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Abstract: The absence of negative feedback in Boolean networks tends to result
in systems with relatively short orbits. We present a construction of N-dimensional
Boolean networks that use only AND, OR, COPY gates and nevertheless have an
exponentially large orbit (of size cN for arbitrary c < 2). The construction is based
on pseudorandom number generation algorithms. A previously obtained nontrivial
upper bound on the orbit length under certain limitations on the number of outputs
per node is shown to be optimal.
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1 Introduction

The concept of a Boolean network was originally proposed in the late 1960’s by Stu-
art Kauffman to model gene regulatory behavior at the cell level [13]. This type of
modeling can sometimes capture the general dynamics of continuous systems in a sim-
plified framework without the choice of specific nonlinearities or parameter values; see
for instance [1]. Boolean networks are used in several other disciplines such as electrical
engineering, computer science, and control theory, and analogous definitions are known
under various names such as sequential dynamical systems [16] or Boolean difference
equations [6].

An N -dimensional Boolean dynamical system or Boolean network (Π, g) consists of N
variables s1, . . . , sN , each of which can have value 0 or 1 at any given time step t. The
variables are updated according to si(t+ 1) = gi(s1(t), . . . , sN (t)).
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Usually, individual update functions gi depend only on very few of the variables. Let
us say that sj is an input of si and sj sends output to gi if there are two Boolean vectors
s, s∗ that differ only in variable sj for which gi(s) 6= gi(s

∗). The input-output relation
defines a digraph on the set of Boolean variables that is called the connectivity of the
Boolean network. We call a Boolean network (Π, g) a K, M network if each of its update
functions takes at most K inputs and each variable has at most M outputs.

A key problem in the study of Boolean networks is how the dynamics depends on
the updating functions and the connectivity. This problem has been largely studied
for so-called random Boolean networks (RBNs) where both the updating functions and
the network connectivity are randomly drawn from a specified network distribution.
This allows to make estimates on quantities such as the number of orbits and their
length [2, 7, 14, 22]. Such estimates can be either obtained from simulation studies or
analytically.

1.1 Cooperative Boolean networks

An important topic in the study of dynamical systems is the role of negative feedback.
This notion is usually defined in terms of negative feedback loops that contain an odd
number of negative interactions. Monotone systems are systems that contain only posi-
tive feedback loops. Here we study cooperative systems, that are systems in which there
are no negative interactions between any two variables. In the context of networks with
at most K = 2 inputs per variable, cooperativity is equivalent to the use of only the
following update functions: constants, COPY, AND, OR. No negations are allowed [11].

Comparative simulation studies show that Boolean networks with no or only few
negative feedback loops tend to have relatively shorter orbits [26]. The question naturally
arises whether the assumption of cooperativity imposes nontrivial provable upper bounds
on the length of orbits in Boolean networks. This question seems especially interesting
for cooperative K = 2 Boolean networks, since K = 2 random Boolean networks tend to
have much shorter orbits than RBNs drawn from distributions where K > 2 [2, 7, 14].

Since the state space of an N -dimensional Boolean network has size 2N , a bound on
the attractor length should be considered “nontrivial” if it scales like o(2N ). In [15, 20],
a simple example of a K = 2, M = 2 Boolean network is constructed with N variables
and an orbit of length 2N−1 − 1, which comprises exactly half of the state space. In
contrast, the orbits of cooperative Boolean systems cannot comprise a fixed fraction of
the state space [4, 11, 25], which already gives an upper bound that scales like o(2N ).
Upper bounds on orbit length that scale like O(cN ) for some c < 2 were derived in [12] for
K = 2, M = 2 cooperative networks under the assumption that at least a fixed positive
fraction of update functions take exactly two inputs (see Theorem 3.1 below).

