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Abstract: For the nth order nonlinear differential equation

y
(n) = f(x, y, y′

, . . . , y
(n−1)),

we consider uniqueness implies uniqueness and existence results for solutions satisfy-
ing certain (k+4j)−point boundary conditions, 1 ≤ j ≤ n−1 and 1 ≤ k ≤ n−2j. We
define (j; k; j)−point unique solvability in analogy to k−point disconjugacy and we
show that (j;n − 2j; j)−point unique solvability implies (j; k; j)−point unique solv-
ability for 1 ≤ k ≤ n− 2j. This result is in analogy to n−point disconjugacy implies
k−point disconjugacy, 2 ≤ k ≤ n− 1.
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1 Introduction

In this paper, we are concerned with uniqueness and existence of solutions for a class of
boundary value problems for nth order ordinary differential equation, n ≥ 3,

y(n) = f(x, y, y′, . . . , y(n−1)), a < x < b, (1)

subject to n − 2j conjugate boundary conditions and 2j nonlocal boundary conditions,
where j ≥ 1. In particular, given 1 ≤ k ≤ n− 2j, positive integers m1, . . . ,mk such that
m1+· · ·+mk = n−2j, points a < t1 < ... < t2j < x1 < x2 < ... < xk < s1 < ... < s2j < b
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real values yi, 1 ≤ i ≤ j, yil, 1 ≤ i ≤ ml, 1 ≤ l ≤ k, and real values yn−(i−1), 1 ≤ i ≤ j, we
are concerned with uniqueness implies uniqueness and existence questions for solutions
of (1) satisfying the conjugate and nonlocal boundary conditions of the type

aiy(t2i−1)− biy(t2i) = yi, 1 ≤ i ≤ j, j nonlocal conditions,

y(i−1)(xl) = yil, 1 ≤ i ≤ ml, 1 ≤ l ≤ k, k-point, n− 2 conjugate conditions,
ciy(s2i−l)− diy(s2i) = yn−(i−1), 1 ≤ i ≤ j, j nonlocal conditions,

(2)

where ai, bi, ci, di, 1 ≤ i ≤ j are positive real numbers. We shall refer to the boundary
conditions, (2), as (j; k; j)−point boundary conditions. The (0; k; 0)−point boundary
conditions are referred to as conjugate type boundary conditions [18].

Questions of the types with which we deal in this paper have been considered for solu-
tions of (1) satisfying α-point conjugate boundary conditions; in particular, for boundary
value problems for (1) satisfying, for 2 ≤ α ≤ n, conjugate boundary conditions of the
form,

y(i−1)(tl) = ril, 1 ≤ i ≤ pl, 1 ≤ l ≤ α, (3)

where p1, . . . , pα are positive integers such that p1 + · · ·+ pα = n, a < t1 < · · · < tα < b,
and rij ∈ IR, 1 ≤ i ≤ pj , 1 ≤ j ≤ α. These questions have involved: (i) whether
uniqueness of solutions of (1), (3), for α = n, implies uniqueness of solutions of (1), (3),
for 2 ≤ α ≤ n− 1, and (ii) whether uniqueness of solutions of (1), (3), for α = n, implies
existence of solutions of (1), (3), for 2 ≤ α ≤ n. Of course, a main reason for considering
question (i) would be in resolving question (ii).

Hypothesis 1.1 With respect to equation (1), we assume throughout that

(A) f(t, s1, . . . , sn) : (a, b)× IR
n → IR is continuous;

(B) Solutions of initial problems for (1) are unique and extend to (a, b).

Given Hypothesis 1.1, Jackson [18] established that indeed (i) is true. In independent
works, Hartman [7, 8] and Klaasen [21] provided a positive answer to question (ii).

Several other papers have been devoted to uniqueness questions of these types as well
as uniqueness implies existence questions for boundary value problems. These works
have dealt not only with ordinary differential equations [2, 4, 9, 10, 19, 22, 23], but also
with boundary value problems for finite difference equations [11]– [13], and recently with
dynamic equations on time scales [6,17]. Some questions of these types have also received
recent attention for nonlocal boundary value problems for (1), for the cases of n = 2, 3, 4;
see [1,5,15,16]. Recently, [3,20] the case of nonlocal conditions for equations of arbitrary
order n have been addressed.

Referring to the methods employed in the papers cited above as shooting methods, the
authors shoot from one boundary point with one boundary condition. The contribution
in this article is that we shoot from two boundary points, to the left from x1 and to the
right from xk. New arguments for uniqueness of solutions implies existence of solutions
are given to allow for multiple shooting.

