6].

Theorem 2.4 Let v, z ∈ Cp(J,R) and y ∈ C(J0,R
+), and suppose that

Dq
t v ≤ y(t)v(t) + z(t).

Then

v(t) ≤
v0

Γ(q)
E(y) + E(y, Iqt z).

The proof follows directly from Theorem 2.1 and Theorem 2.3. That is, since y ≥ 0,
f(t, x) = yx + z satisfies the Lipschitz condition of Theorem 2.3 and letting x be the
solution of (1) with x0 = v0 we obtain v ≤ x. When y is identically a constant λ ≥ 0,
then we get the following Corollary.

Corollary 2.1 Let v, z ∈ Cp(J,R) and let λ ≥ 0 be a constant, and suppose that

Dq
t v ≤ λv(t) + z(t).

Then

v(t) ≤ v0tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t− s)q)z(s) ds.

Now we will recall a result that gives us existence of a solution to (3) via lower and
upper solutions.

Theorem 2.5 Let v, w ∈ Cp(J,R) be lower and upper solutions of (3) such that
v(t) ≤ w(t) on J and let f ∈ C(Ω,R), where Ω is defined as

Ω = {(t, y) : tpv(t) ≤ y ≤ tpw(t), t ∈ J0}.

Then there exists a solution x ∈ Cp(J,R) of (3) such that v(t) ≤ x(t) ≤ w(t) on J .

The proof of this theorem can be found in [7]. We also note a final uniqueness result
which is comparable to the analogous result for ordinary differential equations. As one
might expect, if f satisfies the Lipschitz condition found in Theorem 2.3, then the solution
x of (3) is unique. Further this result is proved in much the same way as in the case
of ordinary differential equations, see [14] for more details. We mention this result here
since it will be necessary in the construction of the quasilinearization method.

3 Method of Quasilinearization

In this section we develop the method of quasilinearization via lower and upper solutions.
We consider three different cases, when the forcing function f is convex, concave in x,
and can be made convex by the addition function φ. We construct monotone sequences
such that the sequences of continuous extensions converge uniformly and monotonically
to the continuous extension of the unique solution x of (3). Further, the rate convergence
is quadratic.
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Theorem 3.1 Assume that

(A1) α0, β0 ∈ Cp(J,R) are lower and upper solutions of (3) respectively such that α0(t) ≤
β0(t) on J .

(A2) f ∈ C(Ω,R), fx(t, x) ≥ 0, fxx(t, x) ≥ 0 exist and are continuous on Ω, where

Ω = {(t, y) : α0(t) ≤ y ≤ β0(t), t ∈ J0}.

Then there exist monotone sequences {αn} and {βn} in Cp(J,R) such that tpαn, and tpβn

both converge uniformly and quadratically to tpx on J0, where x is the unique solution of
(3) on J .

Proof First, by (A2) we have that f and fx are nondecreasing in x on J0, Lipschitz
with respect to x on J0, and

f(t, x) ≥ f(t, y) + fx(t, y)(x − y)

for any (t, y) ∈ Ω. Further the function

g(t, x, y) = f(t, y) + fx(t, y)(x− y)

is linear in x on J0. Now we will construct the sequences {αn} and {βn}. Let αn+1 be
the unique solution of the Riemann–Liouville differential equation

Dq
tαn+1 = f(t, αn) + fx(t, αn)(αn+1 − αn), (5)

Γ(q)tpαn+1(t)
∣

∣

t=0
= x0,

for all n ≥ 0, and where α0 is the lower solution of (3) given in the hypothesis. Note that
the above equation is of the form (1), therefore it has a unique solution by Theorem 2.1
provided (t, αn) ∈ Ω, and therefore our sequence is well defined. Similarly, let βn+1 be
the unique solution of

Dq
tβn+1 = f(t, βn) + fx(t, αn)(βn+1 − βn), (6)

Γ(q)tpβn+1(t)
∣

∣

t=0
= x0.

Now we will show that αn ≤ βn for all n ≥ 0. To do this first note that by hypothesis
we have that α0 ≤ β0 on J , so letting this be our basis step, suppose that αk ≤ βk is
true up to some k ≥ 0. Then we have

Dq
tαk+1 = f(t, αk) + fx(t, αk)(αk+1 − αk),

and by the consequences of (A2) we have that

Dq
tβk+1 ≥ f(t, αk) + fx(t, αk)(βk+1 − αk),

which by Theorem 2.3 gives us that αk+1 ≤ βk+1 on J and thus by induction proves the
claim.

