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Abstract: In this paper, the problem of partial stabilization is considered for non-
linear control systems and a general approach for partial stabilization is proposed.
In this approach, by introducing the notion of partially passive systems, some theo-
rems for partial stabilization are developed. For this purpose, the nonlinear system
is divided into two subsystems based on stability properties of system’s states. The
reduced control input vector (the vector that includes components of input vector ap-
pearing in the first subsystem), is designed based on the new passivity based control
theorems, in such a way to guarantee asymptotic stability of the nonlinear system
with respect to the first part of states vector.
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1 Introduction

For many of engineering problems, application of Lyapunov stability is required [1]– [3].
However, there are other physical systems like inertial navigation systems, spacecraft sta-
bilization, electromagnetic, adaptive stabilization, guidance, etc. [4]– [12], where partial
stability is necessary. In the mentioned applications, while the plant may be unstable in
the standard sense, it is partially and not totally asymptotically stable. It means that
naturally the plant is stable with respect to just some -and not all- of the state variables.
For example, consider the equation of motion for the slider-crank mechanism depicted in
Figure 1 [8]:
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Figure 1: Slider-crank mechanism [8].

m(θ(t))θ̈(t) + c(θ(t))θ̇2(t) = u(t),

θ(0) = θ0, dotθ(0) = θ̇0, t ≥ 0,

where

m(θ) = mBr
2 +mAr

2

(
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√

l2 − r2 sin2 θ

)2

,

c(θ) = mAr
2

(
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√
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)

(

cos θ + r
l2(1− 2 sin2 θ) + r2 sin4 θ

(l2 − r2 sin2 θ)3/2

)

and mA and mB are point masses, r and l are the lengths of the rods, and u(.) is the
control torque applied by the motor. Suppose that a feedback control law in the form of
u(.) = k(θ, θ̇) should be designed in a way that the angular velocity becomes constant;
that is, θ̇(t) → Ω as t → ∞ where Ω > 0. This implies that θ(t) = Ωt → ∞ as t → ∞.
In addition, the angular position θ may not be disregarded. It is because m(θ) and c(θ)
are functions of θ, and sin θ does not converge to a limit. Consequently, it is obvious
that the slider-crank mechanism is unstable in the standard sense; however, it is partially
asymptotically stabilizable with respect to θ̇ [8].

In spite of variety of research papers in the ground of partial stability applications,
there are only few papers in partial control design and advantages of partial control are
not fully recognized. Furthermore, most of papers do not propose a general framework to
design a partially stabilizing controller for nonlinear systems. In [6], the design of a partial
controller is done for an Euler dynamical system. The references [5, 7] deal with several
types of partial stabilization and control problems, such as permanent rotations of a rigid
body, relative equilibrium of a satellite, stationary motions of a gimbaled gyroscope.
Application of partial stabilization to achieve chaos synchronization is investigated in
[10, 11].

In this article, a general approach for partial control design is proposed. This ap-
proach provides the possibility to transform the control problem into a simpler one by
reducing the control input variables. For this purpose, the state vector of the system is
separated into two parts and accordingly the nonlinear dynamical system is divided into
two subsystems. The subsystems, hereafter, are referred to as the first and the second
subsystems. The reduced control input vector (the vector that includes components of
input vector which appear in the first subsystem) is designed based on new concept of
passivity, i.e., partial passivity in such a way to guarantee asymptotic stability of the
nonlinear system with respect to the first part of state vector.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11 (4) (2011) 373–382 375

The concept of passivity and its application in stability have been widely studied
in many books and papers [13]– [18]. In this paper, introducing the notion of partially
passive systems, a new approach for partial stabilization is developed.

The remainder of this paper is arranged as follows. First, the preliminaries on partial
stability/control are given in Section 2. In Section 3, the theorems for partial control
design are presented and explained in detail. Finally, conclusions are made in Section 4.

