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Abstract: This paper presents a general approach to design a partially stabilizing
controller for nonlinear systems. In this approach, the nonlinear control system is di-
vided into two subsystems, which are called the first and the second subsystems. This
division is done based on the required stability properties of system’s states. Further-
more, it is shown that partial control makes the possibility of converting the control
problem into a simpler one by reducing the number of control input variables. The
reduced input vector (the vector that includes components of input vector appearing
in the first subsystem) is designed based on the new introduced control Lyapunov
function called partial control Lyapunov function (PCLF) to asymptotically stabilize
the first subsystem.
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1 Introduction

The problem of partial stability, that is stability with respect to a part of system’s states,
finds applications in many of engineering problems. In particular, partial stability arises
in the study of inertial navigation systems, spacecraft stabilization via gimbaled gyro-
scopes or flywheels, electromagnetic, adaptive stabilization, guidance, etc. [1]– [14]. In
the mentioned applications, although the plant may be unstable (in the standard con-
cept), it might be partially asymptotically stable, i.e., some states may have convergent
behavior. It is in contrast to many other engineering problems where Lyapunov stability
(in its standard concept) is required [17]– [20]. For example, consider the equation of
motion for the reaction wheel pendulum depicted in Figure 1 [15]:
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Figure 1: Coordinate convections for the reaction wheel pendulum [15].

d11θ̈1 + d12θ̈2 + φ (θ1) = 0,

d21θ̈1 + d22θ̈2 = u,
(1)

where θ1 is the pendulum angle, θ2 is the disk angle, u is the motor torque input and

d11 = m1l
2
c1 +m2l

2
1 + I1 + I2,

d12 = d21 = d22 = I2,

φ(θ1) = −m̄g sin(θ1),
m̄ = m1lc1 +m2l1,

(2)

where l1 is the length of pendulum; lc1 is the position of the center of mass of the
pendulum; m1 is the mass of the pendulum; m2 is the mass of disk; I1, I2 are the
inertia of the pendulum and the disk around their center of masses. The reaction wheel
pendulum is a physical pendulum with a symmetric disk attached to the end. The disk
is free to spin about an axis which is parallel to the axis of rotation of the pendulum.
Also, the disk is controlled by a DC-motor and the coupling torque generated by the
angular acceleration of the disk can be used to actively control the system [15]. Suppose
that a feedback control law should be designed so that θ̇1 → 0 and θ̇2 be constant; that
is, θ̇2 (t) → Ω as t → ∞ where Ω > 0. This implies that θ2 (t) = Ωt → ∞ as t → ∞.
Consequently, it is obvious that the reaction wheel pendulum is unstable in the standard
concept; however, it is partially asymptotically stabilizable with respect to θ1, θ̇1 and θ̇2.

Although partial stability has applications in many of engineering fields, there are
a few papers regarding the design of control laws which stabilize only part of system’s
states [2]– [12] and advantages of partial control technique are not fully recognized.
Among the existing papers in the field of partial control, most of them only consider a
case study and try to design control laws for partial stability of their specific applications.
Applications are Euler dynamical system [3], permanent rotations of a rigid body, relative
equilibrium of a satellite, stationary motions of a gimbaled gyroscope [2] and chaos
synchronization [7]. The references [2], [4], [9]– [11] focus on designing partial control
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and have given some way of designing. However, it is worth noting that the control
schemes posed in these references are uneasy to realize and are usable only for systems
with some special structures. In [12], a new class of nonlinear systems which is called
“partially passive system” was introduced and some theorems for partial stabilization
were developed.

In this paper, some new partial stabilization theorems for nonlinear dynamical sys-
tems are posed. It is shown that partial control makes the possibility of converting the
control problem into a simpler one having fewer control input variables; which is one of
the main contributions of this paper. In all of the existing papers in the field of partial
control, the input vector is wholly designed; but in this paper by designing the reduced
input vector, the advantage of partial control in simplifying the problem by reducing
the control variables is recognized. The system’s state is separated into two parts and
accordingly the nonlinear dynamical system is divided into two subsystems. The subsys-
tems, hereafter, are referred to as the “first” and the “second” subsystems. The reduced
control input vector (the vector that includes components of input vector which appear
in the first subsystem) is designed in such a way to guarantee asymptotic stability of the
nonlinear system with respect to the first part of state vector. The design procedure is
based on selection of a proper control Lyapunov function which is called partial control
Lyapunov function. It’s name is because that in this function only the first part of states
is appeared.

