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1 Introduction

Let V and V̂ be real Hilbert spaces. Also, let Z = L2([0, τ ];V ) and Y = L2([0, τ ]; V̂ )
be the corresponding function spaces defined on [0, τ ]. Let C([−h, 0], V ) be the Banach
space of all continuous functions from [−h, 0] to V with the supremum norm.

Consider the following fractional order semilinear control system with bounded delay

CDα
t x(t) = Ax(t) +Bu(t) + f(t, xt), t ∈]0, τ ];

x(t) = ϕ(t), t ∈ [−h, 0].

}

(1)

Here CDα
t is the Caputo fractional derivative of order α, where 1/2 < α < 1; the state x(·)

takes its values in the space V ; A : D(A) ⊆ V → V is a closed linear operator with dense
domainD(A) generating a C0-semigroup T (t); the control function u(·) takes its values in
V̂ . The operator B is a bounded linear operator from V̂ to V ; f : [0, τ ]×C([−h, 0], V ) →
V is a continuous function and ϕ is the element of C([−h, 0];V ).
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The investigation of the theory of fractional calculus have been started about three
decades before. Fractional order differential equations are generalizations of ordinary dif-
ferential equations to an arbitrary (noninteger) order. Fractional order nonlinear equa-
tions are abstract formulations for many problems arising in engineering, physics and
many other fields. In particular, the fractional calculus is used in diffusion process, elec-
trical science, electrochemistry, viscoelasticity, control science, electro magnetic theory
and several more. For more details one can see [1–6] and the references cited therein.
In [7] phase synchronizations in coupled chaotic systems presented by fractional differ-
ential equations has been considered. The existence and uniqueness of solutions of a
nonlinear multi-variables fractional differential equations have been investigated in [8] by
using Schauder’s fixed points theorems and Global contraction mapping theory.

The problems of optimal control [9, 10] and various type of controllability like exact
controllability [11–13], boundary controllability [14] and the approximate controllability
[15, 16] of fractional order systems have been studied in the area of control theory in
infinite dimension spaces.

To prove exact controllability and the boundary controllability, the main tool used by
the authors is to convert the controllability problem into a fixed point problem together
with the assumption that the controllability operator has an induced inverse on a quotient
space. In [12–14], to prove the controllability results for fractional order semilinear
systems authors made an assumption that the semigroup associated with the linear part
is compact. However, if the operator B is compact or C0-semigroup T (t) is compact
then the controllability operator is also compact and hence inverse of it does not exist if
the state space V is infinite dimensional [17]. Thus, the concept of exact controllability
is too strong in infinite dimensional space and the approximate controllability is more
appropriate for these control systems.

The approximate controllability of the systems of integer order ( α = 1, 2) has been
proved in [18–23] and the references therein. To show the results on the approximate
controllability a relation between the reachable set of a semilinear system and that of the
corresponding linear system is proved. In [15] Sakthivel et al. proved the approximate
controllability by assuming that the C0-semigroup T (t) is compact and the nonlinear
function is continuous and uniformly bounded. Sukavanam et al. [16] proved the ap-
proximate controllability for a class of semilinear delayed control system of fractional
order by assuming that the corresponding linear system is approximately controllable
and nonlinear function satisfies the Lipschitz condition. Recently, Kumar et al. [24] es-
tablished sufficient conditions for the approximate controllability of a class of semilinear
delay control systems of fractional order by using Schauder’s fixed point theorem and
the compactness of the C0-semigroup together with the Lipschitz continuity of nonlinear
term.

In this paper, sufficient conditions for the approximate controllability of fractional
order semilinear control system (1) are established.

The paper is organized as follows: in Section 2, we present some necessary prelimi-
naries. The approximate controllability of semilinear system (1) is proved in Section 3.
In Section 4, an example is given to illustrate the theory.

2 Preliminaries

This section is devoted to the basic definitions and lemma, which are useful for further
development.
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Definition 2.1 A real function f(t) is said to be in the space Cα, α ∈ R if there
exists a real number p > α, such that f(t) = tpg(t), where g ∈ C[0,∞[ and it is said to
be in the space Cm

α iff f (m) ∈ Cα, m ∈ N .

