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Abstract: In this work the controllability problem for a class of semilinear control
system with nonlocal initial conditions is considered. Under some simple conditions
the relation between the reachable set of semilinear system and that of its corre-
sponding linear system is established. In particular, approximate controllability of
semilinear abstract control system is proved. Examples are presented to explain the
application of the proposed result.
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1 Introduction

Let (X, ‖ · ‖) be a Banach space and Ct = C([−τ, t]; X), τ > 0, 0 ≤ t ≤ T < ∞, be
a Banach space of all continuous functions from [−τ, t] into X endowed with the norm
||φ||Ct

= sup
−τ≤η≤t

||φ(η)||. Now, consider the following nonlocal semilinear delay control

system

x′(t) = Ax(t) +Bu(t) + f(t, x(t), xb(t)) on (0, T ],

h(x) = φ on [−τ, 0], (1)

where the state variable x(·) takes values in Banach space X and the control function
u(·) belongs to Y = L2([0, T ];U), the Banach space of admissible control functions with
a Banach space U . Standing assumptions on system operators are as follows:
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(H1) A : X ⊃ D(A) → X is a linear operator such that it generates a C0-semigroup onX ,
denoted by S(t) : t ≥ 0. Let M ≥ 1 and ω ≥ 0 be such that ||S(t)|| ≤ Meωt; t ≥ 0.

(H2) b : [0, T ] → [0, T ] is a map such that it satisfies the property b(t) ≤ t, ∀t ∈ [0, T ].
For a continuous function x ∈ CT and t ∈ [0, T ], xb(t) ∈ C0 and is defined by
xb(t)(θ) = x(b(t) + θ); θ ∈ [−τ, 0].

(H3) h : C0 → C0, and there exists a function χ ∈ C0 such that h(χ) = φ.

(H4) Nonlinear map f : [0, T ]×X × C0 → X is continuous in first variable and satisfies
the Lipschitz-like condition in second and third argument, that is, there exists some
constant l > 0 such that ‖f(t, x(t), yb(t))− f(t, v(t), wb(t))‖ ≤ l(‖x− v‖CT

+ ‖y −
w‖CT

) for all x, y, v, w ∈ CT and t ∈ [0, T ].

(H5) B : U → X is a bounded linear operator.

Semilinear differential equation (1) can be seen as an abstract formulation for many
control systems described by partial or functional differential equations. Here, nonlocal
condition is generally more practical for the physical measurements as compared to the
classical condition. The importance of nonlocal conditions has been discussed in the pio-
neering work by Byszewski and Lakshmikantham [6,7]. Nonlocal conditions were used by
Deng in [10] to describe, for instance, the diffusion phenomenon of a small amount of gas
in a transparent tube. It is a well known fact that the problem of controllability of semi-
linear systems in infinite-dimensional spaces can be converted into solvability problem of
a functional operator equation in appropriate Banach spaces, and fixed-point theory has
been widely used in the literature to establish this solvability; [2,9,14,15]. These concepts
has been extended to infinite-dimensional semilinear delay control systems with local or
nonlocal initial conditions, among others, we refer to the papers [5, 17, 19, 21, 23, 24, 26]
for local conditions and papers [3, 4, 13, 16] for nonlocal conditions.

The purpose of this paper is to compare the trajectory reachable set of nonlinear
system (1) to the trajectory reachable set of its corresponding linear system [f = 0
in (1)] and this is motivated by the paper of Naito and Park [19] and Ryu, Park, and
Kwun [21]. In particular, approximate controllability of system (1) is shown provided the
corresponding linear system is controllable. In the proof of the main controllability result
in the next section, we do not require any inequality condition, compactness of S(t), and
uniform-boundedness of f . In this respect, this paper relaxes some restrictions made by
earlier authors if an another simple condition is satisfied by the system operators. In the
last section, theory is illustrated with some examples.

2 The Main Results

Let us first consider the following functional delay differential system:

{ x′(t) = Ax(t) + f(t, x(t), xb(t)), t ∈ (0, T ],
h(x) = φ, on [−τ, 0].

(2)

Definition 2.1 A solution function x ∈ CT of the integral equation

x(t) =
{ χ(t), t ∈ [−τ, 0],

S(t)χ(0) +
∫ t

0 S(t− s)f(s, x(s), xb(s))ds, t ∈ [0, T ],
(3)

is called a mild solution of problem (2).
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The existence and uniqueness of the mild solution of (2) is discussed in the following
theorem, and the proof is motivated by the work of Bahuguna and his coworkers, see
[1, 11].

