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Abstract: In this paper, we have proposed Euler’s modified method for solving the
six coupled system of non-linear ordinary differential equations (ODEs), which are
aroused in the reduction of stratified Boussinesq equations. This method can also be
called as revised Euler’s modified method for solving two simultaneous ODEs. We
have obtained the numerical solutions on stable and unstable manifolds. The error
between the numerical solution and exact solution is of order 10−20 to 10−6. We have
coded this programme in C-language.
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1 Introduction

The stratified Boussinesq equations form a system of Partial Differential Equations
(PDEs) modelling the movements of planetary atmospheres. It may be noted that liter-
ature also refers to Boussinesq approximation as Oberbeck–Boussinesq approximation.
For this, one may refer to an interesting article by Rajagopal et al [1] which provides
a rigorous mathematical justification for perturbations of the Navier-Stokes equations.
Majda & Shefter [2] have chosen certain special solutions of this system of ODEs to
demonstrate the onset of instability when the Richardson number is less than 1/4. Ma-
jda and Shefter [3] have shown that the analysis, in the special cases considered, reduces
to the solutions of Hamiltonian system. These reductions form an interesting coupled
system of six non-linear ODEs. Shrinivasan et al [4] have also tested the system for com-
plete integrability by use of first integrals. Further, Desale [6] has incorporated the effect
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of rotation in the same system in the context of basin scale dynamics, while Desale and
Sharma [7] have given special solutions of rotating stratified Boussinesq equations. De-
sale and Patil [8] have tested the system of six coupled nonlinear ODEs by Painleve Test.
Burton and Zhang [9] have given the periodic solutions for singular integral equations.
Biswas et al [10] have studied the behavior of soliton solutions in the form of KdV partial
differential equation in the fiber optics solitons theory in communication engineering.

In this paper, we have given the C-code to find and to test the initial values which
lie on the invariant surface given by equation (4). We have implemented Euler Modified
method to find the numerical solution of the system (1) passing through the initial values
on invariant surface (4). We have discussed the use of this method in the subsection (3.1).
We have given the codes for solutions on stable and unstable manifolds of invariant surface
which is obtained by four first integrals.

2 Preliminaries

Shrinivasan et al [4] have tested the system (1) as given below for complete integrability.
Also, Deasle and Shrinivasan [5] have shown that in the general case, the problem of
integration reduces to the integrations of the system of six coupled autonomous ODE’s

ẇ = g
ρb

ê3 × b,

ḃ = 1
2w × b,







(1)

wherew = (w1, w2, w3)
T , b = (b1, b2, b3)

T and g
ρb

is a non-dimensional constant as men-

tioned by Desale [11] in his Ph. D. thesis.
The above system can be written component-wise as below

ẇ1 = − g
ρb

b2, ẇ2 = g
ρb

b1, ẇ1 = 0,

ḃ1 = 1
2 (w2b3 − w3b2), ḃ2 = 1

2 (w3b1 − w1b3), ḃ3 =
1
2 (w1b2 − w2b1).







(2)

The system (1) admits the following four first integrals

1) |b|2 = c1,

2) w · b = c2,

3) ê3 ·w = c3,

4) |w|2
2 + 2g

ρb

ê3 · b = c4,



































(3)

with non zero values of c1, c2, c3 and c4. The possible critical points of the system (1)
are (±ê3,±ê3). For c1 = 1 and w = ±ê3, c3 may assume the values ±1 (not both).
Now we take c3 = 1, so that the possible critical points are (ê3,±ê3). At the rest points
(ê3,±ê3), the value of c2 is ±1.

