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Abstract: Continuous-time systems with random state feedback delay are difficult to
control in general because of its infinite poles. In this paper, the act-and-wait controller is
well developed to solve this problem. If the infinite dimensional pole placement problem
can be reduced to a finite dimensional one, it would be facility to make the system
stable by the aid of pole placement method. The mechanism of the act-and-wait concept
is that the state feedback is periodically switched on (act) and off (wait) during the
control procedure. By using the act and wait controller, the stability of system can be
represented by a finial dimensional monodromy matrix when the interval between two
successive act moments is larger than the maximum state feedback delay. The aim of
this paper is to design the periodic controller so that a finite number of eigenvalues can
describe stability of the delay system, so the stability of the system can be achieved by
use of pole placement method. The efficiency of the method is shown by a simulation.
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1 Introduction

Pole placement method is a very important tool in control theory [3], which is used in
stabilizing plants and improving the performance of the controlled systems [16]. In the
real situations, instability and poor performance of system are often led by time delay
in the feedback loop of control systems. Many researchers have studied various kinds of
delay systems [9, 19, 20, 22, 23]. Classic pole placement technique is well developed and
common when it is applied to the systems without delay, while it is complex and crucial
in delayed systems [5, 14]. In delayed systems the number of poles to be controlled is
much larger than the degrees of freedom in the controller [13], so classical pole placement
techniques of ordinary -differential equations can not be applied for delayed systems.

Periodic control method has shown advantages in stabilizing linear time-invariant
(LTI) systems [18]. Several papers have been published which have used periodic feedback
controller to control systems. Recently much attention [2, 10] has been attracted to the
stabilization of continuous LTI systems with feedback delays by applying a periodic
controller. In [15] it has been shown that the output feedback controller was used to
make the system stable, which contains a periodic gain related to a cosine function.

On the other hand, lots of literature in which the stabilization problems of systems
were studied by using act-and-wait concept [4, 6–8, 11, 21] focuses on this problem. The
scholar in [4] made a comparison between the act-and-wait control and Intermittent
control. Other researchers in [6–8,11,21] used the act-and-control mechanism to deal with
the stabilization problems in different system, such as LTI systems, robotics systems,
chaotic oscillator systems, and so on. In this approach the controller is periodically
switched on (act) and off (wait). If the duration of waiting (switched off) time is longer
than time delays in a system, then the problem about stabilization of the system is
simplified to pole placement.

This paper discussed the act-and-wait controller applied to linear n-dimensional or-
der system with random feedback delay. In general case, the n-dimensional system with
feedback delay has infinite number of poles, which is hard to handle by the finite con-
trol parameters. As introduced in this paper, we can make the infinite poles of the
n-dimensional system with random feedback delay reduce to n-dimensional one. The
act-and-wait control mechanism means that the controller can periodically switch off
and switch on, so the stability properties of the system can be described by n eigenvalues
decided by an N × N monodromy matrix. It’s assumed that the duration of waiting is
larger than the maximum feedback delay.

2 Problem Statement

Consider the linear time-invariant system

ẋ(t) = Ax(t) +Bu(t), (1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the input, and A ∈ R
n×n and B ∈ R

n×m

are given constant matrices. Firstly, we consider the autonomous delayed state feedback
controller

u(t) = Dx(t− τr), (2)

where D ∈ R
m×n is a constant matrix and τr is the random delay of state feedback.

Because of the noise, information transmission, online data processing, computation, the
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problem of application of actuator and so on, delays always occur in feedback control,
which are hardly eliminated or tuned during the control design. In general case, the
delay is not a fixed parameter of the system with the changing of the environment. The
range of random delay can often be estimated before designing the controller. In this
paper, we assumed that τr is random non-negative integer, i.e. 0 ≤ τr ≤ τmax, where
τmax is the maximum delay.

By using controller (2), system (1) yields the closed-loop equation:

ẋ(t) = Ax(t) +BDx(t− τr). (3)

There is an infinite number of characteristic roots in the transcendental characteristic
equation with the random time delay:

det(λI −A−BDe−τλ) = 0. (4)

When all the poles of this system are located in the left half of the complex plane, the
system will be asymptotically stable. Poles optimization method was used to deal with
this type of problem [1, 17].