2 Preliminaries

In this section, the definitions and notations of partial stability are introduced. Consider
a nonlinear system in the form:

ẋ = f(x), x(t0) = x0, (1)

where x ∈ Rn is the state vector. Let vectors x1 and x2 denote the partitions of the
state vector, respectively. Therefore, x = (xT

1 , x
T
2 )

T where x1 ∈ Rn1 , x2 ∈ Rn2 and
n1 + n2 = n. As a result, the nonlinear system (1) can be divided into two subsystems
(the first and the second subsystems) as follows:

ẋ1(t) = F1(x1(t), x2(t)), x1(t0) = x10,

ẋ2(t) = F2(x1(t), x2(t)), x2(t0) = x20, (2)

where x1 ∈ D ⊆ Rn1 , D is an open set including the origin, x2 ∈ Rn2 and F1 : D×Rn2 →
Rn1 is such that for every x2 ∈ Rn2 , F1(0, x2) = 0 and F1(., x2) is locally Lipschitz in
x1. Also, F2 : D×Rn2 → Rn2 is such that for every x1 ∈ D, F2(x1, .) is locally Lipschitz
in x2, and Ix0

= [0, τx0
), 0 < τx0

≤ ∞ is the maximal interval of existence of solution
(x1(t), x2(t)) of (2) ∀t ∈ Ix0

. Under these structures, the existence and uniqueness of
solution is ensured. Stability of the dynamical system (2) with respect to x1 can be
defined as follows [8]:

Definition 2.1 The nonlinear system (2) is Lyapunov stable with respect to x1 if
for every ǫ > 0 and x20 ∈ Rn2 , there exists δ(ǫ, x20) > 0 such that ‖x10‖ < δ implies
‖x1(t)‖ < ǫ for all t ≥ 0 . This system is asymptotically stable with respect to x1, if it is
Lyapunov stable with respect to x1 and for every x20 ∈ Rn2 , there exists δ = δ(x20) > 0
such that ‖x10‖ < δ implies limt→∞ x1(t) = 0.

Now, in order to analyze partial stability, the following results are taken from [8].

Theorem 2.1 Nonlinear dynamical system (2) is asymptotically stable with respect
to x1 if there exist a continuously differentiable function V : D × Rn2 → R and class K
functions, α(.) and γ(.), such that:

V (0, x2) = 0, x2 ∈ Rn2 , (3)

α (‖x1‖) ≤ V (x1, x2), (x1, x2) ∈ D ×Rn2 , (4)

∂V (x1, x2)

∂x1
F1(x1, x2) +

∂V (x1, x2)

∂x2
F2(x1, x2) ≤ −γ(‖x‖), (x1, x2) ∈ D ×Rn2 . (5)

Proof See [8]. 2
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Corollary 2.1 [8] Consider the nonlinear dynamical system (2). If there exist a
positive definite, continuously differentiable function V : D → R and a class K function
γ(.), such that:

∂V (x1)

∂x1
F1(x1, x2) ≤ −γ(‖x‖), (x1, x2) ∈ D ×Rn2 , (6)

then the nonlinear system (2) is asymptotically stable with respect to x1.

Now, consider the following autonomous nonlinear control system:

ẋ1(t) = F1(x1, x2, u(x1, x2)), x1(t0) = x10,

ẋ2(t) = F2(x1, x2, u(x1, x2)), x2(t0) = x20, (7)

where u ∈ Rm and F1 : D × Rn2 × Rm → Rn1 is such that for every x2 ∈ Rn2 ,
F1(0, x2, 0) = 0 and also F1(., x2, .) is locally Lipschitz in x1 and u. Also F2 : D×Rn2 ×
Rm → Rn2 is such that for every x1 ∈ D, F2(x1, ., .) is locally Lipschitz in x2 and u.
These assumptions guarantee the local existence and uniqueness of the solution of the
differential equations (7).

Definition 2.2 The nonlinear control system (7) is said to be asymptotically stabiliz-
able with respect to x1 if there exists some admissible feedback control law u = k(x1, x2),
which makes system (7) asymptotically stable with respect to x1.