Remark 2.1 The case c2 = −1 will be surface disjoint from w ·b = 1 and the similar
analysis will be carried out if we take c2 = −1. Right now we take c1 = 1, c2 = 1 and
c3 = 1. But this forces b = ê3 at a critical point, so with our specific conditions we have
only one rest point (ê3, ê3) on the invariant surface (3). At this critical point fourth first
integral assumes the value c4 = 1

2 + 2g
ρb

.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 12 (3) (2012) 215–236 217

With the above specification, we have following four first integrals

|b|2 = 1,w · b = 1, ê3 ·w = 1,
|w|2
2

+
2g

ρb
ê3 · b =

1

2
+

2g

ρb
. (4)

A critical point (ê3, ê3) lies on invariant surface and (b1, b2, b3) is on the surface
|b|2 = 1. Therefore we have

w1 =
−b2k

1− b3
+

b1
1 + b3

,

w2 =
b1k

1− b3
+

b2
1 + b3

,

w3 = 1.























(5)

where k is a function of b3, given by the following equation

k2 =
(1− b3)

2

(1 + b3)2

[4g(1 + b3)− ρb
ρb

]

. (6)

One may refer [4, 5] for more details of this analysis. Since |b|2 = 1, we can use
spherical-polar co-ordinates

b1 = cos θ sinφ, b2 = sin θ sinφ, b3 = cosφ. (7)

Hence,

k2 = tan4(
φ

2
)
[8g

ρb
cos2(

φ

2
)− 1

]

. (8)

For k to be real , Shrinivasan et al [5] have put up the restriction to φ as 0 ≤ φ ≤
2 cos−1(

√

ρb

8g ). With this limitation k takes the values negative, positive and zero. With

these possible choices of k, the invariant surface will be the union of disjoint manifolds
corresponding to k > 0, is unstable manifold, k < 0, is stable manifold and k = 0, is a
center manifold. Regarding these manifolds, readers are advised to refer to Shrinivasan
et al [5].

Now for k > 0, the unstable manifold is given by

w1 = tan(φ2 )
[

cos θ − sin θ
√

8g
ρb

cos2(φ2 )− 1
]

,

w2 = tan(φ2 )
[

cos θ + sin θ
√

8g
ρb

cos2(φ2 )− 1
]

,

w3 = 1,

b1 = cos θ sinφ,

b2 = sin θ sinφ,

b3 = cosφ,

with

k = tan2(
φ

2
)
[8g

ρb
cos2(

φ

2
)− 1

]

.



































































































(9)
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On this surface, system (1) reduces to

dφ

dt
= 1

2 tan(
φ
2 )
√

8g
ρb

cos2(φ2 )− 1,

dθ

dt
= 1

4 sec
2(φ2 ),











(10)

where as for k < 0, the stable manifold is given by

w1 = tan(φ2 )
[

cos θ + sin θ
√

8g
ρb

cos2(φ2 )− 1
]

,

w2 = tan(φ2 )
[

cos θ − sin θ
√

8g
ρb

cos2(φ2 )− 1
]

,

w3 = 1,

b1 = cos θ sinφ,

b2 = sin θ sinφ,

b3 = cosφ,

with

k = − tan2(φ2 )
[

8g
ρb

cos2(φ2 )− 1
]

.































































































(11)

On this surface, system (1) reduces to

dφ

dt
= − 1

2 tan(
φ
2 )
√

8g
ρb

cos2(φ2 )− 1,

dθ

dt
= 1

4 sec
2(φ2 ).











(12)

3 Numerical Solution

In their studies, Shrinivasan et al [5] have shown that the system (1) is completely
integrable and solutions exist on invariant surface (3) for all the time. So we are looking
for the numerical solution of the system (1) on the invariant surface (3). We find the
initial values which satisfy the four first integrals given by (4) and consequently we can
find the solutions of system (1) passing through these initial values. We use the following
programme to find the initial values so that they satisfy the four first integrals. We use
the following programme to test finitely many points.