Theorem 1 of the preprint [12] shows that for any constant 1 < c < 2 and all suf-
ficiently large N there exists an N -dimensional K = 2, M = 2 cooperative Boolean
network with at least one orbit of length ≥ cN . This shows that some such additional
assumptions are needed for nontrivial upper bounds of type O(cN ) on orbit length. Our
main theorem here, Theorem 2.1, consists of a simplified proof of a similar result with
a mild additional assumption as described below. Theorem 3.2 of Section 3 provides
variations on Theorem 2.1 and shows, among other things, that one of the upper bounds
on orbit length that was derived in [12] is sharp.
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1.2 Additive Lagged-Fubini Generators

An additive lagged-Fubini generator (ALFG) is an algorithm to produce ‘pseudorandom’
numbers. It is the basis for some of the most widely used random number generators
such as the Mersenne twister [19]. In its Boolean version, the ALFG consists simply of
a sequence of Boolean values xi satisfying the formula

xi = xi−p + xi−q mod 2, (1)

for all i, where 0 < q < p are fixed numbers. For particular choices of p and q, it has
been shown that xi can be periodic with maximal period 2p − 1 [17]. The sufficient and
necessary condition for producing this orbit length is that the polynomial xp + xq + 1 is
primitive modulo 2 [8]. Many such pairs (p, q) are known, including ones with values as
large as p = 6972593 and q = 3037958. It is an open but widely believed conjecture that
there are infinitely many such pairs, see for instance [8]. For a list of all admissible pairs
(p, q) with p ≤ 1000, see [27].

In [15, 20], the authors build a Boolean network which is easily seen to be equivalent
to an ALFG, using a single loop of length p, and a single internal connection between
two nodes q variables apart, as in Figure 1a. All update functions are equal to the simple
copy function f(a) = a, except for one with two inputs, f(a, b) = a + b mod 2 = a
XOR b. The authors of these papers also point out that this reversible update function
(Table 1) can be replaced by three canalyzing ones (see Section 3 for the definition of
canalyzing functions). Yet even such an implementation would contain negations and its
main feedback loop is negative. In particular, this network is not cooperative.
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Figure 1: a. The original additive lagged-Fibonacci generator. A solid arrow represents a
direct connection, and a dotted arrow is a chain of connected variables. For the purposes of
our results, the variables are grouped into blocks of size ℓ such as shown for X0, and additional
nodes are added outside the main loop so that the total number of nodes is divisible by ℓ (see
the dotted line joining xs and xs′). b. The cooperative network associated to a., where every
variable corresponds to L different Boolean nodes. The inputs of the Boolean circuit T are
A = S⌊q/ℓ⌋−m−1, B = S⌊q/ℓ⌋−m, C = S⌊p/ℓ⌋−m−1, D = S⌊p/ℓ⌋−m.
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2 Cooperative Boolean Networks with an Exponentially Long Orbit

Let us state the version of Theorem 1 of [12] that we are going to prove here.

Theorem 2.1 Assume that there exist infinitely many positive integers p > q such
that (1) defines an AFLG with maximal period 2p − 1. Let 1 < c < 2 be an arbitrary
constant. Then for infinitely many N there exists an N -dimensional K = 2, M = 2
cooperative Boolean network with at least one orbit of length ≥ cN . In this network the
only update functions are si ∨ sj, si ∧ sj, and the copy function f(si) = si.

Proof We start with an ALFG with maximal period 2p − 1 as in Figure 1a, with
sufficiently large delays (p, q). In the Boolean setting we have the following equation:

s0(t+ 1) = sq(t) XOR sp(t) = s0(t− q) XOR s0(t− p). (2)

This network will be referred to as the AFLG network. It has an orbit with length
2p − 1 and two negative feedback loops as shown in Figure 1a.

For a given c < 2 we construct a Boolean network with N variables that uses only
update functions AND, OR, COPY and has an orbit of length ≥ cN states. Its dynamics
closely mimics the one of the AFLG network. The idea is to group the variables s0, . . . sp
into blocks of ℓ adjacent variables each, as in Figure 1b. The new network has as variables
Boolean vectors S0, S1, . . ., each with an even number L of bits. The values of L and ℓ will
be chosen as in Lemma 2.2 below. Importantly, the values of each Si are not arbitrary
but chosen from the image of an injective function Γ : {0, 1}ℓ → {0, 1}L, i.e. they are
thought of as coded sequences of ℓ bits. Additionally, the values of Γ(s) are required to
have exactly L/2 nonzero entries. Such a function Γ exists as long as 2ℓ ≤

(

L
L/2

)

, which

will be ensured by Lemma 2.2. In order to guarantee that the nodes in the ALFG can
be divided in groups of ℓ, we introduce some additional nodes as in Figure 1a, which are
however not part of the loop (see the legend of Figure 1 for details).