Theorem 2.1 If assumptions (H1)-(H4) are satisfied, then there exists a mild solu-
tion of (2) on [0, T ] for some T > 0. Moreover, the mild solution is unique if and only
if χ is unique.

Proof. We choose a T > 0 such that 2lTMeωT < 1. Define a map F from CT into
itself by

(Fx)(t) =
{ χ(t), t ∈ [−τ, 0],

S(t)χ(0) +
∫ t

0
S(t− s)f(s, x(s), xb(s))ds, t ∈ [0, T ].

(4)

It is clear that F is well defined and assumption (H3) ensures a fixed point of F on
t ∈ [−τ, 0]. Now we show that F is a contraction for the case when t ∈ [0, T ]. For this
purpose, consider any x, y ∈ CT , then we have

||(Fx)(t) − (Fy)(t)||X ≤ ||
∫ t

0

S(t− s)(f(s, x(s), xb(s))− f(s, y(s), yb(s)))ds||X

≤ 2lTMeωT ||x− y||CT
. (5)

Since 2lTMeωT < 1, F is a contraction on CT and hence by Banach Contraction Principle
F has a unique fixed point. Obviously, the uniqueness of χ in (H3) reveals the uniqueness
of the mild solution. 2

From the above result, a mild solution of the control system (1) can be written as
follows

x(t) =
{ χ(t), t ∈ [−τ, 0],

S(t)χ(0) +
∫ t

0
S(t− s)[Bu(s) + f(s, x(s), xb(s))]ds, t ∈ [0, T ].

(6)

Note that, mild solution (6) depends on control functions u(·). The solution of (6)
under a control u(·), denoted by x(·;u), is called the trajectory (state) function of (1)
under u(·). The set of all possible trajectories, denoted by

Kα(f) := {x(·;u) ∈ C([α, T ]; X) : u ∈ L2([0, T ];U), 0 < α ≤ T } (7)

is called the trajectory reachable set of system (1). In particular, the set of all possible
terminal states, denoted by

KT (f) := {x(T ;u) ∈ X : u ∈ L2([0, T ];U)} (8)

is called the reachable set of system (1) at terminal time T .

Definition 2.2 System (1) is said to be approximate controllable on [0, T ] if
KT (f) = X , where KT (f) stands for the closure of KT (f) in X .

Now, we define two functions F : CT → L2([0, T ];X) and B1 : Y → L2([0, T ];X ] as
(Fx)(t) = f(t, x(t), xb(t)), (B1u)(t) = Bu(t).

Theorem 2.2 Under assumptions (H1)-(H5) and R(F ) ⊆ R(B1), we have Kα(f) ⊇
Kα(0).
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Proof. Let x(·) ∈ Kα(0), there exists a control u ∈ Y such that

x(t) =
{ χ(t), t ∈ [−τ, 0],

S(t)χ(0) +
∫ t

0
S(t− s)Bu(s)ds, t ∈ [0, T ].

(9)

Due to range condition, for a given ǫ > 0 ∃ w ∈ Y such that

‖Fx−B1w‖L2([0,T ];X) ≤ ǫ. (10)

Now, let y(·) be mild solution of (1) corresponding to control u− w. Then

x(t) − y(t) =

∫ t

0

S(t− s)Bw(s)ds−
∫ t

0

S(t− s)f(s, y(s), yb(t))ds

=

∫ t

0

S(t− s)(B1w − Fx)(s)ds+

∫ t

0

S(t− s)(Fx− Fy)(s)ds. (11)

Using (H4) and (10) we have

‖x(t)− y(t)‖ ≤ MeωT

∫ t

0

‖(B1w − Fx)(s)‖ds+MeωT

∫ t

0

‖(Fx− Fy)(s)‖ds

≤ MeωT
√
Tǫ+ 2MleωT

∫ t

0

||x− y||CT
ds.

(12)

This implies

||x− y||CT
≤ MeωT

√
Tǫ+ 2MleωT

∫ t

0

||x− y||CT
ds. (13)

Now, using Gronwall’s inequality it can be shown that

||x− y||CT
≤ MeωT

√
Tǫ exp(2lTMeωT ). (14)

From the above inequality it is clear that ||x − y||CT
can be made arbitrary small by

choosing suitable w. Hence the theorem is proved. 2

Corollary 2.1 Under assumptions of the above theorem, system (1) is approximate
controllable if its corresponding linear system is approximate or exact controllable.