#include<stdio.h>

#include<conio.h>

#include<math.h>

void main()

{ FILE *fp;

double b10,b20,b30,phi0,theta0;

double eps=0.0000001,G=39.2;

double g=9.8,rho_b=2;

long int i,j,k;
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double y1,w10,w20,w30;

double int1,int2,int3L,int3R;

double diff1,diff2,diff3;

clrscr();

fp=fopen("new_02a1.xls","w+");

fprintf(fp,"\n\t PROGRAMME FOR INITIAL SOLUTIONS

SATISFYING FIRST FOUR INTEGRALS");

b10=0.000001;

b20=0.000001;

b30=0.000001;

printf("\n\t PROGRAMME FOR INITIAL SOLUTIONS

SATISFYING FIRST FOUR INTEGRALS");

fprintf(fp,"\n\tb10\tb20\tb30\ttheta0\tphi0\n");

printf("\nb10\tb20\tb30\ttheta0\tphi0\n");

for(k=0;k<1000;k++) //b30 loop

{

for(j=0;j<1000;j++)//b20 loop

{

for(i=0;i<1000;i++) //b10 loop

{

theta0=atan(b20/b10);

phi0=atan(sqrt(b10*b10+b20*b20)/b30);

y1=sqrt(39.2*cos(phi0/2.0)*cos(phi0/2.0)-1.0);

w10=tan(phi0/2.0)*(cos(theta0)-(sin(theta0)*y1));

w20=tan(phi0/2.0)*(sin(theta0)+(cos(theta0)*y1));

w30=1.000000;

int1=b10*b10+b20*b20+b30*b30;

int2=b10*w10+b20*w20+b30*w30;

int3L=w10*w10+w20*w20+w30*w30+((4.0*g*b30)/rho_b);

int3R=1.0+((4.0*g)/rho_b);

diff1=fabs(int1-1.0);

diff2=fabs(int2-1.0);

diff3=fabs(int3L-int3R);

if(diff1<eps)

{

if(diff2<eps)

{

if(diff3<eps)

{

fprintf(fp,"\n\t%.10lf\t%.10lf\t%.10lf\t%.10lf\t%.10lf",

b10,b20,b30,theta0,phi0);

printf("\n%.10lf\t%.10lf\t%.10lf\t%.10lf\t%.10lf",

b10,b20,b30,theta0,phi0);

} } }

b10=b10+0.000001;

if(b10>=1.000001) b10=0.000001; }

b20=b20+0.000001;
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if(b20>=1.000001) b20=0.000001; }

b30=b30+0.000001;

if(b30>=1.000001) b30=0.000001; }

getch(); }

With the help of the above programme we get the initial value. After getting the
initial value, we decide on which manifold the initial value lies on – that is whether it is
stable, unstable or central manifold. Using the above programme, we get the initial value
b0 = (b10, b20, b30). From this initial value b0 = (b10, b20, b30), we calculate the value of k,
then we conclude whether the initial value is on stable, unstable or on center manifold.
Once we confirm, our initial value is either on stable or unstable surface, accordingly
we find the numerical solution by Euler modified method. In the following subsection
(3.1), we implement the method to calculate the numerical solution. Further, we write
the algorithm and encode the programme.

3.1 Implementation of Euler modified method for the numerical solution

We start with the initial condition t = 0 and the initial point b0 = (b10, b20, b30). We
calculate the initial value of (φ0, θ0) as

θ0 = tan−1

(

b2
b1

)

, φ0 = tan−1

(

√

b21 + b22
b3

)

. (13)

Now, we calculate the value ofφ1 and θ1 by Predictor Formula as

φ1 = φ0 + hf1(t0, φ0, θ0), θ1 = θ0 + hf2(t0, φ0, θ0), (14)

where h is a step size, f1 = 1
2 tan(

φ
2 )
√

8g
ρb

cos2(φ2 )− 1, f2 = 1
4 sec

2(φ2 ). Since there is an

error in φ1 and θ1, we refine or try to get more accurate values of φ1 and θ1 by Corrector
Formula as below,

φ
(1)
1 = φ0 +

h
2 [f1(t0, φ0, θ0) + f1(t0 + h, φ1, θ1)]. (15)