For the given system matrices A, B and random feedback delay τr, we want to find
an appropriate parameters matrix D in order to get satisfied control effect. The specialty
of this feedback delay system is that an infinite poles should be placed by use of finite
control parameters from D. As introduced in the first section of this paper, a special
case of periodic feedback controller called act-and-wait controller will be studied here.

3 Act-and-Wait Mechanism

The form of the act-and-wait controller is

u(t) = g(t)Dx(t− τr), (5)

where g(t) is the T-periodic switching function, which is defined as

g(t) =

{

0, [0, tw),
1, [tw, T ].

(6)

In the above function, tw represents the switched off period of the controller, and ta
represents the switched on period of the controller. The whole period is

T = tw + ta, (7)

By using the act-and-wait controller (5), the system (1) can be written as

ẋ(t) = Ax(t) +BDg(t)x(t − τr). (8)

In the classic control stability theory, this system with act-and-wait controller will be
stable if all the eigenvalues of the transcendental characteristic equation are located in
the left half of the complex plane. Now the stable problem is how to find the appropriate
control parameters, such as tw, ta, and control matrix D. In this paper, in order to
stabilize the system we focus on the optimization of feedback gain matrix D.

When tw is smaller than τr, the characteristic equation will still have infinite poles. If
tw ≥ τr, the monodromy operator of system equation (8) can be presented as an N ×N

matrix.
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Assumed that tw ≥ τr, there are still two cases here which will be discussed separately
below.

(a) 0 < ta ≤ τr; Without loss of generality, the first period of the controller will be
studied here. When t ∈ [0, tw) and g(t) = 0, the system equation with the initial state
x(0) can be given as

x(t) = eAtx0 t ∈ [0, tw). (9)

When t ∈ [tw, T ), then the controller is switched on (g(t) = 1). In other words, the
delayed term is active in system

ẋ(t) = Ax(t) +BDeA(s−τ)x(0). (10)

The initial state of ordinary differential equation (10) is x(tw) = eAtwx(0). Solve the
equation (10), it is derived that

x(T ) =
(

eAT +

∫ T

tw

eA(T−s)BDe
A(s−τ)

ds
)

x(0). (11)

Let

Φ = eAT +

∫ T

tw

eA(T−s)BDe
A(s−τ)

ds, (12)

where Φ is the transition matrix of the system with N eigenvalues during the acting time
of the controller. This means that all the other eigenvalues of the monodromy matrix of
(8) are zeros but n eigenvalues in Φ. Actually, Φ is the monodromy matrix of the system.

(b) ta > τr; Assumed that ta is between kτr and (k + 1)τr, so the transition matrix
Φ can be obtained by step-by-step integration over every succeeding small interval. For
example, the situation about k = 1 will be discussed below. Firstly, the solution over
[0, tw) can be determined similarity to equation (8), then the N ×N monodromy matrix
can be obtained by the piecewise integration over the consecutive interval [0, tw), [tw, tw+
τ), [tw + τr, T ):

Φ = eAT +

∫ T

tw

eA(T−s)BDe
A(s−τ)

ds

+

∫ T

tw+τ

eA(T−s1)BD

∫ s1−τ

tw

eA(s1−s2−τ)BDeA(s2−τ)ds1ds2. (13)

In this way, n eigenvalues of Φ can be placed using the control parameters D, so that the
stability of the system can be achieved. But with the company of increasing of the k, the
monodromy matrix becomes more and more complex. Because Φ depends nonlinearly
on the control parameters D, it’s impossible that arbitrary pole placement of the Φ can
be obtained. Therefore, the simply case(ta ≤ τr) was studied here, and a simulation of
the pole optimization of this case was shown in the next section.
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4 Simulation

There is a second-order system with delayed feedback described by (1), (5), and (6). In
the system:

A =

[

0 1
a 0

]

, B =

[

0
1

]

,

D =

[

−d1
−d2

]

, τ ∈ {1, 0.9, 0.8} .

If an autonomous controller is used in the system, then the characteristic equation is

λ2 − a+ d1e
−λ + d2λe

−λ = 0. (14)

The number of poles is infinite, so the poles can’t be arbitrarily placed using the only
two parameters d1 and d2.