Definition 2.2 The Riemann-Liouville fractional integral operator of order β > 0 of
function f ∈ Cα, α ≥ −1 is defined as

Iβf(t) =
1

Γ(β)

∫ t

0

(t− s)β−1f(s)ds,

where Γ is the Euler gamma function.

Definition 2.3 If the function f ∈ Cm
−1 and m is a positive integer then we can

define the fractional derivative of f(t) in the Caputo sense as

CDα
t f(t) =

1

Γ(m− α)

∫ t

0

(t− s)m−α−1fm(s)ds, m− 1 ≤ α < m.

Definition 2.4 [25] A function x(·) ∈ C([−h, τ ];V ) is said to be the mild solution
of (1) if it satisfies

x(t) =

{

Sα(t)ϕ(0) +
∫ t

0 (t− s)α−1Tα(t− s)[Bu(s) + f(s, xs)]ds, t ∈ [0, τ ],
ϕ(t), t ∈ [−h, 0],

where Sα(t)x =
∫∞

0 φα(θ)T (t
αθ)xdθ and Tα(t)x = α

∫∞

0 θφα(θ)T (t
αθ)xdθ. Here

φα(θ) = 1
αθ

−1−1/αψα(θ
−1/α) is the probability density function defined on (0,∞),

that is φα(θ) ≥ 0, and
∫∞

0 φα(θ)dθ = 1. Also the term ψα(θ) is defined as ψα(θ) =
1
πΣ

∞
n=1(−1)n−1θ−nα−1 Γ(nα+1)

n! sin(nπα), θ ∈ (0,∞).

Define the solution mapping Φ from Z to C([0, τ ];V ) as

(Φu)(t) = x(t).

Definition 2.5 The setKτ (f) = {x(τ) ∈ V : x(t) is a mild solution of (1)} is called
the reachable set of the system (1).

Definition 2.6 Let x(τ) be the state value of system (1) at time τ corresponding to
the control u. The system (1) is said to be approximately controllable in time interval
[0, τ ], if for every desired final state ξ and ǫ > 0 there exists a control function u(·) ∈ Y
such that the mild solution x(t) of (1) satisfies

‖x(τ)− ξ‖ < ǫ.

The system (1) is said to be approximately controllable on [0, τ ] iff Kτ (f) = V, where
Kτ (f) denotes the closure of Kτ (f).

Lemma 2.1 [25] For any fixed t ≥ 0, Sα(t) and Tα(t) are bounded linear operators,
that is, for any x ∈ V , ‖Sα(t)x‖ ≤ M‖x‖ and ‖Tα(t)x‖ ≤ Mα

Γ(1+α)‖x‖, where M is a

constant such that ‖T (t)‖ ≤M , for all t ∈ [0, τ ].
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Define a continuous linear operator L from Z to C([0, τ ];V ) by

Lp =
∫ τ

0

(τ − s)α−1Tα(τ − s)p(s)ds, for p(·) ∈ Z.

Assumption: We need the following hypotheses to prove our results:
(H1) The nonlinear operator f(t, x) satisfies the Lipschitz condition i.e. there exists a
positive constant l such that

‖f(t, x)− f(t, y)‖V ≤ l‖x− y‖V , for all x, y ∈ V and t ∈ [0, τ ],

and ‖f(t, 0)‖V ≤ lf .
(H2) For any given ǫ > 0, and p(·) ∈ Z, there exists some u(·) ∈ Y such that

‖Lp− LBu‖V < ǫ.

(H3) ‖Bu(·)‖Z ≤ λ‖p(·)‖Z , where λ is a positive constant independent of p(·).
(H4) The constant λ satisfies Mαταλl

Γ(1+α)
√
2α−1

exp
(

Mlτα

Γ(1+α)

)

< 1.

3 Controllability Results

In this section, we prove the approximate controllability for a class of fractional order
semilinear control system (1) with bounded delay.

Lemma 3.1 Under hypotheses (H1) the solution mapping (Φu)(·) satisfies

‖(Φu)(t)‖V ≤ K exp

(

Mlτα

Γ(1 + α)

)

,

where K =M
[

‖ϕ(0)‖+ α
Γ(1+α)

√

τ2α−1

2α−1 ‖Bu‖Z +
lfτ

α

Γ(1+α)

]

.