In the above step the error can be reduced to the desired accuracy. Here we have
considered the accuracy of 10−20. The error is reduced by repeating the corrector formula
as below,

φ
(n+1)
1 = φ0 +

h
2 [f1(t0, φ0, θ0) + f1(t0 + h, φ

(n)
1 , θ1)]. (16)

As we get the most correct value of φ, we use this value of φ for calculating the correct
value of θ with the accuracy of 10−20 as

θ
(1)
1 = θ0 +

h
2 [f2(t0, φ0, θ0) + f2(t0 + h, φ1, θ1)], (17)

θ
(n+1)
1 = θ0 +

h
2 [f2(t0, φ0, θ0) + f2(t0 + h, φ1, θ

(n)
1 )], (18)

and so on. This gives us the corrected values of θ and φ. The exact solutions of (10) are

φ(t) = 2 sin−1
[2k1.

√

G−1
G

.e−
t

4

√
G−1

1 + k21 .e
− t

2

√
G−1

]

,

θ(t) = t
4 + tan−1

[√
G

k1

.e
t

4

√
G−1 −

√
G− 1

]

− tan−1
[√

G
k1

.e
t

4

√
G−1 +

√
G− 1

]

+ k2,



































(19)
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where k1, k2 are constants and G = 8g/ρb. Now for our calculations, we took G = 39.2
with g = 9.8 and ρb = 2. We have compared the corrected values with the exact
solutions and we got the minimum error of 10−20 and maximum up to 10−6. Now by
using the method of back substitution we have obtained the values of b(b1, b2, b3) and
w(w1, w2, w3).

3.2 Algorithm for numerical solution

Here we give the algorithm for numerical solution by Euler’s Modified Method [14, 15].
The details of the algorithm are as given below:

Step 1: Enter the initial values of t0, φ0, θ0, t, g, ρb and h (step size).
Step 2:Calculate the values of b10, b20, b30, w10, w20, w30, k1, k2 and k. Here we have

obtained the initial values.
Step 3: Calculate the values of φ1 and θ1 by using Euler’s Predictor Formula.
Step 4: Calculate the value of φ1 up to the desired accuracy by using Euler’s Corrector

Formula.
Step 5: Calculate the value of θ1 up to the desired accuracy by using Euler’s Corrector

Formula.
Step 6: Calculate the values of b1, b2, b3, w1, w2 and w3 by using equation (7).
Step 7: Calculate the exact values of φ and θ by using equation (9) then calculate

the exact values of b1, b2, b3, w1, w2 and w3 by using equation (7).
Step 8: Print the required exact and calculated numerical values.
Step 9: Replace φ1 by φ0, θ1 by θ0 and t0 by t+ h and go to Step 3, until the value

of φ is reached to its maximum for the given unstable manifold.
Step 10: Plot the graphs to see the difference.
Step 11: End.

3.3 Numerical solution on unstable manifold

On this manifold, we have k > 0 and the system (1) reduces to (10). Now we use the
following programme to find the solution on the unstable manifold.

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

#include<math.h>

#include<sys\stat.h>

void main()

{

double f(double p);

FILE *fp;

double phi0,phi1,phi10,theta0,theta1,theta10,er_theta,er_phi;

double h,t,t0,t1,b1,b2,b3,w1,w2,w3,b10,b20,b30,w10,w20,w30;

double eb1,eb2,eb3,ew1,ew2,ew3,be1,be2,be3,we1,we2;

double x,y0,y1,z0,z1,diff1,diff2,eps=0.01;

double etheta,ephi,G=39.2,u,u1,u2,k1,k2,k;

int i,n; /* g=9.8 , rho_b=2,*/

clrscr();

printf("\n\n\t\t PROGRAMME FOR EULER MODIFIED METHOD");
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fp=fopen("nrd001.xls","w+"); t0=0.0; t=6.0; h=0.001;

printf("\n\n\t\t Enter the value of phi0= ");