3 An Approach for Partial Control Design

Suppose that ẋ1-equation in (7) is affine with respect to control input (the second sub-
system may have the general dynamical form):

ẋ1(t) = f1(x1, x2) +

m
∑

i=1

g1i(x1, x2)ui,

ẋ2(t) = F2(x1, x2, u), (8)

where ui is the ith component of input vector u. Also, g1i, for i = 1, 2, ...,m are the
vectors which belong to Rn1 . Let us define:

r = number of (g1i 6= 0)i=1,...,m,

where r indicates the number of control components of input vector which appear in
ẋ1-equation. Thus 0 ≤ r ≤ m. Now, with respect to the value of r, two cases may be
considered.

3.1 Case 1: r 6= 0.

By augmenting the r nonzero vectors g1i in a matrix, i.e., G1, the nonlinear control
system (8) can be rewritten as follows:

ẋ1(t) = f1(x1, x2) +G1(x1, x2)ur,

ẋ2(t) = F2(x1, x2, u), (9)
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where ur ∈ Rr is the reduced version of control input vector u, that contains r control
variables appearing in ẋ1-equation, G1(x1, x2) is a n1×r matrix where its columns are the
r nonzero vectors g1i. In this case, the task is to find an appropriate ur, which guarantees
partial stabilization of nonlinear system (9) with respect to x1. Indeed, instead of design
u, we design ur to achieve partial stability and this approach lead to simplifying the
controller design. Before this, some definitions about the new concept of passivity, i.e.,
partial passivity are introduced.

Definition 3.1 Consider the system (9) with output function (10):

yr = h(x1, x2), (10)

where yr ∈ Rr and h is a continuous function. The system (9)-(10) is partially passive
(with respect to input ur and output yr) if there exists a continuously differentiable
positive semi definite function V : D → R (called partially storage function) such that

uT
r yr ≥ V̇ (x1), (x1, x2, ur) ∈ D ×Rn2 ×Rr. (11)

Remark 3.1 It is important to note the difference between passive systems which
have been proposed in literature and partially passive systems which is introduced in this
paper. For this purpose, the definition of passive systems is taken from [13]. Consider
the following nonlinear system

ẋ = f(x, u),

y = H(x),

where x ∈ Rn, y, u ∈ Rn, f is locally Lipshitz in (x, u) and H is continuous. The above
system is passive with respect to input u and output y if there exists a continuously
differentiable positive semidefinite function V (x) (storage function) such that

uT y ≥ V̇ (x), (x, u) ∈ Rn ×Rm.

In Definition 3.1, by dividing the state vector x into two parts x1 and x2, the passivity
concept only with respect to the first subsystem, i.e., ẋ1-equation is considered (partial
passivity). Also, the partial storage function (in Definition 3.1) is only function of a part
of states, i.e., x1, while the storage function in definition of passive systems is function
of all states, i.e., x. In what follows some new lemma and theorems are proposed for
partially passive systems.

Lemma 3.1 Consider the nonlinear system (9). Suppose there exists a positive def-
inite, continuously differentiable function V : D → R such that:

∂V (x1)
T

∂x1
f1(x1, x2) ≤ 0, (x1, x2) ∈ D ×Rn2 . (12)

Take virtual output yr as

yr = h(x1, x2) =
∂V (x1)

T

∂x1
G1(x1, x2). (13)

Then the system (9)-(13) is partially passive with respect to input ur and output yr.
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Proof Consider the following statement

uT
r yr −

∂V (x1)
T

∂x1
(f1(x1, x2) +G1(x1, x2)ur) = uT

r h−
∂V (x1)

T

∂x1
f1(x1, x2)− hTur. (14)

Since ur, yr ∈ Rr, thus uT
r h = hTur are scalar terms. Therefore,

uT
r yr −

∂V (x1)
T

∂x1
(f1(x1, x2) +G1(x1, x2)ur) = −

∂V (x1)
T

∂x1
f1(x1, x2), (15)

where according to assumption (12), ∂V (x1)
T

∂x1

f1(x1, x2) ≤ 0, therefore,

uT
r yr −

∂V (x1)
T

∂x1
(f1(x1, x2) +G1(x1, x2)ur) ≥ 0. (16)