Let u1(·) and u2(·) be in Y. Then

‖x1 − x2‖Z ≤ Mατα

Γ(1 + α)
√
2α− 1

exp
( Mlτα

Γ(1 + α)

)

‖Bu1(·)−Bu2(·)‖Z ,

where xn(t) = (Φun)(t), n = 1, 2, · · ·.

Proof. The solution mapping (Φu)(t) = x(t) is given by

x(t) = xt(0) = Sα(t)ϕ(0) +

∫ t

0

(t− s)α−1Tα(t− s)[Bu(s) + f(s, xs)]ds.
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Taking the norm on both sides, we have

‖xt‖V = ‖Sα(t)‖‖ϕ(0)‖+
∫ t

0

(t− s)α−1‖Tα(t− s)‖‖Bu(s) + f(s, xs)‖ds

≤ M‖ϕ(0)‖+ Mα

Γ(1 + α)

∫ t

0

(t− s)α−1‖Bu(s)‖ds

+
Mα

Γ(1 + α)

∫ t

0

(t− s)α−1‖f(s, xs)‖ds,

≤ M‖ϕ(0)‖+ Mα

Γ(1 + α)

√

τ2α−1

2α− 1
‖Bu‖Z

+
Mαl

Γ(1 + α)

∫ t

0

(t− s)α−1‖xs‖Cds+
Mlfτ

α

Γ(1 + α)
.

≤ K +
Mαl

Γ(1 + α)

∫ t

0

(t− s)α−1‖xs‖Cds.

This implies that

‖xt‖C = sup ‖xt‖V ≤ K +
Mαl

Γ(1 + α)

∫ t

0

(t− s)α−1‖xs‖Cds.

Now, using the Gronwall’s inequality, we get

‖x(t)‖ ≤ K exp
( Mlτα

Γ(1 + α)

)

.

Thus, we have

‖(Φu)(t)‖V ≤ K exp
( Mlτα

Γ(1 + α)

)

.

Let us define y(·, ϕ) : [−h, τ ] → V as

y(t, ϕ) =

{

ϕ(t), t ∈ [−h, 0],
Sα(t)ϕ(0), t ∈ [0, τ ].

Let x(t) = y(t) + z(t), t ∈ [−h, τ ]. It is easy to see that x(·) satisfies (1) if and only if
z0 = 0 and for t ∈ [0, τ ], we have

z(t) =

∫ t

0

(t− s)α−1Tα(t− s)[Bu(s) + f(s, ys + zs)]ds.

Now, let us take x1(·), x2(·) ∈ V and u1, u2 ∈ Y , then

‖(z1)t − (z2)t‖V

≤ Mα

Γ(1 + α)

∫ t

0

(t− s)α−1‖Bu1(s)−Bu2(s)‖ds

+
Mα

Γ(1 + α)

∫ t

0

(t− s)α−1‖f(s, y(s) + (z1)s)− f(s, y(s) + (z2)s)‖ds

≤ Mα

Γ(1 + α)

√

τ2α−1

2α− 1
‖Bu1 −Bu2‖Z

+
Mαl

Γ(1 + α)

∫ t

0

(t− s)α−1‖(z1)s − (z2)s‖Cds.
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Using the Gronwall’s inequality, we get

sup ‖(z1)t − (z2)t‖V = ‖(z1)t − (z2)t‖C

≤ Mα

Γ(1 + α)

√

τ2α−1

2α− 1
exp

( Mlτα

Γ(1 + α)

)

‖Bu1 −Bu2‖Z .

Hence, we have

‖x1 − x2‖Z =

(
∫ τ

0

‖x1(s)− x2(s)‖2V ds
)1/2

=

(
∫ τ

0

‖z1(s)− z2(s)‖2V ds
)1/2

≤ Mατα

Γ(1 + α)
√
2α− 1

exp
( Mlτα

Γ(1 + α)

)

‖Bu1(·)−Bu2(·)‖Z .

This completes the proof of lemma.

Theorem 3.1 Under hypotheses (H1)–(H4) the fractional order semilinear control
system (1) is approximately controllable.