Notice that after ℓ time steps, the ALFG network has rotated the values of each group
of ℓ variables into the next – except for the group s0, . . . sℓ−1, whose values have been
determined by a more complicated algorithm. The idea is that one time step in the new
network will represent ℓ time steps in the ALFG. More precisely, each variable Si(t) is
coding for the variablesXi(ℓt) = (siℓ(ℓt), . . . , siℓ+ℓ−1(ℓt)) at time ℓt, or Si(t) = Γ(Xi(ℓt)).

In order to achieve this, we set Si(t + 1) = Si−1(t) for i > 0. As for the updating
function of S0, it is defined as the encoding Γ of s0, . . . , sℓ after iterating the ALFG for ℓ
time steps. S0(t+1) is therefore a function G of the variables Si encoding sq−ℓ+1, . . . , sq
and sp−ℓ+1, . . . , sp. In other words, given the argumentsA,B,C, andD, one can compute
S0 at the next time step by first decoding them into their corresponding sequences of
ℓ-vectors using the function Γ−1, and assigning these values to the variables in ALFG,
then iterating ALFG ℓ times, and finally encoding the resulting sequence X0 using the
function Γ.

The following technical lemma shows that this encoding function G can be imple-
mented as a Boolean circuit (labeled T in Figure 1b) with only binary AND- and OR-
and unary COPY gates and no negations. Such a Boolean circuit can be incorporated
into our network without violating cooperativity or the commitment to build a K = 2,
M = 2 network. The indegree and outdegree for a node of a Boolean circuits are defined
analogously as for Boolean networks.

Our construction uses the fact that G is only used with arguments that have L/2
zeros and L/2 ones each. Given two Boolean P−vectors s, r, we say that s ≤ r if si ≤ ri



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (3) (2011) 275–284 279

for all i. If either s ≤ r or r ≤ s, the two vectors are called comparable. The following
lemma will be applied to the proof of the main result for P = 4L.

Lemma 2.1 Let g : D ⊆ {0, 1}P → {0, 1}L be an arbitrary function, defined on a
domain D where no two elements are comparable. Then there exists a Boolean circuit
B with input vector a of dimension P , and an output vector b = (b1, . . . , bL), such that
b(t +m) = g(a), for some fixed delay m and any a(t) ∈ D. Furthermore, the circuit B
uses only binary AND- and OR- and unary COPY gates and the indegree (outdegree) of
every designated input (output) variable is 0.

Proof The function g can be extended to a cooperative function h, i.e. one for which
s ≤ r implies h(s) ≤ h(r), defined on all of {0, 1}P ; see [11]. The result will follow from
building a suitable Boolean circuit that computes the function h.

Consider a fixed component hi : {0, 1}P → {0, 1} of h. By the cooperativity of
this function, one can write it in the normal form hi(s1, . . . , sP ) = Ψi

1(s1, . . . , sP ) ∨
. . . ∨ Ψi

ki
(s1, . . . , sP ), where each Ψi

j is the conjunction of a number of variables, i.e.,

Ψi
j(s1, . . . , sP ) = sα1i

∧ . . . ∧ sαji
. This suggests a way of computing hi: define Boolean

variables ψi
j(t) := Ψi

j(s(t−1)), and then let hi(t) := ψi
1(t−1)∨ . . .∨ψi

ki
(t−1). Repeating

this procedure for all components of h yields a Boolean circuit which computes h inm = 2
steps, and which is cooperative and has indegree (outdegree) 0 for every input (output).

In order to satisfy the condition that every node have in- and outdegree of at most 2,
we need to modify this construction by introducing additional variables. First, note
that the outdegree of every input si can be very large. One can define two additional
variables which simply copy the value of si(t), then four variables that copy the value
of the previous two, etc. This procedure is repeated for each si so that at least as
many copies of each variable are present as appear in the expressions of all ψi

j . A

similar cascade can be used to define each ψi
j and hi so that each indegree is at most

two. If ψj
i = sα1

∧ sα2
∧ sα3

, say, then one can define r1(t) := sα1
(t − 1), r2(t) :=

sα2
(t − 1) ∧ sα3

(t − 1), ψj
i (t) := r1(t − 1) ∧ r2(t − 1). Similarly for longer disjunctions

and each ψi
j and also similarly for hi, in which case ∧ is replaced by ∨ at each step. This

produces a computation of hi in mi steps for each i. Finally, after introducing further
additional variables at each component i if necessary to compensate for unequal lengths
of the expressions for ψi

j , the Boolean vector h(s1, . . . , sP ) can be computed in exactly
m = max(m1, . . . ,mL) steps.