2 Uniqueness of Solutions

In the first result of this section, we shall obtain continuous dependence of solutions of
(1) on boundary conditions.
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Theorem 2.1 Assume that for some 1 ≤ k ≤ n−2j, and positive integers m1, . . . ,mk

such that m1+ · · ·+mk = n− 2j, solutions of the corresponding boundary value problem
(1), (2) are unique, when they exist. Given a solution y(x) of (1), an interval [c, d],
points c < x1 < · · · < xk < · · · < xk+4j < d and an ǫ > 0, there exists δ(ǫ, [c, d]) > 0
such that, if |xi − ξi| < δ, 1 ≤ i ≤ k+4j, and c < ξ1 < · · · < ξk < · · · < ξk+4j < d, and if

|aiy(x2i−1)− biy(x2i)− zi| < δ, i = 1, 2, . . . , j,

|y(i−1)(x2j+l)− zil| < δ, 1 ≤ i ≤ ml, 1 ≤ l ≤ k, and

|ciy(xk+2j+2i−l)− diy(xk+2j+2i)− zn−(i−1)| < δ, i = 1, 2, . . . , j,

then there exists a solution z(x) of (1) satisfying

aiz(ξ2i−l)− biz(ξ2i)) = zi, 1 ≤ i ≤ j,

z(i−1)(ξl) = zil, 1 ≤ i ≤ ml, 1 ≤ l ≤ k,

ciz(ξk+2j+2i−l)− diz(ξk+2j+2i) = zn−(i−1), 1 ≤ i ≤ j,

and |y(i−1)(x)− z(i−1)(x)| < ǫ on [c, d], 1 ≤ i ≤ n.

Proof Fix a point p0 ∈ (c, d) and define the set

G = {(s1, . . . , sk+4j , c1, . . . , cn) | c < s1 < · · · < sk+4j < d, c1, . . . , cn ∈ IR}.

G is an open subset of IRk+4j+n. Let u(x) be a solution of the initial value problem
for (1) satisfying the initial conditions u(i−1)(p0) = ci, 1 ≤ i ≤ n. Define a mapping
φ : G → IR

k+4j+n by

φ(s1, . . . , sk+4j , c1, . . . , cn) =
(

s1, . . . , sk+4j , a1u(sl)− b1u(s2), ..., aju(s2j−l)− bju(s2j),

u(s2j+1), . . . , u
(m1−1)(s2j+1), . . . , u(s2j+k), . . . , u

(mk−1)(s2j+k),

c1u(sk+2j+l)− d1u(sk+2j+2), ..., cju(sk+4j−l)− dju(sk+4j)
)

.

The continuity of φ follows from Condition (B) in Hypothesis 1.1. Moreover, the unique-
ness assumption on solutions of (1), (2), for the given k and m1, . . . ,mk, implies that φ is
one-one. Hence, from the Brouwer theorem on invariance of domain [25], it follows that
φ(G) is an open subset of IRk+4j+n, and that φ is a homeomorphism from G to φ(G).
The conclusion of the theorem follows directly from the continuity of φ−1 and the fact
that φ(G) is open.

We now establish that for k = n−2j, uniqueness of solutions of the (j;n−2j; j)−point
BVP (1), (2), implies uniqueness of solutions of the (j − i;n− 2j + i, j)−point BVP (1),
(2), for i = 1, 2, . . . , j.

Theorem 2.2 Let j ≥ 1. Assume that for k = n − 2j, solutions of the (j;n −
2j; j)−point BVP (1), (2) are unique, when they exist. Then, for each i = 1, 2, . . . , j,
solutions of the (j − i;n− 2j + i, j)−point BVP (1), (2) are unique, when they exist.

Proof Assume uniqueness of solutions of the (j;n−2j; j)−point BVP (1), (2). Firstly,
we show that solutions of the (j−1;n−2j+1, j)−point BVP (1), (2) are unique. Assume
the conclusion is not true and there exist points a < t1 < · · · < t2j−2 < x1 < · · · <
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xn−2j+1 < s1 < · · · < s2j < b for which there exist distinct solutions y(x) and z(x) of
the (j − 1;n− 2j + 1, j)−point BVP such that

aiy(t2i−1)− biy(t2i) = aiz(t2i−1)− biz(t2i), i = 1, 2, . . . , j − 1,
y(x1) = z(x1),
y(xl) = z(xl), 2 ≤ l ≤ n− 2j + 1,
ciy(s2i−1)− diy(s2i) = ciz(s2i−1)− diz(s2i), i = 1, 2, . . . , j.

Defining w = y − z, we obtain

aiw(t2i−1)− biw(t2i) = 0, i = 1, 2, . . . , j − 1,
w(x1) = 0,
w(xl) = 0, 2 ≤ l ≤ n− 2j + 1,
ciw(s2i−1)− diw(s2i) = 0, i = 1, 2, . . . , j.

If there exists some p1 ∈ (t2j−2, x1) such that w(p1) = 0, then we have

ajw(p1)− bjw(x1) = 0, aj , bj ∈ IR.

This implies that y(x) and z(x) are distinct solutions of the (j;n − 2j; j)−point BVP
at the points t1, . . . , t2j−2, p1, x1, . . . , xn−2j , s1, . . . , s2j , which is a contradiction. Hence,
w(t) 6= 0 on (t2j−2, x1). Let w(t) > 0 on (t2j−2, x1). The case w(t) < 0 on (t2j−2, x1) is
dealt with similarly. Then,

max{w(t) : t ∈ [t2j−2, x1]} = w(τ1) > 0.

