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Abstract: In this paper we have built special exact solutions to rotating stratified
Boussinesq equations in the form of nonlinear plane waves. We also conclude that
these solutions grow exponentially in unstable stratifications. Whereas, in the special
case of stable stratification these waves are oscillatory in nature. Consequently, we
determined internal gravity waves and some sinusoidal wave forms.
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1 Introduction

The stratified Boussinesq equations form a system of PDEs modelling the movements
of planetary atmospheres. It may be noted that the Boussinesq approximation in the
literature is also referred to as the Oberbeck-Boussinesq approximation for which, the
reader is referred to an interesting paper of Rajagopal et al [1] providing a rigorous
mathematical justification of use of these equations as perturbations of the Navier-Stokes
equations. Majda & Shefter [2] have chosen certain special solutions of this system of
PDEs to demonstrate onset of instability when the Richardson number is less than 1/4.
In their study of instability in stratified fluids at large Richardson number, Majda &
Shefter [2] have obtained the exact solutions to stratified Boussinesq equations neglecting
the effects of rotations and viscosity. Further, in the absence of strain field Srinivasan et
al [3] have shown that the reduced system of ODEs is completely integrable. Desale and
Dasre [4] have obtained the numerical solutions of this reduced system of ODEs. For the
similar kind of work the reader may refer to Maas [5,6]. In his monograph Majda [7] has
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obtained the special solution of stratified Boussinesq equations excluding the effects of
viscosity and finite rotation. Whereas, Desale & Sharma [8] included the effect of rotation.
In his earlier study Desale [9] has proved the complete integrability of the system of six
coupled ODEs, which arises in the reduction of rotating stratified Boussinesq equations
in context to the theory of basin scale dynamics. Since the rotating stratified Boussinesq
equations admit the periodic solution near the critical point. On the other hand Desale
& Patil [10] deployed the Painlevé test to determine the complete integrability of the
same system. Further, the stability criteria can be resolved via Floquet theory. In their
paper Slane & Tragesser [11] explained the use of Floquet theory to discuss the stability
of homogeneous parametrically excited system.

In this paper we deploy the procedure of Majda & Shefter [2] to build the exact
solutions of rotating stratified Boussinesq equations in the form of nonlinear plane waves.
In the steady state these solutions increase exponentially. We conclude that the steady
state is unstable. Whereas, in the special case of stable stratification these waves are
oscillatory in nature. In this case, we also find internal gravity waves as some sinusoidal
wave forms.

2 Nondimensional Rotating Stratified Boussinesq Equations

The motion of an incompressible flow of fluid in the atmosphere and in the ocean is
considered where, the flow velocities are too slow to account for compressible effects.
The flow of fluid is governed by the following rotating stratified Boussinesq equations
(we ignore the effects of viscosity and heat dissipation) that involve the interaction of
gravity with density stratification about the reference state.

D~v

Dt
+ f(ê3 × ~v) = −∇

p̃

ρb
−

gρ

ρb
ê3,

div~v = 0,
Dρ̃

Dt
= 0,

(1)

where D/Dt = ∂/∂t+~v·∇, the unit vector in vertical direction is ê3 = (0, 0, 1), the space
variable ~x = (x1, x2, x3) and fluid velocity is given by ~v = (v1, v2, v3). The full density
ρ̃ consists of perturbations ρ about the density ρ in hydrostatic balance, which itself
creates only small deviations from the baseline constant ρb, ρ̃(~x, t) = ρb+ρ(x3)+ρ(~x, t).
We make the usual assumption valid for local consideration that dρ/dx3 is constant.

Now we consider the following nondimensional form of (1). For more details one may
refer to Desale & Sharma [8].

D~v

Dt
+

1

R0
~u = −P∇p− Γρê3,

div ~v = 0,
Dρ̃

Dt
=

Dρ

Dt
+

(

dρ

dx3

)

v3 = 0.

(2)

Here, we have ~u = (u1, u2, u3) = ê3 × ~v, Γ is the nondimensional number, R0 is the
Rossby number and P is the Euler number. Nondimensional density function is

ρ̃(~x, t) = ρb + ρ(x3) + ρ(~x, t). (3)
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The more elaborative discussion about the nondimensional analysis of rotating stratified
Boussinesq equations is also given by Majda in his monograph [7]. In the following
section we have obtained exact solutions of (2) in the form of nonlinear plane waves.

3 Nonlinear Plane Waves

In this section we have determined the exact solutions of rotating stratified Boussinesq
equations (2) in the form of nonlinear plane waves. These solutions are suggested by the
following Theorem 3.1. The following trivial lemma is useful step towards the proof of
Theorem 3.1.