Proof. The proof is a particular case of Theorem 2.2 at α = T . 2

Remark 2.1 Fixed-point theory arguments make it necessary to assume uniform
boundedness of nonlinear term f with certain inequality condition involving various sys-
tem parameters, and/or compactness of semigroup T (t). But, these conditions (specially
inequality conditions) are not easy to verify in many situations. In this paper these
conditions are replaced with a range condition R(F ) ⊂ R(B1). Note that this range
condition is satisfied trivially for the system (1) if B is the identity operator. Obviously,
Theorem 2.2 gives the controllability of system (1) when b(t) = t in the case of constant
delay, and this case is explained in Example 3.1.
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3 Application

Example 3.1 Consider the following mathematical model

∂

∂t
y(t, x) =

∂2

∂x2
y(t, x) + u(t, x) + (

∫ 1

0

y(t, x)dx)y(t, x)

+ (

∫ 1

0

y(t− τ, x)dx)y(t − τ, x), 0 ≤ x ≤ 1, t ∈ [0, T ], (15)

y(t, 0) = y(t, 1) = 0, t ∈ [0, T ],

1

τ

∫ 0

−τ

e2sy(s, x)ds = y0(x), 0 ≤ x ≤ 1,

where y(t, .), u(t, .), y0 ∈ L2(0, 1). If we take

(1) X = L2(0, 1) as the state space and y(t, ·) = {y(t, x) : 0 ≤ x ≤ 1} as the state.

(2) input trajectory u(t, .) as the control and U = L2(0, 1) as the control space. Note
that, here X = U .

(3) A : D(A) ⊂ X → X defined by A(z) = d2z
dx2 with domain D(A) =

H2(0, 1)
⋂

H1
0 (0, 1). Then A is an infinitesimal generator of a C0-semigroup of

bounded linear operators; see [8].

(4) B = I.

(5) b(t) = t, and yb(t)(θ) ≡ y(t− τ, ·) (so this is a constant time-delay case).

(6) f : [0, T ]×X × C0 → X , T > 0 defined by

f(t, y(t, ·), yb(t)) = (

∫ 1

0

y(t, x)dx)y(t, ·) + (

∫ 1

0

y(t− τ, x)dx)y(t − τ, ·),

where 0 ≤ x ≤ 1, t ∈ [0, T ]. It is not hard to see that f satisfies (H4).

(7) h(z)(θ) = g(z) for z ∈ C0, θ ∈ [−τ, 0]; φ(θ) = y0. Here, g : C0 → X is such that

g(z)(x) = 1
τ

∫ 0

−τ
e2sz(s, x)ds. For this definition of h, we can find a function χ ∈ C0,

given by χ(θ) = 1
ky0 on [−τ, 0] with k =

∫ τ

0
1
τ e

−2sds 6= 0, such that

h(χ)(θ) =
1

τ

∫ 0

−τ

e2s(
1

k
y0)ds = y0 = φ(θ), that is, h(χ) = φ.

Then (15) resembles control system (1) and has a mild solution (6) on [−τ, T ]. Now take
Y := L2([0, T ];L2(0, 1)), B1 = I : Y → Y , F : CT → Y as (Fz)(t) = f(t, z(t), zb(t)).

Then it is clear that R(F ) ⊂ R(B1). Since the corresponding linear system is approx-
imate controllable; [8], system (15) is approximate controllable due to Theorem 2.2.
Mathematical model (15) may be seen as the population dynamics, see [12], where

y(t, .) represents the population density at time t and the term ∂2

∂x2 y(t, x) describes the
internal migration. Moreover, the continuous functions B,D : [0, T ] → R+ given by

B(t) =
∫ 1

0 y(t− τ, x)dx and D(t) =
∫ 1

0 y(t, x)dx, represent average birth and death rates,
respectively, τ is the delay due to pregnancy, and source term u(t, x) represents a control.
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Example 3.2 Consider the control system governed by the following semilinear heat
equation

∂y(t, x)

∂t
=

∂2y(t, x)

∂x2
+Bu(t, x)

+ f(t, y, yb(t)); 0 < t < T, 0 < x < π, −τ ≤ θ ≤ 0,

y(t, 0) = y(t, π) = 0, t ∈ [0, T ], (16)

with the same initial condition as in the above example, where y(t, .), y0 ∈ L2(0, π).
Then (16) can be converted into (1), if we take:

(1) X = L2(0, π) as the state space and y(t, .) = {y(t, x) : 0 ≤ x ≤ π} as the state.

(2) input trajectory u(t, .) as the control.

(3) A : D(A) ⊂ X → X defined by A(z) = d2z
dx2 with domain D(A) =

H2(0, π)
⋂

H1
0 (0, π). Then, D(A) = X and A is an infinitesimal generator of a

C0-semigroup of bounded linear operators; see [8]. Further, if we take {φn(x) =
(2/π)1/2 sin(nx); 0 6 x 6 π;n ∈ N}, then {φn} is an orthonormal basis of X and
φn is an eigenfunction corresponding to the eigenvalue λn = −n2 of operator A.
Then the C0-semigroup generated by A has eλnt as the eigenvalues and φn as their
corresponding eigenfunctions.