Define

v(t) =

{

ajw(t) − bjw(τ1), if aj ≥ bj,

bjw(t) − ajw(τ1), if aj ≤ bj.

Then, v(τ1) > 0 and v(x1) < 0. By the mean value theorem, there exists p′ ∈ (τ1, x1)
such that v(p′) = 0 which implies that ajw(p

′) − bjw(τ1) = 0. Hence, there are distinct
solutions of the (j;n− 2j; j)−point BVP at the points

t1, . . . , t2j−2, τ1, p
′

1, x2, . . . , xn−2j , s1, . . . , s2j ,

which is again a contradiction. Hence, solutions of the (j − 1;n− 2j + 1, j)−point BVP
(1), (2) are unique.

Now, using the uniqueness of solutions of the (j − 1;n − 2j + 1, j)−point BVP, by
the same process, we can show uniqueness of solutions of the (j − 2;n− 2j+2, j)−point
BVP (1), (2). Continuing in the same fashion, we obtain uniqueness of solution of the
(j − i;n− 2j + i, j)−point BVP for each i = 1, 2, . . . , j.

Corollary 2.1 Let j ≥ 1. Assume that for k = n − 2j, solutions of the (j;n −
2j; j)−point BVP (1), (2) are unique, when they exist. Then, solutions of the (0;n −
j; j)−point BVP (1), (2) are unique, when they exist.

Theorem 2.3 Let j ≥ 1. Assume that for k = n − 2j, solutions of the (j;n −
2j; j)−point BVP (1), (2) are unique, when they exist. Then, for each i = 1, 2, . . . , j,
solutions of the (j;n− 2j + i, j − i)−point BVP (1), (2) are unique, when they exist.
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Proof Assume uniqueness of solutions of the (j;n−2j; j)−point BVP (1), (2). Firstly,
we show that solutions of the (j;n−2j+1, j−1)−point BVP (1), (2) are unique. Assume
the conclusion is not true and there exist points

a < t1 < · · · < t2j < x1 < · · · < xn−2j+1 < s1 < · · · < s2j−2 < b

for which there exist distinct solutions y(x) and z(x) the (j;n−2j+1, j−1)−point BVP
such that

aiy(t2i−1)− biy(t2i) = aiz(t2i−1)− biz(t2i), i = 1, 2, . . . , j,
y(xl) = z(xl), 1 ≤ l ≤ n− 2j,
y(xn−2j+1) = z(xn−2j+1),
ciy(s2i−1)− diy(s2i) = ciz(s2i−1)− diz(s2i), i = 1, 2, . . . , j − 1.

Defining w = y − z, then we obtain

aiw(t2i−1)− biw(t2i) = 0, i = 1, 2, . . . , j,
w(xl) = 0, 1 ≤ l ≤ n− 2j,
w(xn−2j+1) = 0,
ciw(s2i−1)− diw(s2i) = 0, i = 1, 2, . . . , j − 1.

If there exists some q1 ∈ (xn−2j+1, s1) such that w(q1) = 0, then we have

c0w(xn−2j+1)− d0w(q1) = 0, c0, d0 ∈ IR.

This implies that y(x) and z(x) are distinct solutions of the (j;n− 2j; j)−point BVP at
the points

t1, . . . , t2j , x1, . . . , xn−2j , xn−2j+1, q1, s1, . . . , s2j−2,

which is a contradiction. Hence, w(t) 6= 0 on (xn−2j+1, s1). Let w(t) > 0 on (xn−2j+1, s1).
The case w(t) < 0 on (xn−2j+1, s1) can be dealt with similarly. Then,

max{w(t) : t ∈ [xn−2j+1, s1]} = w(τ) > 0.

Define

v(t) =

{

c0w(t) − d0w(τ), if c0 ≥ d0,

d0w(t)− c0w(τ), if c0 ≤ d0.

Then, v(τ) > 0 and v(xn−2j+1) < 0. By the mean value theorem, there exists q′ ∈
(xn − 2j + 1, τ) such that v(q′) = 0 which implies that c0w(q

′) − d0w(τ) = 0. Hence,
there are distinct solutions of the (j;n− 2j; j)-point BVP at the points

t1, . . . , t2j , x1, . . . , xn−2j , q
′, τ, s1, . . . , s2j−2,

which is again a contradiction. Hence, solutions of the (j;n− 2j + 1, j − 1)−point BVP
(1), (2) are unique.

Now, using the uniqueness of solutions of the (j;n − 2j + 1, j − 1)−point BVP, by
the same process, we can show uniqueness of solutions of the (j;n− 2j+2, j− 2)−point
BVP (1), (2). Continuing in the same fashion, we obtain uniqueness of solution of the
(j;n− 2j + i, j − i)−point BVP for each i = 1, 2, . . . , j.