The remainder of this paper is arranged as follows. First, the preliminaries on partial
stability/control are given in Section 2. In Section 3, the theorems for partial control
design are presented and explained in detail. Finally, conclusions are made in Section 4.

2 Preliminaries

In this section, the definitions and notations of partial stability are introduced. Consider
a nonlinear system in the form;

ẋ = f(x), x(t0) = x0, (3)

where x ∈ Rn is the state vector. Let vectors x1 and x2 denote the partitions of the
state vector, respectively. Therefore, x = (xT

1 , x
T
2 )

T where x1 ∈ Rn1 , x2 ∈ Rn2 and
n1 + n2 = n. As a result, the nonlinear system (3) can be divided into two parts (the
first and the second subsystems) as follows

ẋ1(t) = F1(x1(t), x2(t)), x1(t0) = x10,

ẋ2(t) = F2(x1(t), x2(t)), x2(t0) = x20,
(4)

where x1 ∈ D ⊆ Rn1 , D is an open set including the origin, x2 ∈ Rn2 and F1 : D×Rn2 →
Rn1 is such that for every x2 ∈ Rn2 , F1(0, x2) = 0 and F1(., x2) is locally Lipschitz in
x1. Also, F2 : D×Rn2 → Rn2 is such that for every x1 ∈ D, F2(x1, .) is locally Lipschitz
in x2, and Ix0

= [0, τx0
) , 0 < τx0

≤ ∞ is the maximal interval of existence of solution
(x1(t), x2(t)) of (4) ∀t ∈ Ix0

. Under these conditions, the existence and uniqueness of
solution is ensured. Now, stability of the dynamical system (4) with respect to x1 can
be defined as follows [5]:

Definition 2.1 1. The nonlinear system (4) is Lyapunov stable with respect to
x1 if for every ε > 0 and x20 ∈ Rn2 , there exists δ(ε, x20) > 0 such that ‖x10‖ < δ

implies ‖x1(t)‖ < ε for all t ≥ 0.



272 M.H. SHAFIEI AND T. BINAZADEH

2. The nonlinear system (4) is asymptotically stable with respect to x1, if it is Lya-
punov stable with respect to x1 and for every x20 ∈ Rn2 , there exists δ = δ(x20) > 0
such that ‖x10‖ < δ implies limt→∞ x1(t) = 0.

It is important to note that this partial stability definition (which is given in [5]) is
different from past definitions of partial stability [1, 4]. In past definitions, it is required
that F1(0, 0) = 0 and F2(0, 0) = 0. Also, the initial condition of the whole system should
be in a neighborhood of the origin which is not required in Definition 2.1. The main
advantage of considering the condition F1(0, x2) = 0 for every x2, is that it makes the
possibility of investigating the partial stability even if a part of system’s states goes to
infinity. Using this fact, authors of [5] present the unification of partial stability theory
for autonomous systems and stability theory for nonlinear time-varying systems. This
unification allows the stability theory of time-varying systems to be presented as a special
case of autonomous partial stability theory.

In order to analyze partial stability, the following theorem and its corollary are taken
from [5]. Note that in the following theorem, V̇ (x1, x2) = V ′(x1, x2)F (x1, x2) where the

row vector of ∂V (x)/∂x is shown by V ′(x) and F (x1, x2) =
[

FT
1 (x1, x2) FT

2 (x1, x2)
]T

.

Theorem 2.1 Consider the nonlinear dynamical system (4). If there exist a contin-
uously differentiable function V : D×Rn2 → R and class K functions α(.) and γ(.) such
that

V (0, x2) = 0, x2 ∈ Rn2 , (5)

α(‖x1‖) ≤ V (x1, x2), (x1, x2) ∈ D ×Rn2 , (6)

V̇ (x1, x2) ≤ −γ(‖x1‖), (x1, x2) ∈ D ×Rn2 , (7)

then, the nonlinear dynamical system (4) is asymptotically stable with respect to x1.

Proof. See [5]. 2

Corollary 2.1 Consider the nonlinear dynamical system (4). If there exist a positive
definite continuously differentiable function V : D → R, and a class K function γ(.) such
that

V ′(x1)F1(x1, x2) ≤ −γ (‖x1‖) , (x1, x2) ∈ D ×Rn2 , (8)

then, the equilibrium point of the nonlinear dynamical system (4) is asymptotically stable
with respect to x1.