Notice that the function G is not computed by the Boolean circuit instantaneously,
but after m steps. Since Si(t) = Si−m(t−m), we correct for this by feeding the circuit
an input which has been shifted back by m.

The new cooperative Boolean network has an orbit of length at least (2p − 1)/ℓ. Its
dimension is

N = (p+ γ + 1)L/ℓ+ T, (3)

where γ = p′ − p < ℓ reflects the need for dummy variables (see the legend of Figure 1)
and T is the number of nodes involved in the Boolean circuit that computes G. Since T
only depends on ℓ and L, not on p, the following lemma implies Theorem 2.1.

Lemma 2.2 For arbitrary 1 < c < 2 and sufficiently large p, there exist ℓ,N , and L
as above such that

(

L

L/2

)

> 2ℓ,
2p − 1

ℓ
> cN .
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Proof We prove first that there exist L > 0 even, an integer ℓ > 0, and a real
constant δ > 1 such that

(

L

L/2

)

> 2ℓ > cδL. (4)

Start by fixing an arbitrary δ > 1 such that c < cδ < 2. The second inequality in (4)
is equivalent to L/ℓ < ln 2/(δ ln c). Let L be an even integer with L = wℓ, for some fixed

1 < w < ln 2/(δ ln c). Since
(

L
L/2

)

> 2L

L+1 = 2wℓ

wℓ+1 and w > 1, the first inequality in (4) is

satisfied for sufficiently large ℓ.
It remains to show that (2p − 1)/ℓ ≥ cN for some sufficiently large N as in (3). But

since cL/ℓ < 21/δ, expression (3) implies

c(p+γ+1)L/ℓ+T

(2p − 1)/ℓ
< ℓcT

2
p+γ+1

δ

2p − 1
< ℓcT 2

1
δ
(p+γ+1)−(p−1)

which is < 1 for sufficiently large p.

It follows that for sufficiently large p, we can choose ℓ, L so that the system we
constructed will contain an orbit of length at least cN , as stated in Theorem 2.1.

3 Biased Update Functions and Long Orbits

The bias Λ of a Boolean function is the fraction of input vectors for which the function
outputs 1. A Boolean function would be considered biased if Λ 6= 0.5. More specifically,
let us say that an update function is ε-biased if |Λ−0.5| ≥ ε. Simulation studies of random
Boolean networks indicate that networks with only strongly biased update functions tend
to have shorter orbits than generic networks with a given number of inputs (see [23] and
references therein). The following result from [12] gives a provable upper bound on the
length of orbits in some ε-biased networks.

Theorem 3.1 Let ε, α > 0 and let K,M be positive integers. Then there exists a
positive constant c(ε, α,K,M) < 2 such that for all c > c(ε, α,K,M) and all sufficiently
large N , the length of any orbit in any N -dimensional K-M Boolean network in which
a proportion of least α of the update functions are ε-biased does not exceed cN .

In particular, c(0.25, 1, 2, 2) ≤ 101/4.

To put the last sentence of Theorem 3.1 into perspective, consider Table 1 of Boolean
functions with two inputs.

Thus for K = 2 a Boolean function is biased iff it is 0.25-biased iff it is in C2∪F . The
classes C1 and C2 constitute the canalyzing functions, in which a certain value of one of
the inputs determines the function output [7]. Note the C2 contains the AND and the
OR functions. We call a K = 2 Boolean system a C2-network if all its update functions
are in the class C2. Notice that the last sentence of Theorem 3.1 gives an upper bound
of O(10N/4) for orbit lengths in N -dimensional K = 2,M = 2 C2-networks.