Lemma 3.1 For ~v of the form ~v = ~A(t)F (~α(t) · ~x), div ~v = 0 implies

(i) ~A(t) · ~α(t) = 0 and
(ii) ~v · ∇W (~α(t) · ~x) = 0,

for arbitrary W , where ~A(t) = (A1(t), A2(t), A3(t)) and ~α(t) = (α1(t), α2(t), α3(t)).

For the proof of this lemma one may refer to Majda [7], pp. 20.

Theorem 3.1 The rotating stratified Boussinesq equations (2) have exact solutions
in the form of nonlinear plane waves

~v = ~A(t)F (~α(t) · ~x), ρ = B(t)F (~α(t) · ~x), p = P (t)G(~α(t) · ~x), (4)

where F and G are arbitrary functions of ~α(t) · ~v with the condition G′(s) = F (s)

provided that ~α(t), ~A(t), B(t) and P (t) satisfy the following ODEs:

d~α

dt
= 0,

~A(t) · ~α(t) = 0,

P (t) = −
1

R0P

(

~α(t) · (ê3 × ~A(t))

|~α(t)|2

)

−
Γα3(t)

P |~α(t)|2
B(t),

d~A(t)

dt
=

−1

R0
(ê3 × ~A(t)) +

[

~α(t) · (ê3 × ~A(t))

R0|~α(t)|2
+

Γα3(t)

|~α(t)|2
B(t)

]

~α(t)− ΓB(t)ê3,

dB(t)

dt
+

dρ

dx3
A3(t) = 0.

(5)

Proof. Now we begin with the first equation of (2)

∂~v

∂t
+ ~v · ∇~v = −

1

R0
(ê3 × ~v)− P∇p− Γρê3.

We have ~v = ~A(t)F (~α(t) · ~x), ρ = B(t)F (~α(t) · ~x), p = P (t)G(~α(t) · ~x) and div ~v = 0.
Hence by substituting ~v, ρ and p in above equation with G′(s) = F (s) and using Lemma
3.1 we get
(

d~A

dt
+

1

R0
(ê3 × ~A) + PP (t)~α(t) + ΓB(t)ê3

)

F (~α · ~x) = −~A

(

d~α

dt
· ~x

)

F ′(~α · ~x). (6)
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Since F and F ′ are arbitrary functions, they must be treated as independent terms

implying d~α(t)
dt = 0, which is the first equation of (5). Consequently, (6) gives us

d~A(t)

dt
= −

1

R0
(ê3 × ~A(t))− PP (t)~α(t)− ΓB(t)ê3. (7)

Lemma 3.1 proves the second equation of (5). Taking time derivative of ~A(t) · ~α(t) = 0

with the validity of the first equation of (5), we have d~A(t)
dt · ~α(t) = 0. Then we take the

dot product of the equation above for d~A(t)
dt with ~α(t) and we determine equation for

P (t) as in the required form in (5). Plugging back P (t) into (7) and recasting it we get
the fourth equation of (5). Finally plugging plane waves into the third equation of (2)
we get the differential equation for B(t) as in the form of the last equation of (5). Hence
we complete the proof of the theorem. 2

The first equation in (5) shows that vector ~α(t) is a constant vector and we have
dρ
dx3

is constant. We can write ~α = (α1, α2, α3) and the last two equations of (5) can be
written in component form as:

dA1(t)

dt
=

1

R0
A2(t) +

[

A1(t)α2 −A2(t)α1

R0|~α|2
+

Γα3B(t)

|~α|2

]

α1,

dA2(t)

dt
= −

1

R0
A1(t) +

[

A1(t)α2 −A2(t)α2

R0|~α|2
+

Γα3B(t)

|~α|2

]

α2,

dA3(t)

dt
=

[

A1(t)α2 −A2(t)α2

R0|~α|2
+

Γα3B(t)

|~α|2

]

α3 − ΓB(t),

dB(t)

dt
+

(

dρ

dx3

)

A3(t) = 0.

(8)

We see that above system (8) is a linear system with constant coefficients, hence there
exists a unique solution passing through the given initial values that satisfy the condition
~A(t) · ~α = 0. Plugging these solutions into plane waves given by (4), we determine the
physical terms velocity, density and pressure.

In the following section we classified the fluids in the special case of plane waves in
which the vectors ê3, ~A(t) and ~α are coplanar. Consequently we determined the internal
gravity waves and sinusoidal waves.

