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Abstract: For the ordinary differential equation, y(n) = f(x, y, y′, . . . , y(n−1)), of
order n = 3, 4, or 5, it is shown that the existence of unique solutions of certain 4-
point nonlocal boundary value problems implies a compactness condition on uniformly
bounded sequences of solutions.
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1 Introduction

In a recent paper, for n ≥ 3 and 1 ≤ k ≤ n − 1, Henderson [6] studied solutions of the
ordinary differential equation,

y(n) = f(x, y, y′, . . . , y(n−1)), a < x < b, (1)

satisfying the (k + 2)-point nonlocal boundary conditions,

y(i−1)(xj) = yij , 1 ≤ i ≤ mj, 1 ≤ j ≤ k,

y(xk+1)− y(xk+2) = yn,
(2)

for positive integers m1, . . . ,mk such that m1 + · · ·+mk = n− 1, points a < x1 < x2 <

· · · < xk < xk+1 < xk+2 < b, real values yij , 1 ≤ i ≤ mj , 1 ≤ j ≤ k, and yn ∈ R.
In particular, sufficient conditions were given under which the existence of solutions for
4-point nonlocal boundary value problems for (1), (2), (that is, when k = 2), led to the
existence of unique solutions of (k + 2)-point nonlocal boundary value problems for (1),
(2), for all 1 ≤ k ≤ n− 1.

Fundamental to that paper’s main result was the following list of assumptions on
solutions of (1).
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(A) f : (a, b)× R
n → R is continuous.

(B) Solutions of initial value problems for (1) are unique and extend to (a, b).

(C) Boundary value problems (1), (2), for k = 2, have solutions on (a, b).

(D) Boundary value problems (1), (2), for k = n− 2, have at most one solution.

(E) If {yν(x)} is a sequence of solutions of (1) which is uniformly bounded on a non-
degenerate compact subinterval [c, d] ⊂ (a, b), then there is a subsequence {yνj (x)}

such that {y
(i)
νj (x)} converges uniformly on each compact subinterval of (a, b), for

each i = 0, . . . , n− 1.

Under these assumptions, and in conjunction with a uniqueness implies existence
result by Eloe and Henderson [3], the following existence result was the main result of
paper [6].

Theorem 1.1 Assume that with respect to (1), conditions (A)–(E) are satisfied.

Then, for each 1 ≤ k ≤ n− 1, solutions of (1), (2) exist and are unique on (a, b).

One question that arises, and which is the motivation for this paper, is whether
conditions (A) – (D) imply the so-called “Compactness Condition” (E) on sequences of
solutions of (1). The study of hypotheses sufficient to imply (E) has a long history,
especially in the context of boundary value problems for (1) satisfying ℓ-point conjugate
boundary conditions, for 2 ≤ ℓ ≤ n, of the form,

y(i−1)(tj) = rij , 1 ≤ i ≤ pj , 1 ≤ j ≤ ℓ, (3)

where p1, . . . , pℓ are positive integers such that p1 + · · ·+ pℓ = n, a < t1 < · · · < tℓ < b,

and rij ∈ R, 1 ≤ i ≤ pj , 1 ≤ j ≤ ℓ.

In the conjugate boundary value problem context, a principal question of the 1960’s
through the mid-1980’s involved whether conditions (A) and (B) and uniqueness of so-
lutions of n-point conjugate boundary value problems (1), (3) implied the Compactness
Condition (E). This was answered in the affirmative for equation (1), when n = 2 and
3, by Jackson [10] and Jackson and Schrader [13]. Other extensive inroads were made in
addressing the question for (1) of arbitrary order n in the papers [1,5,7–9,11,12,14–17].
In 1985, in an unpublished paper, Schrader [18] announced that the conjecture had been
verified. Later, Agarwal [2] gave a detailed presentation of the history and resolution of
the conjecture for conjugate boundary value problems.

Much in the spirit of the work done regarding (E) with respect to solutions of con-
jugate boundary value problems, we show in this paper that when (1) is of any of the
orders, n = 3, 4, or 5, then existence of unique solutions of (1), (2), for k = 2, and
conditions (A) and (B) imply the Compactness Condition (E).