Now, consider the following autonomous nonlinear control system:

ẋ1(t) = F1(x1, x2, u(x1, x2)), x1(t0) = x10,

ẋ2(t) = F2(x1, x2, u(x1, x2)), x2(t0) = x20,
(9)

where u ∈ Rm and F1 : D×Rn2 ×Rm → Rn1 is such that for every x2 ∈ Rn2 , F1(., x2, .)
is locally Lipschitz in x1 and u. Also, F2 : D × Rn2 × Rm → Rn2 is such that for every
x1 ∈ D, F2(x1, ., .) is locally Lipschitz in x2 and u. These assumptions guarantee the
local existence and uniqueness of the solution of the differential equations (9).

Definition 2.2 The nonlinear control system (9) is said to be asymptotically stabiliz-
able with respect to x1, if there exists some admissible feedback control law u = k(x1, x2),
which makes system (9) asymptotically stable with respect to x1.
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3 An Approach for Partial Control Design

This section presents a feasible design algorithm for partial stabilization of nonlinear
systems. Suppose the ẋ1-subsystem in Eq. (9) is affine with respect to the control input
(the ẋ2-equation may have a general dynamical form). Therefore,

ẋ1 = f1(x1, x2) +
∑m

i=1 g1i(x1, x2)ui,

ẋ2(t) = F2(x1, x2, u),
(10)

where ui is the ith component of input vector u. Also, g1i ∈ Rn1 , for i=1,2,. . . ,m. Let
define r = number of (g1i 6= 0)i=1,...,m. Hence, r is the number of components of input
vector which appear in ẋ1-subsystem. Thus 0 ≤ r ≤ m. Now, with respect to the value
of r, two cases may be considered.

3.1 Case 1: r 6= 0

By augmenting the r nonzero vectors g1i in a matrix, the nonlinear system (10) can be
rewritten as follows;

ẋ1 = f1(x1, x2) +G1(x1, x2)u1,
ẋ2 = F2(x1, x2, u),

(11)

where u1 ∈ Rr is the reduced version of input vector u, that contains r control variables
appearing in ẋ1-subsystem, G1(x1, x2) is an n1 × r matrix where its columns are the r
nonzero vectors g1i. In this case, the task is to find an appropriate u1, which guarantees
partial stabilization of nonlinear system (11) with respect to x1.

Theorem 3.1 Consider the nonlinear dynamical system (11). Suppose V (x1) : D →
R is a positive definite continuously differentiable function (which is called partial control
Lyapunov function) with the property that no solution x1 of the unforced system (11) can
stay identically in the set {V ′(x1) = 0} other than the trivial solution x1(t) ≡ 0. Also,
suppose γ(.) is class K function. Then, the system may be asymptotically stabilizable
with respect to x1 through the following reduced input vector

u1 = k1(x1, x2) =

{

bT{−V ′(x1)f1−γ(‖x1‖)}
bbT

, where bbT 6= 0,
0, where bbT = 0,

(12)

where b = V ′(x1)G1(x1, x2). It is stressed that only in the points of state space x1 − x2

where bbT = 0, the following condition should be satisfied:

V ′(x1)f1(x1, x2) = −γ (‖x1‖) ∀(x1, x2), where bbT = 0. (13)

Proof. By use of the control law (12), the time derivative of V (x1) in the line of
system’s trajectory is

V̇ (x1) = V ′(x1)ẋ1

= V ′(x1)f1 + V ′(x1)G1

[

(V ′(x1)G1)
T{−V ′(x1)f1−γ(‖x1‖)}

(V ′(x1)G1)(V ′(x1)G1)
T

]

(14)

=V ′(x1)f1 + {−V ′(x1)f1 − γ (‖x1‖)}
= −γ (‖x1‖).
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Therefore, according to Corollary 2.1, the nonlinear system (11) is asymptotically
stable with respect to x1. For the case where bbT = 0, if condition (13) is satisfied, then
by taking u1 = 0, partial stability will be achieved. 2

Note: When V ′(x1) = 0, then bbT = 0. In the points where bbT = 0, condition
(13) should be satisfied, which results in γ (‖x1‖) = 0. Since, γ (.) is a class K function,
thus γ (‖x1‖) = 0 ⇒ x1 = 0. Therefore, as mentioned in Theorem 3.1, V (x1) should be
chosen in a way that V ′(x1) = 0 ⇒ x1 ≡ 0.

3.2 Case 2: r = 0

This situation means that there is no component of input vector in ẋ1-subsystem. Sup-
pose that ẋ2-subsystem is affine with respect to input. Therefore,

ẋ1 = f1(x1, x2),
ẋ2 = f2(x1, x2) +G2(x1, x2)u.