4 Classification in the Special Case of Plane Waves

In this section we consider the special case of plane waves in which ê3, ~A(t) and ~α are

coplanar. It means we consider ê3 · (~A(t)× ~α) = 0. So that equations (8) reduce to

dA1(t)

dt
=

1

R0
A2(t) +

Γα3α1

|~α|2
B(t),

dA2(t)

dt
= −

1

R0
A1(t) +

Γα3α2

|~α|2
B(t),

dA3(t)

dt
=

(

α2
3

|~α|2
− 1

)

ΓB(t),

dB(t)

dt
=

(

−
dρ

dx3

)

A3(t).

(9)
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The scalar function P (t) in pressure term becomes

P (t) = −
Γα3

P |~α|2
B(t). (10)

Differentiating the last equation of (9) with respective time variable t we get

d2B(t)

dt2
=

(

−
dρ

dx3

)

dA3(t)

dt
. (11)

We recast the above equation by plugging back the equation for dA3(t)
dt from the third

equation of (9) as follows

d2B(t)

dt2
=

dρ

dx3

(

1−
α2
3

|~α|2

)

ΓB(t) = −ω2(~α)B(t). (12)

Thus we observe that the behavior of solutions depends on the sign of ω2. Because the
Γ is nondimensional positive number and angular term in parentheses is always positive,
the overall sign depends on the sign of the density gradient dρ

dx3

.

• Case(i): dρ
dx3

> 0 (Heavier fluids on top). This case will have exponentially

growing solutions of the form e|ω|t. We conclude that steady state is unstable.
• Case(ii): dρ

dx3

< 0 (Heavier fluids at bottom). In this case equation (12)
suggests that solutions will be oscillatory in nature. Hence we refer to it as stable
stratification.

4.1 Sinusoidal Waves

In this subsection we determine sinusoidal plane waves in stable stratifications for dρ
dx3

<
0. We write the nondimensional form of buoyancy frequency or Brunt-Väisälä frequency

N =

(

−Γ
dρ

dx3

)1/2

. (13)

We use the notation to the general parameter ~α as wave vector ~k = (k1, k2, k3) =

(~kH , k3) = ~α = (α1, α2, α3), so that ω as defined in (12) is given by

ω(~k) = N
|~kH |

|~k|
. (14)

The general solution of (12) is

B(t) = c1 sin(ω(~k)t) + c2 cos(ω(~k)t), (15)

where c1 and c2 are arbitrary constants. The scalar function in pressure terms is given
by

P (t) = −
Γk3

P |~k|2

[

c1 sin(ω(~k)t) + c2 cos(ω(~k)t)
]

. (16)

Substituting (15) into the last equation of (9) we determine A3(t) as:

A3(t) =
Γ|~kH |

N |~k|

[

c1 cos(ω(~k)t)− c2 sin(ω(~k)t)
]

. (17)
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Now to determine A1(t) and A2(t) we have the vector ê3, ~A(t) and ~k are coplanar.
So that they satisfy the equation A2(t)k1 − A1(t)k2 = 0. But A(t) is a function of time

variable t and wave vector ~k is constant. Hence to meet the requirement A2(t)k1 −

A1(t)k2 = 0, we consider the following cases that are related with the magnitude ~kH .

1. |~kH | 6= 0: In this case we have the following possibilities.

(a) Suppose that k1 6= 0, k2 = 0. But this assumption along with A2(t)k1 −
A1(t)k2 = 0 implies that A2(t) = 0. If we plug A2(t) = 0 in the first and
second equations of (9) and solve these equations we get A1(t) = 0. This is
also true in either case k1 = 0 and k2 6= 0.

(b) Suppose k1 6= 0, k2 6= 0. But we required that A2(t)k1 −A1(t)k2 = 0, so that
A1(t) must be equal to the constant multiple of A2(t). But in order to satisfy
the first and second equations of (9) we conclude that A1(t) and A2(t) must
be equal to zero.

In this case we have

A1(t) = 0, A2(t) = 0,

A3(t) =
Γ|~kH |

N |~kH |

(

c1 cos(ω(~k)t)− c2 sin(ω(~k)t)
)

,

B(t) = c1 sin(ω(~k)t) + c2 cos(ω(~k)t),

P (t) = −
Γk3

P |~k|2

[

c1 sin(ω(~k)t) + c2 cos(ω(~k)t)
]

.

(18)

In order to write the physical variables, we must merely remember their definitions
in Theorem 3.1. Recalling that G′(s) = F (s), we have

~v =
Γ|~kH |

N |~k|

[

c1 cos(ω(~k)t)− c2 sin(ω(~k)t)
]

F (~k · ~x)ê3,

ρ =
[

c1 sin(ω(~k)t) + c2 cos(ω(~k)t)
]

F (~k · ~x),

p = −
Γk3

P |~k|2

[

c1 sin(ω(~k)t) + c2 cos(ω(~k)t)
]

G(~k · ~x).