Corollary 2.2 Let j ≥ 1. Assume that for k = n − 2j, solutions of the (j;n −
2j; j)−point BVP (1), (2) are unique, when they exist. Then, solutions of the (j;n −
j; 0)−point BVP (1), (2) are unique, when they exist.
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Corollary 2.3 Let j ≥ 1. Assume that for k = n − 2j, solutions of the (j;n −
2j; j)−point BVP (1), (2) are unique, when they exist. Then, solutions of the n-point
conjugate BVP (1), (3) (that is, the (0;n; 0)−point BVP), are unique, when they exist.

In view of the uniqueness implies existence results due to Hartman [7,8] and Klassen
[21] as discussed in regard to question (ii), we have an immediate corollary concerning
existence of solutions for k-point conjugate boundary value problems for (1).

Corollary 2.4 Let j ≥ 1. Assume that for k = n − 2j, solutions of the (j;n −
2j; j)−point BVP (1), (2) are unique, when they exist. Then, solutions of the l-point
conjugate BVP (1), (3) (that is, the (0; l; 0)−point BVP), for 2 ≤ l ≤ n, are unique,
when they exist.

We now establish that uniqueness of solutions of (1), (2), when k = n − 2j, implies
uniqueness of solutions of (1), (2), when 1 ≤ k ≤ n− 2j − 1.

Theorem 2.4 Assume that for k = n− 2j, solutions of the (j;n− 2j; j)−point BVP
(1), (2) are unique, when they exist. Then, for each 1 ≤ k ≤ n− 2j − 1, solutions of the
(j; k; j)−point BVP (1), (2) are unique, when they exist.

Proof Assume that solutions of the (j;n − 2j; j)−point BVP (1), (2) are unique.
Assume that, for some 1 ≤ k ≤ n− 2j− 1, some (j; k; j)−point BVP (1), (2) has distinct
solutions. Let

h = max{k = 1, . . . , n− 2j − 1 | (j; k; j)− point BVP has distinct solutions}.

Then, there are positive integers, m1, . . . ,mh, such that m1 + · · · + mh = n − 2j, and
points a < t1 < · · · < t2j < x1 < · · · < xh < s1 < · · · < s2j < b, for which there exist
distinct solutions y(x) and z(x) of the (j;h; j)−point boundary value problem (1), (2),
for these m1, . . . ,mh; that is,

aiy(t2i−1)− biy(t2i) = aiz(t2i−1)− biz(t2i), i = 1, 2, . . . , j,

y(i−1)(xl) = z(i−1)(xl), 1 ≤ i ≤ ml, 1 ≤ l ≤ h,
ciy(s2i−1)− diy(s2i) = ciz(s2i−1)− diz(s2i), i = 1, 2, . . . , j.

Since h ≤ n− 2j − 1, so some ml ≥ 2. Let

ml0 = max{ml | 1 ≤ l ≤ h};

then ml0 ≥ 2. Since, xl is a zero of y− z of exact multiplicity ml, 1 ≤ l ≤ h and y and z
are distinct solutions of (1), we may assume, with no loss of generality, that

y(ml0
)(xl0) > z(ml0

)(xl0).

Now fix a < τ < x1. By the maximality of h, solutions of the (j;h+ 1; j)−problems
(1), (2) at the points t1, . . . , t2j , τ, x1, . . . , xh, s1, . . . , s2j are unique. Hence, it follows
from Theorem 2.1 that, for each ǫ > 0, there is a δ > 0 and there is a solution zδ(x) of
the (j;h + 1; j)−point problem (1), (2), (corresponding to k = h+ 1), satisfying at the
points t1, . . . , t2j , τ, x1, . . . , xh, s1, . . . , s2j,

aizδ(t2i−1)− bizδ(t2i) = aiz(t2i−1)− biz(t2i) = aiy(t2i−1)− biy(t2i), i = 1, 2, . . . , j,
zδ(τ) = z(τ),

z
(i−1)
δ (xl) = z(i−1)(xl) = y(i−1)(xl), 1 ≤ i ≤ ml, 1 ≤ l ≤ h, l 6= l0,

z
(i−1)
δ (xl0) = z(i−1)(xl0) = y(i−1)(xl0 ), 1 ≤ i ≤ ml0 − 2, (if ml0 > 2),

z
(ml0

−2)

δ (xl0) = z(ml0
−2)(xl0) + δ = y(ml0

−2)(xl0) + δ,
cizδ(s2i−1)− dizδ(s2i) = ciz(s2i−1)− diz(s2i) = ciy(s2i−1)− diy(s2i), i = 1, 2, . . . , j,
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and |zδ(x)− z(x)| < ǫ on [t1, s2j ]. For ǫ > 0, sufficiently small, there exist points xl0−1 <
ρ1 < xl0 < ρ2 < xl0+1 such that

aizδ(t2i−1)− bizδ(t2i) = ajy(t2i−1)− biy(t2i), i = 1, 2, . . . , j,

z
(i−1)
δ (xl) = y(i−1)(xl), 1 ≤ i ≤ ml, 1 ≤ l ≤ l0 − 1,
zδ(ρ1) = y(ρ1),

z
(i−1)
δ (xl0) = y(i−1)(xl0 ), 1 ≤ i ≤ ml0 − 2, (if ml0 > 2),
zδ(ρ2) = y(ρ2),

z
(i−1)
δ (xl) = y(i−1)(xl), 1 ≤ i ≤ ml, l0 + 1 ≤ l ≤ h,
cizδ(s2i−1)− dizδ(s2i) = ciy(s2i−1)− diy(s2i), i = 1, 2, . . . , j.