Now we wish to show that that {βn} is monotone. To do so consider that

Dq
tβ1 ≤ f(t, β0) + fx(t, β0)(β1 − β0) ≤ f(t, β1),
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which again, by Theorem 2.3 gives us that β1 ≤ β0 on J . Now suppose βk ≤ βk−1 up to
some k ≥ 1, then letting ω = βk+1 − βk, with ω0 = 0, by the consequences of (A2) and
that αn ≤ βn for all n ≥ 0, we obtain

Dq
tω ≤ [fx(t, βk)− fx(t, αk−1)](βk − βk−1) + fx(t, αk)ω ≤ fx(t, αk)ω.

This implies by Theorem 2.4 that

βk+1 − βk ≤
ω0

Γ(q)
E(fx(t, αk)) = 0,

thus proving, by induction, that {βn} is monotone. The proof that {αn} is monotone
follows by arguments similar to either of the previous induction proofs.

We now prove that
tpαn → tpx and tpβn → tpx,

uniformly on J0, and where x is the unique solution of (3). This result follows from an
application of the Arzelà–Ascoli Theorem since for all n ≥ 0 we have that

|tpαn| ≤ tp|αn − α0|+ tp|α0| ≤ tp|β0 − α0|+ tp|α0|,

implying that {tpαn} is uniformly bounded on J0. That this sequence is equicontinuous
is proved in a similar fashion to that found in [19]. We can prove a similar result for
{tpβn} as well. To show that both sequences converge to tpx, suppose that tpαn instead
converges uniformly to tpα, which gives us that αn converges to α pointwise on J . Now
consider the continuous extension of the integral form of αn+1,

tpαn+1 =
x0

Γ(q)
+

tp

Γ(q)

∫ t

0

(t− s)q−1
(

f(s, αn) + fx(s, αn)(αn+1 − αn)
)

ds.

Applying the convergence properties outlined above we can show that the limit α satisfies

α =
x0

Γ(q)
tq−1 +

1

Γ(q)

∫ t

0

(t− s)q−1f(s, α)ds

on J . Implying that α = x, since x is the unique solution of (3). We note that {tpβn}
satisfies an analogous property.

Now we will prove that the sequences of continuous extensions {tpαn} and {tpβn}
converge quadratically. First we note that, since f is continuous on J0, there exists a
function F such that f(t, x) = F (t, tpx). Then we have that fxx(t, x) = t2pFxx(t, t

px).
Using this result, along with the mean value theorem we obtain

Dq
t (x− αn+1) = f(t, x)− f(t, αn)− fx(t, αn)(αn+1 − αn)

= fx(t, ξ)(x − αn)− fx(t, αn)(αn+1 − αn)

≤ fx(t, x)(x − αn)− fx(t, αn)(αn+1 − αn)

= [fx(t, x)− fx(t, αn)](x − αn) + fx(t, αn)(x− αn+1)

= fxx(t, η)(x− αn)
2 + fx(t, αn)(x− αn+1)

= Fxx(t, t
pη)t2p(x− αn)

2 + fx(t, αn)(x − αn+1)

≤ Nt2p(x− αn)
2 +M(x− αn+1).
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Here αn ≤ ξ, η ≤ x on J , and N and M are bounds of Fxx and fx respectively. Now by
Corollary 2.1 and Remark 2.2 we have that

tp(x− αn+1) ≤ tp
∫ t

0

(t− s)q−1Eq,q(M(t− s)q)Ns2p(x− αn)
2ds

≤ tpN
∥

∥tp(x − αn)
∥

∥

2

∫ t

0

(t− s)q−1Eq,q(M(t− s)q)ds

= tpN
∥

∥tp(x − αn)
∥

∥

2

∫ t

0

∞
∑

k=0

Mk(t− s)kq+q−1

Γ(qk + q)
ds

= tpN
∥

∥tp(x − αn)
∥

∥

2
∞
∑

k=0

Mktkq+q

Γ(qk + q + 1)

≤
tpN

M
Eq,1(Mtq)

∥

∥tp(x− αn)
∥

∥

2
.

Here ‖·‖ is the uniform norm on C(J0,R). Giving us that

∥

∥tp(x− αn+1)
∥

∥ ≤ K
∥

∥tp(x− αn)
∥

∥

2
,

where K = TpN
M

Eq,1(MT q).
Now, letting ρn = x− αn and ωn = βn − x, showing that {tpβn} converges quadrati-

cally follows with a similar argument, but in this case we get

Dq
tωn+1 ≤ Fxx(t, σ)t

2p[ωn + ρn]ωn + fx(t, αn)(ωn+1) ≤ (N/2)t2p(3ω2
n + ρ2n) +Mωn+1.