(15)

This system may be viewed as a cascade connection of two subsystems where x2 is
to be viewed as an input for first subsystem. The form (15) is usually referred to as
the regular form. Assume that x2 and u both belong to Rm (in other words, n2 = m),
and G2(x1, x2) is an m by m nonsingular matrix. This assumption is not so restrictive
and many design methods, which are based on regular forms, e.g., backstepping or slid-
ing mode techniques use such an assumption [16]. In this case, the task is to find an
appropriate u; which guarantees partial stabilization of the closed-loop system.

Theorem 3.2 Consider the nonlinear dynamical system (15). Suppose V (x1) : D →
R is a partial control Lyapunov function, γ(.) is a class K function and ϕ(x1) is a smooth
function. The design of the function ϕ(x1) is such that

V ′(x1)(f1(x1, ϕ(x1))) ≤ −γ(‖x1‖). (16)

Therefore, the nonlinear system (15) may be asymptotically stabilized with respect to x1

by the following input vector

u =G−1
2 [ϕ′(x1)f1 − f2]. (17)

Proof. Substitution of (17) in ẋ2-subsystem (15) yields,

ẋ2 = f2 +G2u
= f2 +G2G

−1
2 [ϕ′(x1)f1 − f2]

= ϕ′(x1)f1

(18)

which results in x2 = ϕ(x1). Since the condition (16) means that the first subsystem (ẋ1-
subsystem) may be asymptotically stabilized by a virtual input in the form x2 = ϕ(x1)
(according to Corollary 2.1). Therefore, the control law (17) partially stabilized the
nonlinear system (15) with respect to x1. 2

3.3 Example. Partial stabilization of reaction wheel pendulum

The reaction wheel pendulum was described in Introduction. We define the states z1 =
θ1, z2 = θ̇1, z3 = θ2 and z4 = θ̇2, The system’s equations (1) can be written as follows

ż1 = z2,

ż2 = − d22

detDφ(z1)−
d12

detDu,

ż3 = z4,

ż4 =
d21

detDφ(z1) +
d11

detDu,

(19)
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where detD = d11d22−d12d21 > 0. The problem is to stabilize the downward position of
the pendulum, that is z1 = 0, z2 = 0, while stability of the rest of states is not of interest.
Therefore, the state vector x = [z1, z2, z3, z4]

T
can be divided into x1 = [z1, z2]

T
and x2 =

[z3, z4]
T
. By separating the states into x1 and x2, one has: r = 1 and u1 = u. The task is

to design u according to Theorem 3.1 to achieve asymptotic stability with respect to x1.

Consider that for ẋ1-subsystem f1 =
[

z2 − d22

detDφ(z1)
]T

and G1 =
[

0 − d12

detD

]T
.

By taking the partial control Lyapunov function V (x1) = 0.5
(

z21 + z1z2 + z22
)

then b =

V ′(x1)G1 = − d12

detD (z2 + 0.5z1). Therefore, the points bbT = 0 are equal to the points
z2 = −0.5z1. First of all, the condition (13) should be checked. The left side of condition
(13) is:

V ′(x1)f1|bbT=0 = V ′(x1)f1|z2=−0.5z1
= −

3

8
z21 . (20)

By choosing γ (‖x1‖) = αz21+βz22 ; α,β> 0, the positive constants α and β may be chosen
such that V ′(x1)f1|z2=−0.5z1

= − γ (‖x1‖)|z2=−0.5z1
= − 3

8z
2
1 . This condition is satisfied

for example for α = 0.25 and β = 0.5. Now, according to Theorem 3.1, u is:

u =

{

−detD
d12

−(z1+0.5z2)z2+
d22

det D
(z2+0.5z1)φ(z1)−0.25z2

1
−0.5z2

2

z2+0.5z1
for z2 6= −0.5z1,

0 for z2 = −0.5z1.
(21)

 

Figure 2: Time response of z1 (the pendulum angle).
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Figure 3: Time response of z2 (rate of the pendulum angle).

Figure 4: Time response of u (the motor torque input).

To check theoretical results, the closed loop system with controller (21) was simulated.
The parameters of the system were chosen as d11 = 0.004571, d22 = d12 = d21 =
2.495 × 10−5, m̄ = 0.35841 that are physical parameters of the system located at the
Automatic Control Dept., Lund Institute of Technology [15]. The initial conditions are

z1 (0) = 1, z2 (0) = 0.1, z3 (0) = z4 (0) = 0.

Figures 2 and 3 show the time responses of z1 and z2 in the closed loop system, respec-
tively. As seen, the closed loop system shows quite fast convergence of z1 and z2 to zero.
Also, the time response of controller (21) is shown in Figure 4.