So we discussed this system with act-and-wait controller when a = 0 and a = −4
are applied in system matrix A. Optimal control parameters will be investigated for the
act-and-wait case with tw = 1.2 and ta = 0.3.

1. When a = 0. Actually this system is a feedback stabilized double integrator with
input delay. When the act-and-wait controller is used with tw = 1.2s, ta = 0.3s. The
delay called τr which belongs to {1 0.9 0.8}is a random variable. In order to study the
performance of the system with different control parameters, the monodromy matrices
are calculated separately with different delays 1s, 0.9s, 0.8s. Firstly, we assume that the
delay τr is 1s, then the system can be presented by the 2× 2 monodromy matrix

A =

[

1− 0.045d1 1.5− 0.0135d1 − 0.045d2
−0.3d1 1− 0.105d1 − 0.3d2

]

given by (10). It can be seen that the pole placement problem is now reduced to the
placement of the two eigenvalues of Φ using the D called feedback matrix. By using the
appropriate D, the both eigenvalues of the Φ can be moved to zero. By calculating the
Φ, it can be obtained that these optimal parameters are d1 = 2.2157 and d2 = 5.5588.
The simulation is shown in Figure 1. It can be seen that the system with act-and-wait
controller actually converges to zero within period 2T .

In the same way, the optimal parameters for τr = 0.9s and τr = 0.8s can be achieved:

D(τr=0.9) =

[

−2.2146
−5.3377

]T

,

D(τr=0.8) =

[

−2.2157
−5.1157

]T

.

And the simulations are shown in Figures 2 and 3. In Figures 1–3, it implies that the
system can converge to zero with the random delay. In period 2T the system stops at
zero completing the deadbeat convergence.

2. When a = 4. In this situation, system matrix A is unstable. Because of the
complexity of the system, it can’t be stabilized using an autonomous controller since
a > 2. If the act-and-wait control mechanism is applied with tw = 1.2s and ta = 0.3s,
then we can achieve the monodromy matrix (15). For simplicity, only the situation Φ
with τr = 1 is calculated and shown.



176 B. LI, X.N. SONG AND J.J. ZHAO

0 2 4 6 8 10 12 14 16 18 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

x

 

 
x1
x2

Figure 1. d1 = 2.2157; d2 = 5.5588 (τ= 1s).
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Figure 2. d1 = 2.2146; d2 = 5.3377 (τ= 0.9s).

By applying the act-and-wait controller, the system can be stabilized, and both eigen-
values can be moved to the origin. With this condition d1 = 7.4635 and d2 = 9.8639 can
be obtained. In Figure 4 it can be seen that the state x1(t) and x2(t) converges to zero at
about 10.5s. It’s explicit that the state x1(t) and x2(t) grows very quickly in wait period
in which the controller is switched off. But the growing tendency of x1(t) and x2(t) is
restrained in act period. The system is stabilized after several periods of the controller.

In order to show the stability region of the system, the decay ratio ρ = eRe(λ1) is
introduced, where λ1 is rightmost eigenvalue in the pole in the roots figure. In other
words, this means Re(λ1) ≥ Re(λi), i = 2, 3, ...,∞. This decay ratio is a measure of the
average error decay over a unit period, since |x(t + 1)| ≤ ρ|x(t)|. Figure 6 shows the
stable region of the LTI system with random delay (a = 0).

5 Conclusions

In this paper, we consider the stability problem in a continuous LTI system with random
feedback delays. In the simulation part, a second-order linear time-invariant system with
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Figure 3. d1 = 2.2157; d2 = 5.1157. (τ= 0.8s).
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Figure 4. State of the system (a = 4).

random feedback delay is introduced to verify availability of the act-and-wait controller.
By applying the periodic controller the monodromy matrix only have 2 eigenvalues which
are easily placed to original by the control parameters. And the periodic controller can
still stabilize the system in some cases while the autonomous one can’t work.

Generally speaking, large gain in the controller can result in quick convergence, but
continued large gain input may make the system become unstable. So in a control period,
large gain can only be used in the acting period. In this way, the controller can keep
higher performance and the stability. In the future research work, the algorithm about
how to design control parameters and how to select the period of the controller should
be investigated in order to obtain optimal performance of the system.
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