Then from Corollary 2.1 we get

tpωn+1 ≤
Ntp

2M
Eq,1(Mtq)

∥

∥t2p(3ω2
n + ρ2n)

∥

∥,

which finally implies that

∥

∥βn+1 − x
∥

∥ ≤
3K

2

∥

∥tp(βn − x)
∥

∥

2
+

K

2

∥

∥tp(x − αn)
∥

∥

2
.

This concludes the proof.
A natural query is whether the results of Theorem 3.1 will still hold if f is concave

as opposed to convex. The answer is affirmative, and we state the result below without
the details of the proof.

Theorem 3.2 Suppose (A1) of Theorem 3.1 holds. Further suppose that f ∈
C(Ω,R), fx(t, x) ≤ 0, fxx(t, x) ≤ 0 exist and are continuous on Ω. Then there exist
monotone sequences {αn} and {βn} in Cp(J,R) such that tpαn, and tpβn both converge
uniformly and quadratically to tpx on J0, where x is the unique solution of (3) on J .

We note that the proof of this theorem follows in the same lines as that of Theorem
3.1. The next case we consider is whether it is possible to construct the quasilinearization
method when f ∈ C0,2(Ω,R) is neither convex nor concave. As we will show, it is indeed
possible provided we can find a function φ ∈ C0,2(Ω,R) such that f + φ is convex. We
present this case as our final theorem.
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Theorem 3.3 Assume that

(B1) α0, β0 ∈ Cp(J,R) are lower and upper solutions of (3) respectively, such that α0 ≤
β0 on J .

(B2) f, φ ∈ C0,2(Ω,R), fxx + φxx ≥ 0 and φxx > 0 on Ω, where Ω is defined as in
Theorem 3.1.

Then there exist monotone sequences {αn} and {βn} in Cp(J,R) such that tpαn and tpβn

both converge uniformly and quadratically to tpx on J0, where x is the unique solution of
(3) on J .

Proof Firstly, by consequences of (B2) we have that f is Lipschitz with respect to
x. Further, since f + φ is convex we have that

F (t, x) ≥ F (t, y) + Fx(t, y)(x− y), (7)

where F (t, x) = f(t, x) + φ(t, x).

We construct the monotone sequences by letting αn+1 and βn+1 be the unique solu-
tions of the linear R-L fractional differential equations,

Dq
tαn+1 = f(t, αn) +

(

Fx(t, αn)− φx(t, βn)
)

(αn+1 − αn), (8)

Γ(q)tpαn+1(t)
∣

∣

t=0
= x0,

and

Dq
tβn+1 = f(t, βn) +

(

Fx(t, αn)− φx(t, βn)
)

(βn+1 − βn), (9)

Γ(q)tpβn+1(t)
∣

∣

t=0
= x0,

for all n ≥ 0 and for (t, αn), (t, βn) ∈ Ω. Now we wish to show that αn ≤ αn+1 ≤ βn+1 ≤
βn for all n ≥ 0. First we will show that α0 ≤ α1, to do so notice that

Dq
tα0 ≤ f(t, α0) +

(

Fx(t, α0)− φx(t, β0)
)

(α0 − α0).

Therefore by Theorem 2.3 we have that α0 ≤ α1 on J since α0
0 ≤ x0, and by a similar

argument we also have that β1 ≤ β0. Now we will show that α1 ≤ β1 on J . Note by
consequences of (B2), that is (7), that φx is increasing in x, and by the application of
the mean value theorem we can show that

Dq
tβ1 ≥ f(t, α0) + Fx(t, α0)(β0 − α0)− [φ(t, β0)− φ(t, α0)]

+
(

Fx(t, α0)− φx(t, β0)
)

(β1 − β0)

= f(t, α0) + Fx(α0)(β0 − α0)− φx(t, ξ)(β0 − α0)

+
(

Fx(t, α0)− φx(t, β0)
)

(β1 − β0)

≥ f(t, α0) +
(

Fx(t, α0)− φx(t, β0)
)

(β1 − α0),

where α0 ≤ ξ ≤ β0. Therefore by Theorem 2.3 we have α0 ≤ α1 ≤ β1 ≤ β0 on J . Letting
this be our basis step suppose αk−1 ≤ αk ≤ βk ≤ βk−1 on J up to some k ≥ 1, then by
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a similar process as when showing α1 ≤ β1 we have that,

Dq
tαk+1 ≥ f(t, αk) +

(

Fx(t, αk−1)− φx(t, βk−1)
)

(αk+1 − αk)

≥ f(t, αk−1)− [φ(t, αk)− φ(t, αk−1)] + Fx(t, αk−1)(αk − αk−1)

+
(

Fx(t, αk−1)− φx(t, βk−1)
)

(αk+1 − αk)

= f(t, αk−1)− φx(t, ξ)(αk − αk−1) + Fx(t, αk−1)(αk − αk−1)

+
(

Fx(t, αk−1)− φx(t, βk−1)
)

(αk+1 − αk)

≥ f(t, αk−1) +
(

Fx(t, αk−1)− φx(t, βk−1)
)

(αk+1 − αk−1).