We can prove the following variants of Theorem 2.1 for C2-networks. Part (b) of The-
orem 3.2 implies that the upper bound in the last sentence of Theorem 3.1 is sharp. The
theorem does not require assumptions about the existence of AFLGs [12], but we state
and prove it here in this form to emphasize the connection with the earlier construction.
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In F C1 C2 R
0 0 1 0 0 1 0 1 1 0 0 0 0 1 1 1 1 0
0 1 1 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1
1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 1
1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0

cooperative * * * * * *
bias 1 0 1

2
1
2

1
2

1
2

1
4

1
4

1
4

1
4

3
4

3
4

3
4

3
4

1
2

1
2

Table 1: The different Boolean update functions with K = 2 inputs (adapted from [7]).

s 1111 1110 1101 1100 1011 1010 0111 0101 0011 0000
f(s) 1111 1100 1010 1000 0101 0100 0011 0010 0001 0000

h ◦ f(s) 1111 1110 1101 1100 1011 1010 0111 0101 0011 0000

Table 2: The values of f and h ◦ f on F .

Theorem 3.2 Assume that there exist infinitely many positive integers p > q such
that (1) defines an AFLG with maximal period 2p−1. Let c, c1 be constants with 1 < c < 2
and 1 < c1 < 101/4. Then for arbitrarily large N there exist cooperative Boolean networks
with the following properties:
(a) (Π, g) is a C2 network with at least one orbit of length ≥ cN ,
(b) (Π, g) is a C2, M = 2 network with at least one orbit of length ≥ cN1 .

Proof For part (a), let (Σ, f) be a cooperative K = 2 Boolean network of dimension
N−2 that contains an orbit of length cN . We show how to turn (Σ, f) into a cooperative
C2 Boolean network (Π, g) of dimension N . The update functions gk for k < N − 1 of
the new system are defined as follows:

If fk is already in C2, then gk = fk.

If fk = sik , then gk = sik ∧ sN−1.

If fk is constant with value 1, then gk = sN−1 ∨ sN ; if fk is constant with value 0,
then gk = sN−1 ∧ sN .

Finally, we let gN−1 = sN−1 ∨ sN and gN = sN−1 ∧ sN . Then (Π, g) is a cooperative
C2-system. Now let s ∈ Σ be a state in an orbit of length at least cN of (Σ, f), and define
a state s∗ ∈ Π by s∗ = [s1, . . . , sN−2, 1, 0]. Then the orbit of s∗ in (Π, g) has the same
length as the orbit of s in (Σ, f). This proves part (a).

For the proof of part (b), we need to implement the C1 functions that copy the value
of one input variable by cooperative C2 functions in such a way that the overall dimension
is not increased by more than a factor of 4 log10 2.

Let us define Boolean vector functions f and h on four-dimensional Boolean vectors
s = (s1, s2, s3, s4) as follows:

f(s) = (s1 ∧ s2, s1 ∧ s3, s2 ∧ s4, s3 ∧ s4), h(s) = (s1 ∨ s2, s1 ∨ s3, s2 ∨ s4, s3 ∨ s4).

Let F = {1111, 1110, 1101, 1100, 1011, 1010, 0111, 0101, 0011, 0000} and H = f(F ).
Table 2 gives the values of f, h ◦ f on F .
As Table 2 shows, h ◦ f is the identity on F . It follows that h maps H onto F and

f ◦ h is the identity on H .
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Let L be a positive integer divisible by eight, and let p := L/4. Write [L] as a disjoint
union of blocks of four consecutive integers i(1, r), i(2, r), i(3, r), i(4, r) for r ∈ [p]. Let
~sr := (si(1,r), si(2,r), si(3,r), si(4,r)). Call a Boolean vector s ∈ {0, 1}[L] L-compliant if

(a) ~sr ∈ F for 1 ≤ r ≤ p/2, ~sr ∈ H for p/2 < r ≤ p, and

(b) s takes the value 1 exactly L/2 times.

Lemma 3.1 Let c1 < 101/4. Then there exist a positive integer ℓ and a positive
integer L that is a multiple of eight such that 2ℓ > cL1 and the number of L-compliant
Boolean vectors is larger than 2ℓ.

Proof Let L be a positive integer that is an integer multiple of 8, and let V be the set
of Boolean vectors s ∈ {0, 1}L that satisfies condition (a) above. Since |F | = |H | = 10,
it is clear that |V | = 10L/4.

Let |~sr| denote the number of 1’s in ~sr. For each s ∈ V define the signature of s as
σ(s) = (σ1(s), . . . , σ6(s)), where
σ1(s) = |{r : r ≤ p/2 & |~sr| = 4}|, and σ4(s) = |{r : p/2 < r & |~sr| = 4}|,
σ2(s) = |{r : r ≤ p/2 & |~sr| = 0}|, and σ5(s) = |{r : p/2 < r & |~sr| = 0}|,
σ3(s) = |{r : r ≤ p/2 & |~sr| = 3}|, and σ6(s) = |{r : p/2 < r & |~sr| = 1}|.