Each of these cases for n will depend on continuous dependence of solutions of (1), (2)
on boundary conditions. We will refer to the following continuous dependence theorem
[3], whose proof relies on a standard application of the Brouwer theorem on invariance
of domain [19].

Theorem 1.2 Assume that with respect to (1), (2), conditions (A) and (B) are

satisfied. Assume that, for k = 2 and any positive integers m1 and m2 such that m1 +
m2 = n− 1, solutions of the corresponding nonlocal boundary value problem (1), (2) are
unique, when they exist. Given a solution y(x) of (1), an interval [c, d], points c < x1 <
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x2 < x3 < x4 < d and an ǫ > 0, there exists δ(ǫ, [c, d]) > 0 such that, if |xi − ξi| < δ,

i = 1, 2, 3, 4, and c < ξ1 < ξ2 < ξ3 < ξ4 < d, and if |y(i−1)(xj) − zij | < δ, 1 ≤ i ≤ mj ,

j = 1, 2 and |y(x3)− y(x4) − zn| < δ, then there exists a solution z(x) of (1) satisfying

z(i−1)(ξj) = zij, 1 ≤ i ≤ mj , j = 1, 2, z(ξ3) − z(ξ4) = zn, and |y(i)(x) − z(i)(x)| < ǫ on

[c, d], 0 ≤ i ≤ n− 1.

2 The Compactness Condition: n =3, 4, 5

In this section, we show that, for n = 3, 4, or 5, conditions (A) and (B) and the existence
of unique solutions of (1), (2), for k = 2, imply the Compactness Condition (E).

Theorem 2.1 For n = 3, 4, or 5, assume that with respect to (1), conditions (A)
and (B) hold, and in addition, that there exist unique solutions of (1), (2), for k = 2.
Then condition (E) also holds.

Proof. We will address the case of each n independently.
(a) n = 3. In this case, we are assuming that, for each pair of positive integers m1 and
m2 such that m1 +m2 = n− 1 = 2 (that is, m1 = m2 = 1), there exist unique solutions
of (1), (2); that is, there exists a unique solution of (1) satisfying

y(x1) = y1, y(x2) = y2, y(x3)− y(x4) = y3,

where a < x1 < x2 < x3 < x4 < b and y1, y2, y3 ∈ R. From Rolle’s theorem, solutions of
3-point conjugate boundary value problems (1), (3) are unique, when they exist. As a
consequence of the Jackson and Schrader [13] result for third order conjugate boundary
value problems, or as a result of the more general result by Schrader [18] which was
detailed in the Introduction, it follows that the Compactness Condition (E) is satisfied.

(b) n = 4. In this case, we are assuming that, for each pair of positive integers
m1 and m2 such that m1 +m2 = n− 1 = 3, there are unique solutions of (1), (2); that
is, for any a < x1 < x2 < x3 < x4 < b and y1, y2, y3, y4 ∈ R, there exists a unique
solution of (1) satisfying

y(x1) = y1, y′(x1) = y2, y(x2) = y3, y(x3)− y(x4) = y4,

and there exists a unique solution of (1) satisfying

y(x1) = y1, y(x2) = y2, y′(x2) = y3, y(x3)− y(x4) = y4.

We now assume there are a < c < d < b, a number M > 0, and a sequence {yν} of
solutions of (1) such that, for each ν ≥ 1,

|yν(x)| ≤ M, c ≤ x ≤ d.

Next, let the points c < η1 < x2 < x3 < x4 < d be given. Then, for each ν ≥ 1, there
exists ξν ∈ (c, η1) such that

|y′ν(ξν)| ≤
2M

η1 − c
.

This leads to the five bounded sequences of real numbers,

{ξν} ⊂ (c, η1), {yν(ξν)} ⊂ [−M,M ], {y′ν(ξν)} ⊂

[

−2M

η1 − c
,

2M

η1 − c

]

,

{yν(x2)} ⊂ [−M,M ], and {yν(x3)− yν(x4)} ⊂ [−2M, 2M ].
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Hence, there exist a subsequence {νj} ⊂ {ν}, a point x1 ∈ [c, η1] and γ1, γ2, γ3, γ4 ∈ R

such that

ξνj → x1, yνj (ξνj ) → γ1, y′νj (ξνj ) → γ2,

yνj (x2) → γ3, and {yνj (x3)− yνj (x4)} → γ4.