(19)

Equations (19) represent the special case of nonlinear plane waves with k3 6= 0
and are supported by the stable stratification, so we call them the internal gravity
waves.

In order to find sinusoidal wave forms, we put

F (~k · ~x) = sin(~k · ~x). (20)

The density function in this case is

ρ =
c1
2

[

cos(ω(~k)t− ~k · ~x)− cos(ω(~k)t+ ~k · ~x)
]

+
c2
2

[

sin(ω(~k)t+ ~k · ~x)− sin(ω(~k)t− ~k · ~x)
]

.
(21)
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These calculations illustrate that there are waves moving in different directions
corresponding to the two branches of dispersion relation. Let us simplify the case
c2 = 0 and we write the solutions

ρ =
c1
2

[

cos(ω(~k)t− ~k · ~x)− cos(ω(~k)t+ ~k · ~x)
]

,

p =
c1
2

Γk3

P |~k|2

[

sin(ω(~k)t− ~k · ~x) + sin(ω(~k)t+ ~k · ~x)
]

,

~v =
c1
2

Γ|~kH |

N |~k|

[

sin(ω(~k)t+ ~k · ~x)− sin(ω(~k)t− ~k · ~x)
]

ê3.

(22)

2. |~kH | = 0 : In this case the horizontal components of wave vector are k1 = k2 = 0.

The vector ~A(t) and scalar function B(t) have to satisfy the following differential
equations:

dA1(t)

dt
=

1

R0
A2(t),

dA2(t)

dt
= −

1

R0
A1(t),

dA3(t)

dt
= 0,

dB(t)

dt
=

(

−
dρ

dx3

)

A3(t).

(23)

Solving these equations, we get

A1(t) = c1 cos(t/R0) + c2 sin(t/R0),

A2(t) = −c1 sin(t/R0) + c2 cos(t/R0),

A3(t) = c3, B(t) = c4(−
dρ
dx3

)t+ c5,

(24)

where c1, c2, c3, c4 and c5 are arbitrary constants. The scalar function P (t) in
pressure term is

P (t) = −
Γ

Pk3

[

c4

(

−
dρ

dx3

)

t+ c5

]

. (25)

In this special case of plane waves, the physical terms, namely the velocity, density
and pressure involved in (2) are given by the following equations

~v =
(

c1 cos(
t
R0

) + c2 sin(
t
R0

), −c1 sin(
t
R0

) + c2 cos(
t
R0

), c3

)

F (k3x3),

ρ =
(

c4(−
dρ
dx3

)t+ c5

)

F (k3x3),

p = − Γ
Pk3

[

c4

(

− dρ
dx3

)

t+ c5

]

G(k3x3).

(26)

Now we put F (~k · ~x) = F (k3x3) = sin(k3x3) in equations (26) with G′(s) = F (s)
to determine the sinusoidal wave forms. These wave forms are:

~v=
(

c1
2

[

sin( t
R0

+ k3x3)−sin( t
R0

− k3x3)
]

+ c2
2

[

cos( t
R0

− k3x3)−cos( t
R0

+ k3x3)
]

,

− c1
2

[

cos( t
R0

− k3x3)− cos( t
R0

+ k3x3)
]

+ c2
2

[

sin( t
R0

+ k3x3)− sin( t
R0

− k3x3)
]

,

c3 sin(k3x3)
)

,

ρ =
[

c3(−
dρ
dx3

)t+ c4

]

sin(k3x3),

p = Γ
Pk2

3

[

c3

(

− dρ
dx3

)

t+ c4

]

cos(k3x3).

(27)
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The sinusoidal waves given by (27) with k3 6= 0 are supported by stable stratification
so termed as internal gravity waves.

5 Conclusion

The special exact solutions of rotating stratified Boussinesq equations (2) in the form of
nonlinear plane waves are obtained from the solutions of linear system (8). In the special

case of fluids in which ê3, ~A(t), ~α = ~k are coplanar and dρ
dx3

> 0, the nonlinear plane
waves given by (9) with P (t) as in (10) grow exponentially. Whereas, if heavier fluids are
at the bottom with k3 6= 0 then the plane waves given by (19) and (26) are oscillatory
in nature. These waves are called the internal gravity waves. The exact solutions of (2)
in the form of sinusoidal waves are given by (22) and (27).
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