4 Conclusion

In this paper, the problem of partial stabilization which has various applications in many
of dynamic systems was considered and a general approach for stabilization of a nonlinear
system with respect to a part of system’s states was proposed. It was shown that in
partial stabilization, the control input vector can be simplified by reducing its control
variables. The reduced input vector was designed based on partial control Lyapunov
function in a way that the asymptotic stabilization of a part of system’s states was
achieved. The proposed method was used in designing the partial controller for reaction
wheel pendulum.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 12 (3) (2012) 269–277 277

References

[1] Rumyantsev, V.V. On asymptotic stability and instability of motion with respect to a part
of the variables. Journal of Applied Mathematics and Mechanics 35 (1) (1971) 19–30.

[2] Vorotnikov, V.I. Partial stability and control: the state-of-the-art and development
prospects. Automatic Remote Control 66 (4) (2005) 511–61.

[3] Vorotnikov, V.I. Partial stability, stabilization and control: some recent results. In: 15th
IFAC Triennial World Congress, Barcelona, Spain, 2002.

[4] Vorotnikov, V.I. Partial stability and control. Boston, Birkhauser, 1998.

[5] Chellaboina, V.S. and Haddad, W.M. A unification between partial stability and stability
theory for time-varing systems. IEEE Control System Magezine 22 (6) (2002) 66–75.

[6] Chellaboina, V.S. and Haddad, W.M. Teaching time-varying stability theory using au-
tonomous partial stability theory. In: Proc. IEEE Conference of Decision Control. Orlando,
2001, 3230–3235.

[7] Ge, Z.M. and Chen, Y.S. Synchronization of mutual coupled chaotic systems via partial
stability theory. Chaos, Solitons & Fractals 34 (3) (2007) 787–794.

[8] Marcoa E.P., Navarro J.L. and Bruno-Barcena J.M. A Closed placeLoop Exponential Feed-
ing Law: Invariance And Global Stability Analysis. Journal of Process Control 16 (2006)
395–402.

[9] Hu, W., Wang, J. and Li, X. An approach of partial control design for system control and
synchronization. Chaos, Solitons & Fractals 39 (3) (2009) 1410–1417.

[10] Zuyev A.L. Application of Control Lyapunov Functions Technique for Partial Stabilization.
IEEE, International Conference on Control Applications (2001) 509–513.

[11] Kolesnichenko O. and Shiriaev A. S., Extension of Pozharitsky Theorem for partial Stabi-
lization of a system with Several First Integrals, Proceeding of the 41st IEEE Conference
on Decision and Control (2002) 3512–3517.

[12] Binazadeh, T. and Yazdanpanah, M.J. Application of passivity based control for partial
stabilization. Nonlinear Dynamics and Systems Theory 11 (4) (2011) 373–382.

[13] Shafiei, M.H. and Binazadeh, T. Partial Stabilization-based Guidance, ISA transaction
(2011), DOI:10.1016/j.isatra.2011.08.007.

[14] Binazadeh, T. and Yazdanpanah, M.J. Robust partial control design for non-linear control
systems: a guidance application. Proc. IMechE Part I: J. Systems and Control Engineering
(2011), DOI: 10.1177/0959651811413013.

[15] Spong, M.W., Corke, P. and Lozano, R. Nonlinear Control of The Reaction Wheel Pendu-
lum. Automatica 37 (2001) 1845–1851,

[16] Khalil, H.K. Nonlinear Systems. 3rd Edition, Prentice-Hal, 2002.

[17] Doan, T.S., Kalauch, A. and Siegmund, S. Exponential Stability of Linear Time-Invariant
Systems on Time Scales. Nonlinear Dynamics and Systems Theory 9 (1) (2009) 37–50.

[18] Ellouze, I., Ben Abdallah, A. and Hammami, M. A. On the Absolute Stabilization of
Dynamical-Delay Systems. Nonlinear Dynamics and Systems Theory 10 (3) (2010) 225–
234.

[19] Leonov, G.A. and Shumafov, M.M. Stabilization of Controllable Linear Systems. Nonlinear
Dynamics and Systems Theory 9 (1) (2009) 37–50.

[20] D’Anna, A. and Fiore, G. Stability Properties for Some Non-autonomous Dissipative Phe-
nomena Proved by Families of Liapunov Functionals. Nonlinear Dynamics and Systems
Theory 9(3) (2009) 249–262.


	Introduction
	Preliminaries
	 An Approach for Partial Control Design
	 Case 1: r=0
	 Case 2: r=0
	 Example. Partial stabilization of reaction wheel pendulum

	Conclusion