Now, let y(x) be the solution of (1), (2), for k = 2, satisfying

y(x1) = γ1, y′(x1) = γ2, y(x2) = γ3, and y(x3)− y(x4) = γ4.

It follows from Theorem 1.2 that

lim y(i)νj
(x) = y(i)(x) uniformly on [c, d],

for each i = 0, 1, 2, 3. It follows in turn, from (A) and (B) and the Kamke Convergence
Theorem [4, page 14, Theorem 3.2], that these convergences are uniform on each
compact subinterval of (a, b).

(c) n = 5. This time, we assume that, for each pair of positive integers m1 and
m2 such that m1 + m2 = n − 1 = 4, there are unique solutions of (1), (2); that is, for
any a < x1 < x2 < x3 < x4 < b and y1, y2, y3, y4, y5 ∈ R, there exists a unique solution
of (1) satisfying

y(x1) = y1, y′(x1) = y2, y′′(x1) = y3, y(x2) = y4, y(x3)− y(x4) = y5,

there exists a unique solution of (1) satisfying

y(x1) = y1, y′(x1) = y2, y(x2) = y3, y′(x2) = y4, y(x3)− y(x4) = y5,

and there exists a unique solution of (1) satisfying

y(x1) = y1, y(x2) = y2, y′(x2) = y3, y′′(x2) = y4, y(x3)− y(x4) = y5.

Again, we assume there are a < c < d < b, a number M > 0, and a sequence {yν} of
solutions of (1) such that, for each ν ≥ 1,

|yν(x)| ≤ M, c ≤ x ≤ d.

Let the points c < η1 < η2 < η3 < x3 < x4 < d be given. Then, for each ν ≥ 1, there
exist ξν ∈ (c, η1) and σν ∈ (η2, η3) such that

|y′ν(ξν)| ≤
2M

η1 − c
and |y′ν(σν)| ≤

2M

η3 − η2
.

Then we have the seven bounded sequences of real numbers,

{ξν} ⊂ (c, η1), {σν} ⊂ (η2, η3), {yν(ξν)} ⊂ [−M,M ], {y′ν(ξν)} ⊂

[

−2M

η1 − c
,

2M

η1 − c

]

,

{yν(σν)} ⊂ [−M,M ], {y′ν(σν)} ⊂

[

−2M

η3 − η2
,

2M

η3 − η2

]

, & {yν(x3)− yν(x4)} ⊂ [−2M, 2M ].
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As in the previous case, there exist a subsequence {νj} ⊂ {ν}, points x1 ∈ [c, η1] and
x2 ∈ [η2, η3], and γ1, γ2, γ3, γ4, γ5 ∈ R such that,

ξνj → x1, σνj → x2, yνj (ξνj ) → γ1, y′νj (ξνj ) → γ2,

yνj (σνj ) → γ3, y′νj (σνj ) → γ4, and {yνj(x3)− yνj (x4)} → γ5.

Let y(x) be the solution of (1), (2), for k = 2, satisfying

y(x1) = γ1, y′(x1) = γ2, y(x2) = γ3, y′(x2) = γ4, and y(x3)− y(x4) = γ5.

As above, it follows from Theorem 1.2 that

lim y(i)νj
(x) = y(i)(x) uniformly on [c, d],

for each i = 0, 1, 2, 3, 4, and from (A) and (B) and the Kamke Convergence The-
orem [4, page 14, Theorem 3.2], these convergences are uniform on each compact
subinterval of (a, b). 2

We remark that in [6], it was proved that condition (D) implies uniqueness of solutions
of (1), (2), when solutions exist, for 1 ≤ k ≤ n − 2. As a consequence of that and by
Theorem 2.1, we can give a stronger result than Theorem 1.2, for n = 3, 4, 5.

Theorem 2.2 For n = 3, 4, or 5, assume that with respect to (1), conditions (A)–
(D) are satisfied. Then, for each 1 ≤ k ≤ n−1, solutions of (1), (2) exist and are unique

on (a, b).
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