Therefore by Theorem 2.3 we have that αk ≤ αk+1 on J , and by similar arguments we
can show that αk ≤ αk+1 ≤ βk+1 ≤ βk, which by induction implies that {αn} and {βn}
are monotone and αn ≤ βn for all n ≥ 0. That tpαn and tpβn converge uniformly to tpx,
where x is the unique solution of (3), is done in the same way as in Theorem 3.1. Now
we will show that the sequences of continuous extensions converge quadratically on J0.
To do so, first note, as in Theorem 3.1 that there exist functions G,Φ ∈ C0,2(Ω,R) such
that G(t, tpx) = F (t, x), and Φ(t, tpx) = φ(t, x), thus giving us that

Fxx(t, x) = t2pGxx(t, t
px) and φxx(t, x) = t2pΦxx(t, t

px).

Now letting ρn+1 = x− αn+1 and ωn+1 = βn+1 − x, we have that

Dq
t ρn+1 = f(t, x)− [f(t, αn) +

(

Fx(t, αn)− φx(t, βn)
)

(αn+1 − αn)]

= F (t, x)− F (t, αn)−
(

Fx(t, αn)− φx(t, βn)
)

(αn+1 − αn)

− [φ(t, x) − φ(t, αn)]

= Fx(t, ξ1)ρn −
(

Fx(t, αn)− φx(t, βn)
)

(αn+1 − αn))− φx(t, ξ2)ρn

≤ [Fx(t, x)− Fx(t, αn)]ρn + (Fx(t, αn)− φx(t, βn)
)

ρn+1

+ [φx(t, βn)− φx(t, αn)]ρn

≤ Fxx(t, η1)ρ
2
n + fx(t, αn)ρn+1 + φxx(t, η2)(ωn + ρn)ρn

= Gxx(t, t
pη1)t

2pρ2n + fx(t, αn)ρn+1 +Φxx(t, t
pη2)t

2p(ωn + ρn)ρn

≤ Nt2pρ2n +Mρn+1 + (L/2)t2p(3ρ2n + ω2
n),

Where αn ≤ ξ1, ξ2, η1 ≤ x, αn ≤ η2 ≤ x, and where N , M , and L are bounds on Gxx,
fx, and Φxx respectively. Then by Corollary 2.1 and Remark 2.2 we have that

tpρn+1 ≤ tp
∫ t

0

(t− s)q−1Eq,q(M(t− s)q)s2p
[

(N + 3L/2)ρ2n + (L/2)ω2
n

]

ds

≤
tp

M
Eq,1(Mtq)

[

(N + 3L/2)
∥

∥tpρn
∥

∥

2
+ (L/2)

∥

∥tpωn

∥

∥

2
]

.

Which finally gives us that

∥

∥tp(x − αn+1)
∥

∥ ≤
K

2
(2N + 3L)

∥

∥tp(x− αn)
∥

∥

2
+

KL

2

∥

∥tp(βn − x)
∥

∥

2
,

where K = Tp

M
Eq,1(MT q). Similarly, we can show that

∥

∥tp(βn+1 − x)
∥

∥ ≤
K

2
(3N + 2L)

∥

∥tp(βn − x)
∥

∥

2
+

KN

2

∥

∥tp(x− αn)
∥

∥

2
,
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which finishes the proof.
This final case greatly extends the potential of the quasilinearization method. This

is because for any function f ∈ C0,2(Ω,R) we can always find a function φ ∈ C0,2(Ω,R)
such that fxx + φxx ≥ 0, and φxx > 0. To show why this is true, suppose that f is not
convex, then we can choose A > 0 such that

min
Ω

{

fxx(t, x)
}

= −A < 0.

Then we need only choose φ(t, x) = At2px2, to satisfy (B2). Further, since we can always
find such a function we need not consider the case where f can be made concave by the
sum of another function.

Remark 3.1 If we use lower and upper solutions one can extend the method of
quasilinearization to forcing functions which are the sum of convex and concave functions
as in [15]. This generalization will include all our results as special cases. However,
this involves the study of linear fractional systems with variable coefficients. We will
investigate this result elsewhere.
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