scanf("%lf",&phi0);

printf("\n\n\t\t Enter the value of theta0= ");

scanf("%lf",&theta0);

fprintf(fp,"\n The value of phi0=%lf ",phi0);

fprintf(fp,"\n The value of theta0=%lf ",theta0);

b10=cos(theta0)*sin(phi0);

b20=sin(theta0)*sin(phi0);

b30=cos(phi0);

y1=sqrt(39.2*cos(phi0/2.0)*cos(phi0/2.0)-1);

w10=tan(phi0/2.0)*(cos(theta0)-sin(theta0)*y1);

w20=tan(phi0/2.0)*(sin(theta0)+cos(theta0)*y1);

w30=1.000000;

fprintf(fp,"\n The value of b10=%lf ",b10);

fprintf(fp,"\n The value of b20=%lf ",b20);

fprintf(fp,"\n The value of b30=%lf ",b30);

fprintf(fp,"\n The value of w10=%lf ",w10);

fprintf(fp,"\n The value of w20=%lf ",w20);

fprintf(fp,"\n The value of w30=%lf ",w30);

/*calculating k1 and k2 for exact solution and

k for initial solution */

u=sin(phi0/2.0);

k1=(sqrt((G-1.0)/G)+sqrt(((G-1)/G)-u*u))/u;

k2=theta0-atan((sqrt(G)/k1)-(sqrt(G-1.0)))

+atan((sqrt(G)/k1)+(sqrt(G-1.0)));

k=(tan(phi0/2)*tan(phi0/2))*sqrt(G*cos(phi0/2)*cos(phi0/2)-1);

printf("\n\n\tThe value of k1=%.8f \n\n\tThe value of

k2=%.8f",k1,k2);

printf("\n\n\tThe value of k=%.8f ",k);

fprintf(fp,"\nThe value of k1=%.8f ",k1);

fprintf(fp,"\nThe value of k2=%.8f ",k2);

fprintf(fp,"\nThe value of k=%.8f ",k);

i=0;

printf("\n\n\tPress ’ENTER’ to get step by step");

fprintf(fp,"\n t\t b1\t b2\t b3\t w1\t w2\t w3\t theta\tphi

\tk\t ephi\t etheta");

printf("\n\n\t Error in Theta\t\t Error in Phi \t Value of K");

while(t0<t)

{

i++;

t1=t0+h;

y0=sqrt(39.2*cos(phi0/2.0)*cos(phi0/2.0)-1);

phi1=phi0+(h/2.0)*tan(phi0/2.0)*y0;

phi10=phi1;

theta1=theta0+(0.25*h*f(phi0));
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theta10=theta1;

/* Calculation of phi by modified formula */

do{

y0=sqrt(39.2*cos(phi0/2.0)*cos(phi0/2.0)-1);

y1=sqrt(39.2*cos(phi10/2.0)*cos(phi10/2.0)-1);

phi1=phi0+(0.25*h)*((tan(phi0/2.0)*y0)+(tan(phi10/2.0)*y1));

diff1=fabs(phi1-phi10);

phi10=phi1;

}while(diff1>eps);

k=(tan(phi1/2)*tan(phi1/2)) *sqrt(G*cos(phi1/2)*cos(phi1/2)-1);

/* Calculation of theta by modified formula */

do{

theta1=theta0+(0.125*h)*(f(phi0)+f(phi1));

diff2=fabs(theta10-theta1);

}while(diff2>eps);

/* Calculation of an approximate solution what we need */

b1=cos(theta1)*sin(phi1);

b2=sin(theta1)*sin(phi1);

b3=cos(phi1);

y1=sqrt(39.2*cos(phi1/2.0)*cos(phi1/2.0)-1);

w1=tan(phi1/2.0)*(cos(theta1)-sin(theta1)*y1);

w2=tan(phi1/2.0)*(sin(theta1)+cos(theta1)*y1);

w3=1.000000;