Consequently,

uT
r yr ≥

∂V (x1)
T

∂x1
(f1(x1, x2) +G1(x1, x2)ur) = V̇ (x1). (17)

Hence, uT
r yr ≥ V̇ (x1). Thus, by using the function V (x1) as the partial storage function

candidate, the system is partially passive with respect to the input ur and the output yr
(according to Definition 3.1). 2

Theorem 3.1 Consider the nonlinear dynamical system (9). Suppose there exist a
positive definite, continuously differentiable function V (x1) : D → R and a class K
function γ(.) such that:

∂V (x1)
T

∂x1
f1(x1, x2) ≤ −γ (‖x1‖) , (x1, x2) ∈ D ×Rn2 . (18)

Then the state feedback control law (19), makes the system (9) asymptotically stable with
respect to x1.

ur = −ϕ(h(x1, x2)), (19)

where h(x1, x2) =
∂V (x1)

T

∂x1

G1(x1, x2) and ϕ is any smooth mapping such that ϕ(0) = 0

and hTϕ(h) > 0 for all h 6= 0 (It reads a function belonging to the first-third quadrant
sector).

Proof Let us define the virtual output function as follow

yr = h(x1, x2) =
∂V (x1)

T

∂x1
G1(x1, x2). (20)

The derivative of V (x1) satisfies:

V̇ (x1) =
∂V (x1)

T

∂x1
ẋ1

=
∂V (x1)

T

∂x1
(f1(x1, x2) +G1(x1, x2)ur). (21)
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Using (18)

V̇ (x1) ≤ −γ (‖x1‖) +
∂V (x1)

T

∂x1
G1(x1, x2)ur

= −γ (‖x1‖) + yTr ur. (22)

Take,
ur = −ϕ(yr) (23)

Therefore, yTr ur = −yTr ϕ(yr) ≤ 0. As a result,

V̇ (x1) ≤ −γ (‖x1‖) . (24)

Thus, according to Corollary 2.1, the control law (19) makes the nonlinear system (9)
asymptotically stable with respect to x1. 2

Remark 3.2 There is great freedom in choosing ϕ which makes the possibility for ur

to satisfy some constraints. For instance, if ur is constrained to |uri| ≤ ki for 1 ≤ i ≤ r,
then ϕi(yr) can be chosen as ϕi(yr) = kisat(yri) or ϕi(yr) = (2ki/π) tan

−1(yri) (where
uri, ϕi and yri are the ith component of ur, ϕ and yr, respectively).

Remark 3.3 Consider the system (9). If condition (18) was not satisfied, by taking
ur = α(x1, x2) + β(x1, x2)vr, the appropriate functions α and β may be found such that
condition (18) be satisfied for f1new = f1 + G1α. Then, the control law vr = −ϕ(h1)

may be designed for partial stabilization (where h1 = ∂V (x1)
∂x1

T
G1new = ∂V (x1)

∂x1

T
G1β)

3.2 Case 2: r = 0.

It means that there is no component of control input vector in ẋ1-equation. Therefore,
the nonlinear system (8) can be rewritten as follows:

ẋ1 = f1(x1, x2),

ẋ2 = F2(x1, x2, u). (25)

In this case, the task is to find an appropriate u; which guarantees partial stabilization
of the closed-loop system. Suppose that system (25) has the following structure,

ẋ1 = f1(x1) +G1(x1)x2,

ẋ2 = f2(x1, x2) +G2(x1, x2)u. (26)

This system may be viewed as a cascade connection of two subsystems where x2 is
to be viewed as an input for the first subsystem. The system (26) is in the regular form.
Assume that x2 and u both belong to Rm (in other words, n2 = m) and G2(x1, x2) ∈
Rm×m is a nonsingular matrix. This assumption is not so restrictive and many design
methods, which are based on regular forms, e.g., backstepping or sliding mode techniques
use such an assumption [13,14]. In this case, the task is to find an appropriate u; which
guarantees partial stabilization of the closed-loop system.