Proof. Since the domain D(A) of the operator A is dense in Z, it is sufficient to
prove that D(A) ⊂ Kτ (f). For this, let us take ξ ∈ D(A), then for any given ǫ > 0, there
exists a control function uǫ(·) ∈ Y such that

‖ξ − Sα(τ)ϕ(0) − Lf(s, xǫ(s)) − LBuǫ‖ < ǫ,

where xǫ(t) = (Φuǫ)(t) satisfies

xǫ(t) = Sα(t)ϕ(0) +

∫ t

0

(t− s)α−1Tα(t− s)[Buǫ(s) + f(s, (xǫ)s)]ds.

Now, we construct a sequence recursively as follows.
Assume that u1(·) ∈ Y is arbitrarily given. By hypothesis (H2), there exists some

u2(·) ∈ Y such that

‖ξ − Sα(τ)ϕ(0) − Lf(s, (x1)s)− LBu2‖ <
ǫ

22
, (2)

where x1(t) = (Φu1)(t), for all t ∈ [0, τ ].
For u2(·) ∈ Y thus obtained, we determine w2(·) ∈ Y by hypotheses (H2) and (H3)

such that

‖L[f(s, (x2)s)− f(s, (x1)s)]− LBw2‖ <
ǫ

23
, (3)

and by Lemma 3.1, we have

‖Bw2(·)‖L2([0,τ ];V ) ≤ λ‖f(s, (x2)s)− f(s, (x1)s)‖Z

≤ λ

(
∫ τ

0

‖f(s, (x2)s)− f(s, (x1)s)‖2V ds
)1/2

≤ λl

(
∫ τ

0

‖(x2)s − (x1)s‖2V ds
)1/2

≤ λl‖x2 − x1‖Z

≤ Mαταλl

Γ(1 + α)
√
2α− 1

exp
( Mlτα

Γ(1 + α)

)

‖Bu1(·)−Bu2(·)‖Z ,
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where xn(t) = (Φun)(t), n = 1, 2, for all t ∈ [0, τ ].
Thus, we may define u3 = u2 − w2 in Y which has the following property

‖ξ − Sα(τ)ϕ(0) − Lf(s, (x2)s)− LBu3‖
≤ ‖ξ − Sα(τ)ϕ(0) − Lf(s, (x1)s)− LBu2

+LBw2 − L[f(s, (x2)s)− f(s, (x1)s)]‖
≤ ‖ξ − Sα(τ)ϕ(0) − Lf(s, (x1)s)− LBu2‖

+‖LBw2 − L[f(s, (x2)s)− f(s, (x1)s)]‖.

Using Eq. (2) and (3), we get

‖ξ − Sα(τ)ϕ(0) − Lf(s, (x2)s)− LBu3‖ ≤
(

1

22
+

1

23

)

ǫ.

Mathematical induction implies that there exists a sequence un(·) ∈ Y such that

‖ξ − Sα(τ)ϕ(0) − Lf(s, (xn)s)− LBun+1‖ ≤
(

1

22
+ · · ·+ 1

2n+1

)

ǫ, (4)

where xn(t) = (Φun)(t), n = 1, 2, · · ·, for all t ∈ [0, τ ] and

‖Bun+1(·) − Bun(·)‖Z

≤ Mαταλl

Γ(1 + α)
√
2α− 1

exp
( Mlτα

Γ(1 + α)

)

‖Bun(·) −Bun−1(·)‖Z .

Clearly, by hypothesis (H4), the sequence {Bun; n = 1, 2, · · ·} is a Cauchy sequence in
the Banach space Z and there exists some v(·) ∈ Z such that

lim
n→∞

Bun(t) = v(t), in Z.

Therefore for any given ǫ > 0, there exists some integer Nǫ such that

‖LBuNǫ+1 − LBuNǫ
‖ < ǫ

2
. (5)

Hence, we obtain

‖ξ − Sα(τ)ϕ(0) − Lf(s, (xNǫ
)s)− LBuNǫ

‖
≤ ‖ξ − Sα(τ)ϕ(0) − Lf(s, (xNǫ

)s)− LBuNǫ+1‖
+‖LBuNǫ+1 − LBuNǫ

‖,

where xNǫ
(t) = (ΦuNǫ

)(t), for all t ∈ [0, τ ]. Using Eq. (4) and (5), we get

‖ξ − Sα(τ)ϕ(0) − Lf(s, (xNǫ
)s)− LBuNǫ

‖ ≤
(

1

22
+ · · ·+ 1

2Nǫ+1

)

ǫ+
ǫ

2

≤ ǫ.