/* calculation of exact solution */

ephi=2*asin((2*k1*sqrt((G-1)/G)*exp(-(t1/4)*sqrt(G-1)))

/(1+k1*k1*exp(-(t1/2)*sqrt(G-1))));

u1=atan((sqrt(G)*exp((t1/4)*sqrt(G-1)))/k1-sqrt(G-1));

u2=atan((sqrt(G)*exp((t1/4)*sqrt(G-1)))/k1+sqrt(G-1));

etheta=(t1/4)+u1-u2+k2;

k=(tan(etheta/2)*tan(etheta/2))

*sqrt(G*cos(etheta/2)*cos(etheta/2)-1);

/* calculation of error in theta and phi*/

er_theta=fabs(theta1-etheta);

er_phi=fabs(phi1-ephi);

/* calculation of B and W */

be1=cos(etheta)*sin(ephi);

be2=sin(etheta)*sin(ephi);

be3=cos(ephi);

y1=sqrt(39.2*cos(ephi/2.0)*cos(ephi/2.0)-1);

we1=tan(ephi/2.0)*(cos(etheta)-sin(etheta)*y1);

we2=tan(ephi/2.0)*(sin(etheta)+cos(etheta)*y1);
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fprintf(fp,"\n%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf

\t%lf\t%lf\t%lf", t1, b1, b2, b3, w1, w2, w3,

theta1, phi1, k, etheta, ephi);

printf("\n\n\t%.20lf\t%.20lf\t%lf",er_theta,er_phi,k);

phi0=phi1;

theta0=theta1;

t0=t1;

getch();

}}

double f(double p)

{ double p_dash;

p_dash=(1.0/cos(p/2.0))*(1.0/cos(p/2.0));

return(p_dash);

}

3.4 Numerical solution on stable manifold

On this manifold, we have k < 0 and the system (1) reduces to (12). Now we use the
following programme to find the solution on the stable manifold.

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>

#include<math.h>

#include<sys\stat.h>

void main()

{

double f(double p);

FILE *fp;

double phi0,phi1,phi10,theta0,theta1,theta10,er_theta,er_phi;

double h,t,t0,t1,b1,b2,b3,w1,w2,w3,b10,b20,b30,w10,w20,w30;

double eb1,eb2,eb3,ew1,ew2,ew3,be1,be2,be3,we1,we2;

double x,y0,y1,z0,z1,diff1,diff2,eps=0.01;

double etheta,ephi,G=39.2,u,u1,u2,k1,k2,k;

int i,n; /* g=9.8 , rho_b=2,*/

clrscr(); printf("\n\n\t\t PROGRAMME FOR EULER MODIFIED METHOD");

fp=fopen("nrd001.xls","w+"); t0=0.0; t=6.0; h=0.001;

printf("\n\n\t\t Enter the value of phi0= ");

scanf("%lf",&phi0);

printf("\n\n\t\t Enter the value of theta0= ");

scanf("%lf",&theta0);

fprintf(fp,"\n The value of phi0=%lf ",phi0);

fprintf(fp,"\n The value of theta0=%lf ",theta0);

b10=cos(theta0)*sin(phi0);

b20=sin(theta0)*sin(phi0);

b30=cos(phi0);

y1=sqrt(39.2*cos(phi0/2.0)*cos(phi0/2.0)-1);

w10=tan(phi0/2.0)*(cos(theta0)+sin(theta0)*y1);

w20=tan(phi0/2.0)*(sin(theta0)-cos(theta0)*y1);
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w30=1.000000;

fprintf(fp,"\n The value of b10=%lf ",b10);

fprintf(fp,"\n The value of b20=%lf ",b20);

fprintf(fp,"\n The value of b30=%lf ",b30);

fprintf(fp,"\n The value of w10=%lf ",w10);

fprintf(fp,"\n The value of w20=%lf ",w20);

fprintf(fp,"\n The value of w30=%lf ",w30);