Thus, zδ(x) and y(x) are distinct solutions of the (j;h + 1; j)−point boundary value
problem at the points t1, . . . , t2j , x1, . . . , xl0−1, ρ1, ρ2, xl0+1, . . . , xh, s1, . . . , s2j , which is a
contradiction because of the maximality of h. The proof is complete.

In view of Theorem 2.2 and Theorem 2.4, we have the following corollaries.

Corollary 2.5 Let j ≥ 1. Assume that for k = n − 2j, solutions of the (j;n −
2j; j)−point BVP (1), (2) are unique, when they exist. Then, for 1 ≤ k ≤ n − 2j and
1 ≤ i ≤ j, solutions of the (j; k + i; j − i)−point BVP are unique, when they exist.

Corollary 2.6 Let j ≥ 1. Assume that for k = n − 2j, solutions of the (j;n −
2j; j)−point BVP (1), (2) are unique, when they exist. Then, for 1 ≤ k ≤ n − 2j and
1 ≤ i ≤ j, solutions of the (j − i; k + i; j)−point BVP are unique, when they exist.

3 Existence of Solutions

Now we deal with uniqueness implies existence for these problems. For such existence
results, continuous dependence as in Theorem 2.1 plays a role. In addition, we shall
make use of a Schrader [24] precompactness result on bounded sequences of solutions of
(1) which is stated as follows:

Theorem 3.1 Assume the uniqueness of solutions for (1), (3), when ℓ = n. If
{yν(x)} is a sequence of solutions of (1) which is uniformly bounded on a nondegenerate

compact subinterval [c, d] ⊂ (a, b), then there is a subsequence {yνl(x)} such that {y
(i)
kl
(x)}

converges uniformly on each compact subinterval of (a, b), for each i = 0, . . . , n− 1.

We have as a corollary a precompactness condition in terms of (1), (2), when k =
n− 2j.

Corollary 3.1 Assume that for k = n − 2j, solutions of the (j;n − 2j; j)−point
BVP (1), (2), are unique. If {yν(x)} is a sequence of solutions of (1) which is uniformly
bounded on a nondegenerate compact subinterval [c, d] ⊂ (a, b), then there is a subsequence

{yνl(x)} such that {y
(i)
kl
(x)} converges uniformly on each compact subinterval of (a, b),

for each i = 0, . . . , n− 1.

We now present our uniqueness implies existence result for the (j; k; j)−point bound-
ary value problems.
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Theorem 3.2 Let j ≥ 1. Assume that solutions of (1), (2), when k = n − 2j,
are unique. Then, for each 1 ≤ k ≤ n − 2j, positive integers m1, . . . ,mk such that
m1 + · · ·+mk = n− 2j, points a < t1 < · · · < t2j < x1 < · · · < xk < s1 < · · · < s2j < b,
real values yi, 1 ≤ i ≤ j, yil, 1 ≤ i ≤ ml, 1 ≤ l ≤ k and yn−i, 0 ≤ i ≤ j − 1, there exists a
unique solution of (1), (2).

Proof Let 1 ≤ k ≤ n− 2j, positive integers m1, . . . ,mk such that m1 + · · ·+mk =
n − 2j, points a < t1 < · · · < t2j < x1 < · · · < xk < s1 < · · · < s2j < b, real values
yi, 1 ≤ i ≤ j, yil, 1 ≤ i ≤ ml, 1 ≤ l ≤ k and yn−i, 0 ≤ i ≤ j − 1, be given.

Assume that for k = n − 2j, solutions of the (j;n − 2j; j)−point BVP, (1), (2), are
unique. For 1 ≤ k ≤ n − 2j, in view of Corollary 2.4, solutions of the (0; l; 0)−point
BVP (l-point conjugate BVP) for 2 ≤ l ≤ n, are also unique. Let z(x) be the unique
solution of (1) satisfying the (k + 2j + 2)-point conjugate boundary conditions (3) at
the points t1, p1, t2, . . . , tj , x1, . . . , xk, s1, . . . , sj+1 if m1 > 1, mk > 1 (or alternatively, if
m1 = 1,mk = 1, z(x) satisfies the (k + 2j)-point conjugate boundary conditions and if
one of m1 = 1,mk = 1 hold, then z(x) satisfies the (k+2j+1)-point conjugate boundary
conditions), that is,

z(t1) =
y1

a1
, z(p1) = 0,

z(ti) =
yi

ai
, 2 ≤ i ≤ j,

z(i−1)(x1) = yi1, 1 ≤ i ≤ m1 − 1,
z(i−1)(xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k − 1,

z(i−1)(xk) = yik, 1 ≤ i ≤ mk − 1,
z(si) =

yn−(i−1)

ci
, 1 ≤ i ≤ j − 1,

z(sj) =
yn−(j−1)

cj
, z(sj+1) = 0.