Theorem 3.2 Consider the nonlinear dynamical system (26). Suppose there exist a
positive definite, continuously differentiable function V : D → R and a class K function
γ(.) such that

∂V (x1)
T

∂x1
f1(x1) ≤ −γ (‖x1‖) . (27)
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Then the state feedback control law (28), makes the closed-loop nonlinear system (26)
asymptotically stable with respect to x1 and

u = G−1
2 [−

∂ϕ(y)

∂y
ẏ − f2(x1, x2)], (28)

where y = V (x1)
T

∂x1

G1(x1) and ϕ is any locally Lipschitz function such that ϕ(0) = 0 and

yTϕ(y) > 0 for all y 6= 0.

Proof The derivative of V (x1) is given by

V̇ (x1) =
∂V (x1)

T

∂x1
ẋ1

=
∂V (x1)

T

∂x1
(f1(x1) +G1(x1)x2). (29)

Using (27), we have

V̇ (x1) ≤ −γ (‖x1‖) +
∂V (x1)

T

∂x1
G1(x1)x2. (30)

Take,

y =
∂V (x1)

T

∂x1
G1(x1) (31)

and

x2 = −ϕ(y). (32)

Then

V̇ (x1) ≤ −γ (‖x1‖) + yTx2. (33)

Since yTx2 = −yTϕ(y) ≤ 0, thus V̇ (x1) ≤ −γ (‖x1‖) and according to Corollary 2.1,
partial stabilization with respect to x1 is achieved. Also,

ẋ2 = −
∂ϕ(y)

∂y
ẏ. (34)

In addition, from ẋ2-equation, one has

ẋ2 = f2(x1, x2) +G2(x1, x2)u. (35)

Therefore, combination of (34) and (35) results in:

u = G−1
2 [−

∂ϕ

∂y
ẏ − f2(x1, x2)]. (36)

This feedback law guarantees partial stabilization of the closed-loop system. 2
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3.3 Design example

Consider the following system

ż1 =
z21z2
z23

+ z1u1,

ż2 = −z2(1 + z21) + z3u2, (37)

ż3 = −z22 sin(z3)− z3,

where z1, z2 ∈ R and z3 ∈ [−π π]. By separating the states into x1 = [z2 z3]
T and

x2 = z1, one has: r = 1 and ur = u2. The task is to design ur according to Theorem 3.1
to achieve asymptotic stability with respect to x1. For this purpose, first the condition
(18) should be checked. By choosing V (x1) =

1
2x

T
1 x1 = 1

2z
2
2 +

1
2z

2
3 , one has:

∂V (x1)
T

∂x1
f1(x1, x2) = [z2 z3]

[

−z2(1 + z21)
−z22 sin(z3)− z3

]

= −z22(1 + z21)− z22z3 sin(z3)− z23 (38)

= −z22 − z22z
2
1 − z22z3 sin(z3)− z23

≤ −z22 − z23 .

Therefore, condition (18) is satisfied for γ (‖x1‖) = xT
1 x1 = z22 + z23 . Now, by choosing h

as,

h(x1, x2) =
∂V (x1)

T

∂x1
G1(x1, x2)

= [z2 z3]

[

z3
0

]

(39)

= z2z3.

Then, the reduced input vector may be designed as

ur = −ϕ(z2z3), (40)

where ϕ is any locally Lipschitz function such that ϕ(0) = 0 and hTϕ(h) > 0 for all
h 6= 0. For example, by choosing ϕ(h) = h, then ur = −z2z3 which guarantees partial
stabilization of system (37) with respect to x1.

4 Conclusion

In this paper, a new approach for partial stabilization of nonlinear systems was proposed
and it was shown that in this approach the controller synthesis can be simplified by
reducing its variables. The reduced input vector was designed based on new introduced
partial passivity concept. In the proposed design method, a virtual output with the
same dimension as the reduced input vector was designed such that the nonlinear system
was partially passive with respect to the reduced input vector and the virtual output
vector. Then, the feedback law was designed as a first-third quadrant sector function of
virtual output vector and it was shown that this law guarantees partial stabilization of
the nonlinear system.
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