This means that ξ ∈ Kτ (f). Hence the fractional order semilinear system (1) is approx-
imately controllable on [0, τ ]. This completes the proof.

Theorem 3.2 Suppose that the range of the operator B i.e. R(B) is dense in Z.
Then under hypothesis (H1) the semilinear system (1) is approximately controllable.
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Proof. Since the range of the operator B is dense in Z, for any given point p(·) ∈ Z
and every δ > 0, there exists some point Bu(·) ∈ R(B), where u(·) ∈ Y such that

‖Bu(·)− p(·)‖Z < δ‖p(·)‖Z . (6)

Now, we have

‖Lp− LBu‖ ≤ Mα

Γ(1 + α)

∫ τ

0

(τ − s)α−1‖p(s)−Bu(s)‖ds

≤ Mα

Γ(1 + α)

√

τ2α−1

2α− 1
‖p(·)−Bu(·)‖Z

≤ Mα

Γ(1 + α)

√

τ2α−1

2α− 1
δ‖p(·)‖Z

< ǫ.

Thus from (6), we have

‖Bu(·)‖Z = ‖Bu(·)− p(·) + p(·)‖Z
≤ ‖Bu(·)− p(·)‖Z + ‖p(·)‖Z
≤ δ‖p(·)‖Z + ‖p(·)‖Z
≤ (δ + 1)‖p(·)‖Z.

This implies that the conditions (H2) and (H3) are satisfies, if we choose δ > 0 in such
a manner that (H4) is verified. Then the approximate controllability of (1) follows from
Theorem 3.1.

4 Example

Let V = L2(0, π) and A = ∂2

∂x2 with D(A) consisting of all y ∈ V with ∂2y
∂x2 and y(0) =

0 = y(π). Put en(x) =
√

2/π sin(nx); 0 ≤ x ≤ π, n = 1, 2, · · ·, then {en, n = 1, 2, · · ·} is
an orthonormal basis for V and en is the eigenfunction corresponding to the eigenvalue
λn = −n2 of the operator A. Then the C0-semigroup T (t) generated by A has exp(λnt)
as the eigenvalues and en as their corresponding eigenfunctions [26]. Define an infinite-
dimensional space V̂ by

V̂ =

{

u | u =

∞
∑

n=2

unen, with

∞
∑

n=2

u2n <∞
}

.

The norm in V̂ is defined by

‖u‖V̂ =

(

∞
∑

n=2

u2n

)1/2

.

Define a continuous linear map B from V̂ to V as

Bu = 2u2e1 +

∞
∑

n=2

unen, for u =

∞
∑

n=2

unen ∈ V̂ . (7)
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Let us consider the following fractional order semilinear control system of the form

CDα
t y(t, x) =

∂2

∂x2
y(t, x) +Bu(t, x) + f(t, y(t− h, x)); t ∈ [0, τ ], 0 < x < π,

y(t, 0) = y(t, π) = 0; t ∈ [0, τ ],

y(t, x) = ϕ(t, x); t ∈ [−h, 0], (8)

where ϕ(t, x) is continuous. The system (8) can be written in the abstract form given by
(1). The operator B is defined in (7) and the control function u(t, x) ∈ L2([0, τ ]; V̂ ) =
L2([0, τ ] × (0, π)). Here the nonlinear term f is considered as an operator satisfying
Hypothesis (H1). If the conditions (H2)-(H4) are satisfied, then the approximate con-
trollability of system (8) follows from Theorem 3.1. For example, if we consider the
function f as f(t, z) = l‖z‖φ3(z), where l > 0 is a constant. The function f satisfies
(H1) with Lipschitz constant l.

Conclusion

The approximate controllability for a class of semilinear delay control system of fractional
order has been proved provided that it holds for the corresponding linear system. These
results hold only for the fractional order such that 1/2 < α < 1.
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