From the first and the last lines, we obtain

a1z(t1)− b1z(p1) = y1, cjz(sj)− djz(sj+1) = yn−(j−1).

Now, define the set

S = {(u(m1−1)(x1), u
(mk−1)(xk)) | u is a solution of (1) satisfying

a1u(t1)− b1u(p1) = y1, u(ti) =
yi
ai
, 2 ≤ i ≤ j,

u(i−1)(x1) = yi1, 1 ≤ i ≤ m1 − 1,

u(i−1)(xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k − 1,

u(i−1)(xk) = yik, 1 ≤ i ≤ mk − 1,

u(si) =
yn−(i−1)

ci
, 1 ≤ i ≤ j − 1, cju(sj)− dju(sj+1) = yn−(j−1)}.

Clearly, (z(m1−1)(x1), z
(mk−1)(xk)) ∈ S, and so S is a nonempty subset of IR2.

Next, choose (ρ0, σ0) ∈ S. Then, there is a solution u0(x) of (1) satisfying
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a1u0(t1)− b1u0(p1) = y1, u0(ti) =
yi

ai
, 2 ≤ i ≤ j,

u
(i−1)
0 (x1) = yi1, 1 ≤ i ≤ m1 − 1,

u
(m1−1)
0 (x1) = ρ0,

u
(i−1)
0 (xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k − 1,

u
(i−1)
0 (xk) = yik, 1 ≤ i ≤ mk − 1,

u
(mk−1)
0 (xk) = σ0,

u0(si) =
yn−(i−1)

ci
, 1 ≤ i ≤ j − 1, cju0(sj)− dju0(sj+1) = yn−(j−1).

By the uniqueness of solutions of the (1; k+2j − 2; 1)−point BVP by Corollary 2.6, and
in view of Theorem 2.1, there exists a δ > 0 such that, for each |ρ− ρ0| < δ, |σ−σ0| < δ,
there is a solution uρσ(x) of (1) satisfying

a1uρσ(t1)− b1uρσ(p1) = y1, uρσ(ti) =
yi

ai
, 2 ≤ i ≤ j,

u
(i−1)
ρσ (x1) = yi1, 1 ≤ i ≤ m1 − 1,

u
(m1−1)
ρσ (x1) = ρ,

u
(i−1)
ρσ (xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k − 1,

u
(i−1)
ρσ (xk) = yik, 1 ≤ i ≤ mk − 1,

u
(mk−1)
ρσ (xk) = σ,

uρσ(si) =
yn−(i−1)

ci
, 1 ≤ i ≤ j − 1, cjuρσ(sj)− djuρσ(sj+1) = yn−(j−1)

and |uρσ − u0| < δ on [t1, sj+1], which implies that (u
(m1−1)
ρσ (x1), u

(mk−1)
ρσ (xk)) ∈ S, that

is, (ρ, σ) ∈ S. Hence, {(ρ, σ)| : |ρ − ρ0| < δ, |σ − σ0| < δ} ⊂ S. Thus, S is an open,
nonempty subset of IR2.

Now, we show that S is also a closed subset of IR2. To do this, assume that S is not
closed and assume there exists r0 = (p0, q0) ∈ S \S. Let {rn} = {(pn, qn)} ⊂ S such that

lim
n→∞

rn = lim
n→∞

(pn, qn) = (p0, q0) = r0.

We can assume that each sequence {pn}, {qn} is monotone. For the sake of this argument,
we shall assume that each of {pn} and {qn} is monotone nondecreasing; the arguments
for the other three cases, {pn} nondecreasing and {qn} nonincreasing, {pn} nonincreasing
and {qn} nondecreasing, and each of {pn}, {qn} nonincreasing are analogous.

So assume pn < pn+1 ≤ p0, qn < qn+1 ≤ q0 and assume one of the inequalities,
pn+1 ≤ p0, qn+1 ≤ q0, is strict. By the definition of S, for each term rn, n ∈ IN, there
exists a unique solution un(x) of (1) satisfying

a1un(t1)− b1un(p1) = y1, un(ti) =
yi

ai
, 2 ≤ i ≤ j,

u
(i−1)
n (x1) = yi1, 1 ≤ i ≤ m1 − 1,

u
(m1−1)
n (x1) = pn,

u
(i−1)
n (xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k − 1,

u
(i−1)
n (xk) = yik, 1 ≤ i ≤ mk − 1,

u
(mk−1)
n (xk) = qn,

un(si) =
yn−(i−1)