/*calculating k1 and k2 for exact solution

and k for initial solution */

u=sin(phi0/2.0);

k1=(sqrt((G-1.0)/G)+sqrt(((G-1)/G)-u*u))/u;

k2=theta0-atan((sqrt(G)/k1)-(sqrt(G-1.0)))

+atan((sqrt(G)/k1)+(sqrt(G-1.0)));

k= - (tan(phi0/2)*tan(phi0/2))

*sqrt(G*cos(phi0/2)*cos(phi0/2)-1);

printf("\n\n\tThe value of k1=%.8f \n\n\tThe value of

k2=%.8f",k1,k2);

printf("\n\n\tThe value of k=%.8f ",k);

fprintf(fp,"\nThe value of k1=%.8f ",k1);

fprintf(fp,"\nThe value of k2=%.8f ",k2);

fprintf(fp,"\nThe value of k=%.8f ",k);

i=0;

printf("\n\n\tPress ’ENTER’ to get step by step");

fprintf(fp,"\n t\t b1\t b2\t b3\t w1\t w2\t w3\t theta\t phi

\tk\t ephi\t etheta");

printf("\n\n\t Error in Theta\t\t Error in Phi \t Value of K");

while(t0<t)

{

i++;

t1=t0+h;

y0=sqrt(39.2*cos(phi0/2.0)*cos(phi0/2.0)-1);

phi1=phi0-(h/2.0)*tan(phi0/2.0)*y0;

phi10=phi1;

theta1=theta0+(0.25*h*f(phi0));

theta10=theta1;

/* Calculation of phi by modified formula */

do{

y0=sqrt(39.2*cos(phi0/2.0)*cos(phi0/2.0)-1);

y1=sqrt(39.2*cos(phi10/2.0)*cos(phi10/2.0)-1);

phi1=phi0-(0.25*h)*((tan(phi0/2.0)*y0)+(tan(phi10/2.0)*y1));

diff1=fabs(phi1-phi10);

phi10=phi1;

}while(diff1>eps);

k= - (tan(phi1/2)*tan(phi1/2))

*sqrt(G*cos(phi1/2)*cos(phi1/2)-1);
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/* Calculation of theta by modified formula */

do{

theta1=theta0+(0.125*h)*(f(phi0)+f(phi1));

diff2=fabs(theta10-theta1);

}while(diff2>eps);

/* Calculation of an approximate solution what we need */

b1=cos(theta1)*sin(phi1);

b2=sin(theta1)*sin(phi1);

b3=cos(phi1);

y1=sqrt(39.2*cos(phi1/2.0)*cos(phi1/2.0)-1);

w1=tan(phi1/2.0)*(cos(theta1)+sin(theta1)*y1);

w2=tan(phi1/2.0)*(sin(theta1)-cos(theta1)*y1);

w3=1.000000;

/* calculation of exact solution */

ephi=2*asin((2*k1*sqrt((G-1)/G)*exp(-(t1/4)*sqrt(G-1)))

/(1+k1*k1*exp(-(t1/2)*sqrt(G-1))));

u1=atan((sqrt(G)*exp((t1/4)*sqrt(G-1)))/k1-sqrt(G-1));

u2=atan((sqrt(G)*exp((t1/4)*sqrt(G-1)))/k1+sqrt(G-1));

etheta=(t1/4)+u1-u2+k2;

k=-(tan(etheta/2)*tan(etheta/2))

*sqrt(G*cos(etheta/2)*cos(etheta/2)-1);

/* calculation of error in theta and phi*/

er_theta=fabs(theta1-etheta);

er_phi=fabs(phi1-ephi);