Let σmax = ( 1
16 ,

1
16 ,

1
4 ,

1
16 ,

1
16 ,

1
4 ). Then the inequality

|{s ∈ V : σ(s) = σ}| ≤ |{s ∈ V : σ(s) = σmax}| (5)

for any possible signature σ. Moreover, observe that if s ∈ V and σ(s) = σmax, then s
takes the value 1 exactly L/2 times, and hence s is L-compliant. Since the total number
of possible signatures is bounded from above by (L/4 + 1)6, it follows from (5) that the
total number Q of L-compliant Boolean vectors satisfies the inequality

Q ≥
10L/4

(L/4 + 1)6
.

Notice that limL→∞ L ln 101/4 − 6 ln(L/4 + 1)− L ln c1 = ∞.
Thus for sufficiently large L we can find a positive integer ℓ with

L ln 101/4 − 6 ln(L/4 + 1) > ℓ ln 2 > L ln c1,

and the lemma follows.

Now fix c1 < 101/4 and let L, ℓ be as in Lemma 3.1. Build an N -dimensional Boolean
system (Π, g−) as in the proof of Theorem 2.1, but with the following modifications for
indices i where the value of Si will just be copied to Si+2:

We require that the values of Si on the blocks Si of length L are L-compliant vectors.

Instead of requiring Si(t+ 1) = Si+1(t) and implementing this dynamics by C1 func-
tions, we only require Si(t + 2) = Si+2(t) and implement this dynamics as follows: Let
Si be partitioned into blocks bi,1, . . . , bi,L/4 of four Boolean values each, with bi,r(t) ∈ F
for r ≤ L/8 and bi,r ∈ H for L/8 < r ≤ L/4. Define bi,r(t + 1) = h(bi+1,r+L/8(t)) for
r ≤ L/8 and bi,r(t+ 1) = f(bi+1,r−L/8(t)) for L/8 < r ≤ L/4.

This construction is possible by Lemma 3.1 and the observations on the functions f, h
we made above, and the exact same argument as in the proof of Theorem 2.1 shows that
one can choose initial states of (Π, g−) that belong to an orbit of length ≥ cN2 , where
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c2 is a constant that depends only on L and ℓ and satisfies c1 < c2 < 101/4. It is also
straightforward to verify that the resulting system is cooperative.

However, the system may not yet be a C2 system with M = 2, since the loops where
copying occurs do not need to be of even length. So to ensure that we end up with an
M = 2 system we may have at most two leftover sets Si where the copying of some sj
needs to be implemented by sj ∩s

∗

j using a few dummy variables s∗j . Since the number of
these ‘leftover variables’ is at most 2L, this can be done without increasing N too much
so that the resulting orbit will still have length > cN1 (see Appendix A of [12].)

4 Conclusion

Monotone and cooperative systems have been used as a modeling tool for gene regulatory
systems, e.g. in [3, 5]. In the absence of negative feedback continuous systems converge
generically towards an equilibrium under mild regularity hypotheses; see the work by
Hirsch, Smith, Enciso, Mazco, and others [9, 10, 18, 24]. These generic convergence
results have been generalized to the case of continuous monotone maps, in which case
the generic iteration converges towards a periodic solution, with upper bounds for the
maximum period [21]. In contrast, our results show that even very stringent conditions
on Boolean systems with no negative interactions do not preclude very long orbits.

Our reasons for presenting a new proof of Theorem 1 in [12] are two-fold. First
of all, the original construction given in [12] is somewhat difficult to read. We hope
that the much simpler proof presented here will make the result more accessible to the
mathematical community and will make the basic ideas that are common to both con-
structions more clearly visible. Second, as in [15, 20], this construction is based on
additive lagged-Fubini generators (ALFG), which are the basis for the most commonly
used pseudo-random number generators that are ubiquitous in applications from com-
puter science and engineering. We hope that the proof presented here will highlight
some important connections between number theory, computer science, and the study of
Boolean networks and their applications, including the study of gene regulatory networks.
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