ci
, 1 ≤ i ≤ j − 1, cjun(sj)− djun(sj+1) = yn−(j−1).
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Set wn = un − un+1. Then

a1wn(t1)− b1wn(p1) = 0, wn(ti) = 0, 2 ≤ i ≤ j,

w
(i−1)
n (x1) = 0, 1 ≤ i ≤ m1 − 1,

w
(m1−1)
n (x1) = pn − pn+1 ≤ 0,

w
(i−1)
n (xl) = 0, 1 ≤ i ≤ ml, 2 ≤ l ≤ k − 1,

w
(i−1)
n (xk) = 0, 1 ≤ i ≤ mk − 1,

w
(mk−1)
n (xk) = qn − qn+1 ≤ 0,

wn(si) = 0, 1 ≤ i ≤ j − 1, cjwn(sj)− djwn(sj+1) = 0.

First assume pn+1 < p0 and qn+1 < q0. By the uniqueness of solutions of the (1; k +
2j − 2; 1)−point BVP, there exists ǫn > 0 such that

(a) un(x) < un+1(x) on (x1 − ǫn, x1) ∪ (x1, x2), if m1 is odd,

(b) un(x) > un+1(x) on (x1 − ǫn, x1) and un(x) < un+1(x) on (x1, x2), if m1 is even,

(c) un(x) < un+1(x) on (xk−1, xk) ∪ (xk, xk + ǫn), if mk is odd,

(d) un(x) > un+1(x) on (xk−1, xk) and un(x) < un+1(x) on (xk, xk+ ǫn), if mk is even.

For the sake of this argument, we shall assume that m1 and mk are odd; the other
cases are argued analogously. We also note that either un(x) < un+1(x) on (tj , x1)
or un(x) < un+1(x) on (xk, s1). If neither of these inequalities hold, then there exist
tj < t̂ < x1 and xk < ŝ < s1 such that un(t̂) − un+1(t̂) = 0 = un(ŝ)− un+1(ŝ) violating
the uniqueness of solutions of (1; k + 2j; 1)−point BVPs. For the sake of this argument,
let us assume that un(x) < un+1(x) on (tj , x1). The sequence {rn} converges to r0 and
r0 /∈ S. In view of Corollary 3.1, the sequence {un(x)} is not uniformly bounded on any
compact subset of each of (tj , x1), (x1, x2), and (xk−1, xk).

Now, let w(x) be the unique solution of the (0; k+2j; 0)−point conjugate BVP (1),(3)
satisfying at the points t1, p1, t2, . . . , tj , x1, . . . , xk, s1, . . . , sj ,

w(t1) =
y1

a1
, w(p1) = 0,

w(ti) =
yi

ai
, 2 ≤ i ≤ j,

w(i−1)(x1) = yi1, 1 ≤ i ≤ m1 − 1, (if m1 > 1),

w(m1−1)(x1) = p0,
w(i−1)(xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k − 1,

w
(i−1)
n (xk) = yik, 1 ≤ i ≤ mk − 1, (if mk > 1)

w
(mk−1)
n (xk) = q0,

w(si) =
yn−(i−1)

ci
, 1 ≤ i ≤ j − 1.

From the monotonicity and unboundedness property of the sequence {un(x)}, it fol-
lows that, for some large n0, there exist a solution un0 of (1) and points tj < τ1 < x1 <
τ2 < x2, xk−1 < ρ1 < xk such that

un0(τ1) = w(τ1), un0(τ2) = w(τ2), un0(ρ1) = w(ρ1).
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In particular,

a1un0(t1)− b1un0(p1) = y1 = aw(t1)− b1w(p1),
un0(ti) =

yi

ai
= w(ti), 2 ≤ i ≤ j,

un0(τ1) = w(τ1),

u
(i−1)
n0 (x1) = yi1 = w(i−1)(x1), 1 ≤ i ≤ m1 − 1,

un0(τ2) = w(τ2),

u
(i−1)
n0 (xl) = yil = w(i−1)(xl), 1 ≤ i ≤ ml, 2 ≤ l ≤ k − 1,

un0(ρ1) = w(ρ1),

u
(i−1)
n0 (xk) = yik = w(i−1)(xk), 1 ≤ i ≤ mk − 1,

un0(si) =
yn−(i−1)

ci
= w(si), 1 ≤ i ≤ j − 1.

Thus, un0(x) and w(x) are distinct solutions of the same (1; k + 2j + 1; 0)−point (or if
m1 = 1 and mk = 1, the same (1; k+2j+2; 0)−point) BVP which contradicts Corollary
2.5.

If qn+1 = q0, (and keeping with the assumptions that m1,mk odd) then

un(x) < un+1(x), tj < x < x2.

Now w is already constructed and as before, find un0 , tj < τ1 < x1 < τ2 < x2, such that

un0(τ1) = w(τ1), un0(τ2) = w(τ2).