(4) U = {u : u =
∑∞

n=2 unφn :
∑∞

n=2 u
2
n < ∞}, with norm |u|U = (

∑∞
n=2 u

2
n)

1/2 as the
control space. B is a continuous linear map from U to X defined as

Bu = 2u2φ1 +

∞
∑

n=2

unφn for u =

∞
∑

n=2

unφn ∈ U.

(5) b(t) = k| sin t|, k ∈ (0, 1) or b(t) = t2

1+t2 .

(6) h and χ are the same as in Example 3.1.

It shows that (16) has a mild solution (6) on [−τ, T ] provided f is Lipschitz con-
tinuous. Although, the same example has been discussed in [9, 18, 27] (with or with-
out delay and under local conditions), but approximate controllability was proved un-
der restrictions such as the uniform boundedness on f or some inequality constraints.
This paper shows that the approximate controllability also follows for non-uniform
bounded function f without having to satisfy any inequality constraint and without
using the compactness of C0-semigroup. For example, consider the function f given by
f(t, z, zb(t)) = α(‖z‖CT

+ ‖zb(t)‖C0
)(φ3(x) + φ4(x)), where α is a positive constant. Here

f is Lipschitz and R(F ) ⊆ R(B1). Moreover, this example shows that time-varying affer-
effect and generalized nonlocal conditions can also be handled by the theorem proved in

the previous section. In the above example b(t) = k| sin t|, k ∈ (0, 1) or b(t) = t2

1+t2 is a
theoretical construction but many physical and biological processes include time-varying
affereffect phenomena in their inner dynamics, see [20].

Example 3.3 Consider the system of infinite ordinary differential equations:

dx(t)

dt
= Ax(t) + u(t) + f(t, x(t), xb(t)),

l
∑

i=1

cix(θi) = x0, (17)

where x(t) = (x1(t), x2(t), . . .) ∈ l2. Then (17) resembles control system (1), if we take
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(1) X = l2 as the state space and x(t) as the state.

(2) input u(t) = (u1(t), u2(t), . . .) as the control and U = l2 as the control space. Note
that, here X = U .

(3) A is a self-adjoint operator onX defined by Aei = λiei where {ei} is an orthonormal
basis of X and {λi}is a decreasing sequence of positive numbers such that lim

i→∞
λi =

λ0 > 0. Then A is an infinitesimal generator of a C0-semigroup of bounded linear

operators defined by T (t)x =

(

eλ1tx1, e
λ2tx2, . . .

)

.

(4) B = I and b is the same as in Example 3.2.

(5) f is defined by f(t, x(t), xb(t)) = (f1(t, x(t), xb(t)), f2(t, x(t), xb(t)), . . .), 0 ≤ t ≤ T .

(6) h(z)(θ) = g(z) for z ∈ C0, θ ∈ [−τ, 0]; φ(θ) = x0. Here, g : C0 → X is such that

g(z) =
∑l

i=1 ciz(θi);−τ ≤ θ1 < θ2 < · · · < θl ≤ 0. For this definition of h, we can

find a function χ ∈ C0, given by χ(θ) = 1
kx0 on [−τ, 0] with k =

∑l
i=1 ci.

The approximate controllability of the linear system corresponding to (17) has been
proved by Triggiani [25]. In [22], the approximate controllability of (17) (without delay
and with local Cauchy condition) has been shown via the solvability of some operator
equations under the following conditions:

(i) The linear system is approximate controllable,
(ii) A generates a compact semigroup T (t),
(iii) The nonlinear operator f(t, x) satisfies the Lipschitz condition,
(iv) The operator f satisfies the growth condition ‖f(x(t))‖X ≤ a‖x(t)‖X + b,

(v) System constants satisfy the constraint eλ1T
√
T

2 ·
√

2MbT (e2MbT − 1) <
e2Tλ0−1

2eλ1T
√
Tλ0

, where ‖T (t)‖ ≤ eλ1τ = M for 0 ≤ t ≤ T .

But due to Theorem 2.2, it follows that the system (17) is approximate controllable
only under the above conditions (i) and (iii) for nonlinear operators those satisfy the
range condition, e.g. f is defined as f1(t, x(t), xb(t)) = a‖x‖ + b‖xb(t)‖ + c; a, b, and
c are positive constants and fi(t, x(t), xb(t)) = 0 for all i = 2, 3, . . .. This shows that
the inequalities such as (v) above, assumed by earlier author are not required to be
considered.
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