/* calculation of B and W */

be1=cos(etheta)*sin(ephi);

be2=sin(etheta)*sin(ephi);

be3=cos(ephi);

y1=sqrt(39.2*cos(ephi/2.0)*cos(ephi/2.0)-1);

we1=tan(ephi/2.0)*(cos(etheta)+sin(etheta)*y1);

we2=tan(ephi/2.0)*(sin(etheta)-cos(etheta)*y1);

fprintf(fp,"\n%lf\t%lf\t%lf\t%lf\t%lf\t%lf\t%lf

\t%lf\t%lf\t%lf\t%lf\t%lf",t1,b1,b2,b3,w1,w2,

w3, theta1, k, etheta, ephi);

printf("\n\n\t%.20lf\t%.20lf\t%lf",er_theta,er_phi,k);

phi0=phi1;

theta0=theta1;

t0=t1;

getch();

} }

double f(double p)

{ double p_dash;

p_dash=(1.0/cos(p/2.0))*(1.0/cos(p/2.0));

return(p_dash); }
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4 Experimental Results

We have written the code for the above algorithm in C-programming. We have plotted
the graphs by using Matlab. Here we have considered the initial solution as φ0 = 0.100
and θ0 = 0.000 for k > 0. Since at φ = 2.820649 the value of k becomes negative, we
have considered φ0 = 2.820649 and θ0 = 0.000 for k > 0.

In each figure, the first graph shows the numerical value calculated by us, the second
graph shows the exact solution and the third graph shows the comparison of the first
and the second graphs as shown in Figure 1 to Figure 16.

4.1 Figures for numerical solution on unstable manifold

Here we consider k > 0. Here are Figures from 1 to 8.
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Figure 1: Graphs for b1.



228 B.S. DESALE AND N.R. DASRE

0 1 2 3
0

0.2

0.4

0.6

0.8

t

b2

Calculated b2

0 1 2 3
0

0.2

0.4

0.6

0.8

t

b2

Exact b2

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

t

b2

Comparision of Exact and Calculated

Figure 2: Graphs for b2.

0 1 2 3
−1

−0.5

0

0.5

1

t

b3

Calculated b3

0 1 2 3
−1

−0.5

0

0.5

1

t

b3

Exact b3

0 0.5 1 1.5 2 2.5
−1

−0.5

0

0.5

1

t

b3

Comparision of Exact and Calculated

Figure 3: Graphs for b3.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 12 (3) (2012) 215–236 229

0 1 2 3
0

0.5

1

1.5

2

t

th
et

a

Calculated theta

0 1 2 3
0

0.5

1

1.5

2

t

th
et

a

Exact theta

0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

t

th
et

a

Comparision of Exact and Calculated

Figure 4: Graphs for θ.

0 1 2 3
0

1

2

3

t

ph
i

Calculated phi

0 1 2 3
0

1

2

3

t

ph
i

Exact phi

0 0.5 1 1.5 2 2.5
0

1

2

3

t

ph
i

Comparision of Exact and Calculated

Figure 5: Graphs for φ.
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Figure 8: Graphs for w3.

4.2 Numerical solution on stable manifold

Here we consider k < 0. Here are Figures from 9 to 16.

0 5 10 15
−0.2

0

0.2

0.4

0.6

t

b1

Calculated b1

0 5 10 15
−0.2

0

0.2

0.4

0.6

t

b1

Exact b1

0 2 4 6 8 10 12
−0.1

0

0.1

0.2

0.3

0.4

t

b1

Comparision of Exact and Calculated

Figure 9: Graphs for b1.
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Figure 10: Graphs for b2.
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Figure 11: Graphs for b3.
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Figure 12: Graphs for θ.
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Figure 13: Graphs for φ.
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Figure 14: Graphs for w1.
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Figure 15: Graphs for w2.
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Figure 16: Graphs for w3.

5 Conclusion

Here we have presented the scheme of Euler Modified Method for the numerical solution
of the system of non-linear six coupled ODE’s (1), with the error of 10−6. Initially we
have an error of 10−20 in the solution. It can be reduced as we reduce the step size. This
error increases but it is up to 10−6 which is the upper bound. In future we will attempt
to minimize the error and sharpen the accuracy of the solution.
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