Then,
a1un0(t1)− b1un0(p1) = y1 = aw(t1)− b1w(p1),
un0(ti) =

yi

ai
= w(ti), 2 ≤ i ≤ j,

un0(τ1) = w(τ1),

u
(i−1)
n0 (x1) = yi1 = w(i−1)(x1), 1 ≤ i ≤ m1 − 1,

un0(τ2) = w(τ2),

u
(i−1)
n0 (xl) = yil = w(i−1)(xl), 1 ≤ i ≤ ml, 2 ≤ l ≤ k,

un0(si) =
yn−(i−1)

ci
= w(si), 1 ≤ i ≤ j − 1,

and Corollary 2.5 is contradicted.
The conclusion then is that S contains all its limit points and is a closed subset of

IR
2; since S is open and nonempty, S ≡ IR

2.
By choosing (ym11, ymkk) ∈ S, there is a corresponding solution y(x) of (1) such that

a1y(t1)− b1y(p1) = y1,
y(ti) =

yi

ai
, 2 ≤ i ≤ j,

y(i−1)(xl) = yil, 1 ≤ i ≤ ml, 1 ≤ l ≤ k,
y(si) =

yn−(i−1)

ci
, 1 ≤ i ≤ j − 1,

cjy(sj)− djy(sj+1) = yn−(j−1),

which is the desired solution of the (1; k + 2j − 2; 1)−point BVP.
Now, let z1(x) be the unique solution of the (1; k + 2j − 2; 1)−point BVP satisfying

the (k + 2j − 2)-point conjugate boundary conditions (or the (k + 2j)-point conjugate
boundary conditions if m1 > 1 and mk > 1) at the points

t1, p1, t2, p2, t3, . . . , tj , x1, . . . , xk, s1, . . . , sj−1, q1, sj, sj+1,
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that is,
a1z(t1)− b1z(p1) = y1,
z1(t2) =

y2

a2
, z1(p2) = 0,

z
(i−1)
1 (x1) = yi1, 1 ≤ i ≤ m1 − 1,

z
(i−1)
1 (xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k − 1,

z
(i−1)
1 (xk) = yik, 1 ≤ i ≤ mk − 1,
z1(si) =

yn−(i−1)

ci
, 1 ≤ i ≤ j − 2,

z1(sj−1) =
yn−(j−2)

cj−1
, z1(q1) = 0,

cjz1(sj)− djz1(sj+1) = yn−(j−1).

We have

a2z1(t2)− b2z1(p2) = y2, cj−1z1(sj−1)− dj−1z1(q1) = yn−(j−2).

Define the set

S1 = {(u(m1−1)(x1), u
(mk−1)(xk)) | u is a solution of (1) satisfying

a1u(t1)− b1u(p1) = y1, a2u(t2)− b2u(p2) = y2,

u(ti) =
yi
ai
, 3 ≤ i ≤ j,

u(i−1)(x1) = yi1, 1 ≤ i ≤ m1 − 1,

u(i−1)(xl) = yil, 1 ≤ i ≤ ml, 2 ≤ l ≤ k − 1,

u(i−1)(xk) = yik, 1 ≤ i ≤ mk − 1,

u(si) =
yn−(i−1)

ci
, 1 ≤ i ≤ j − 2,

cj−1u(sj−1)− dj−1u(q1) = yn−(j−2), cju(sj)− dju(sj+1) = yn−(j−1)}.

Clearly, (z
(m1−1)
1 (x1), z

(mk−1)
1 (xk)) ∈ S1, and so S1 is a nonempty subset of IR2. By

the same process as we did previously, we can show that S1 = IR
2. Hence, (ym11, ymkk) ∈

S1, which implies that there is a solution y1(x) of (1) such that

a1y(t1)− b1y(p1) = y1, a2y(t2)− b2y(p2) = y2,
y(ti) =

yi

ai
, 3 ≤ i ≤ j,

y
(i−1)
1 (xl) = yil, 1 ≤ i ≤ ml, 1 ≤ l ≤ k,
y(si) =

yn−(i−1)

ci
, 1 ≤ i ≤ j − 2,

cj−1y(sj−1)− dj−1y(q1) = yn−(j−2), cjy(sj)− djy(sj+1) = yn−(j−1),

which is the desired solution of the (2; k+2j− 4; 2)−point BVP. Continuing in the same
way, we obtain a unique solution of the (j; k; j)−point BVP, that is, a solution y(x) of
(1) such that at the points t1, . . . , t2j , x1, . . . , xk, s1, . . . , s2j , satisfies

aiy(t2i−1)− biy(t2i) = yi, i = 1, 2, ..., j,
y(i−1)(xl) = yil, 1 ≤ i ≤ ml, 1 ≤ l ≤ k,
ciy(s2i−1)− diy(s2i) = yn−(i−1), i = 1, 2, . . . , j.

We restate Theorem 3.2 in the terminology introduced in Introduction.

Corollary 3.2 Assume that k = n − 2j, solutions of the (j;n − 2j; j)−point BVP,
are unique. Then, for each 1 ≤ k ≤ n− 2j, (1) is (j; k; j)−point uniquely solvable.
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