
Nonlinear Dynamics and Systems Theory, 13 (2) (2013) 203–216

‘

On Stability Conditions of Singularly Perturbed

Nonlinear Lur’e Discrete-Time Systems

B. Sfaihi 1∗, M. Benrejeb 1 and P. Borne 2
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Abstract: This paper deals with stability of discrete-time nonlinear Lur’e-type sys-
tems. Through the singular perturbations technique, the original system is reduced
to a block-diagonal form with slow and fast decoupled modes. Stability conditions of
the two-time-scale decoupled model based on Borne-Gentina practical stability crite-
rion and the use of matrices in the Benrejeb arrow form are developed and compared
with those concerning the original discrete-time system. It is shown that these results
are practical and less conservative then the existing ones. A third order system is
introduced to illustrate the efficiency of the proposed approach.
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1 Introduction

During the past several decades, the stability problem of dynamical systems has at-
tracted an immense attention in the control society. A great majority of the encountered
problems is concerned with the closed-loop behavior of feedback nonlinear systems. An
important and typical class of such systems is Lur’e-type systems introduced by Lur’e
and Postnikov [39], and described by combinations of a dynamic linear bloc and a feed-
back interconnected to a static nonlinearity, assumed to lie in a given sector. Since that,
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Lur’e systems have become an attractive research subject and have received a series of re-
sults in many relevant nonlinear engineering applications, such as mechanical, electrical,
economic and biological [55].

The original analysis was motivated by the need to understand the effect of nonlinear-
ities on control systems due to elements such as imperfect actuators or sensors that have
gain or amplification that can vary over time. Within this framework, the nonlinearities
are most commonly modeled as gain bounded or sector bounded uncertainties and the
absolute stability is analyzed via the formulation of finite system of quadratic equations.

Defined as a global asymptotic stability tolerating any nonlinear perturbations with
special constraints [57], the absolute stability problem has been the subject of extensive
research for continuous Lur’e systems [11, 15, 22, 24, 25, 31, 36, 44, 49, 50, 53]. One of the
most main results related to absolute stability has been the Popov criterion [43], which
is a graphical construction that provides a simple approach to maximize the nonlinear
sector. Popov proved that the analysis can be done in the frequency domain and the
stability is derived by Lyapunov’s direct method. The circle criterion [21,29], dealing with
time varying nonlinearity, analyzes the absolute stability via a suitable strict positive-
realness condition on the linear part and a given sector condition on the nonlinear part.
Recently, more results about the stability analysis for Lur’e systems with slope-restricted
are introduced in [3, 33, 41, 42, 48, 55], and with time-delays and model uncertainties
in [7, 17, 23, 26, 32, 51].

Because of their wide applications in many practical processes, a great number of
results in control and system theory have been extended successfully to singular sys-
tems [13]. The two-time-scale nature of such systems is exploited to decompose the
design problem into two lower-order design problems for the slow and fast modes. Some
results on singular perturbed nonlinear Lur’e systems in continuous-time are developed
in the field [13,52,54] where the stability criterion is deduced by mean of Lyapunov func-
tional method. However, the stability investigation on Lur’e type discrete time systems
is limited [31].

The paper is organized as follows. The class of discrete Lur’e-type systems will be
introduced in Section 2. In Section 3 a two-time-scale decoupling procedure for the
original Lur’e-type system based on singular perturbation technique is presented. In
Section 4 stability conditions of original Lur’e-type system and decoupled model, are
derived and compared. The synthesized results are formulated by the use of the Benrejeb
arrow form matrix and the Borne-Gentina practical stability criterion. In Section 5 the
proposed model decoupling strategy is applied to a nonlinear system of order three.
Stability conditions of original system and reduced order subsystems are developed and
discussed.

2 System Description and Problem Statement

Consider the Lur’e type discrete-time system described by state space representation
(1). The model consists of a static nonlinearity in cascade with a dynamic linear time
invariant system according to [11] and [29]:

S :







xk+1 = ALxk +BLuk,

uk = h (εk) εk,
εk = rk − CLxk,

(1)
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where AL, BL and CL are known matrices of appropriate dimensions, xk ∈ ℜn denotes
the state vector, uk ∈ ℜ is the vector input, rk ∈ ℜ is the reference input, rk = 0 and
εk ∈ ℜ is the control error of the closed-loop system, h (.) : ℜ → ℜ represents memoryless
nonlinear matrix valued function.

The investigated Lur’e-type discrete-time system can be represented by the nonlinear
regression equation:

εk+n +

n
∑

i=1

gi (εk+n−i)εk+n−i = 0, (2)

where the corresponding expression in terms of state space representation (1) becomes:

S : xk+1 = A (εk)xk (3)

with
A (εk) = AL −BLh (εk)CL, (4)

A (εk) denotes the instantaneous characteristic matrix expressed in Frobenius form as:

A (εn) =













0 · · · 0 −gn (εn)

1 0
... −gn−1 (εn)

0
. . . 0

...
0 0 1 −g1 (εn)













. (5)

In the design of complex and/or large scale systems, models are usually of high or-
der. Model reduction techniques can be used to obtain a low-order approximation of
these models, allowing for efficient analysis or control design. Many order reduction
techniques can be found in the literature: reduced order models synthesized via ag-
gregation and dominant modes approaches neglect fast stable dynamics and some of
the poorly controllable and observable slow dynamics. With the singular perturbation
method [1, 14, 35, 38, 47], both slow and fast dynamics are retained; analysis and design
problems are solved in two steps, first for the fast and then for the slow dynamics. These
methods for model reduction of nonlinear systems have in common that the stability
of the reduced-order model is not guaranteed. In the present work, model reduction
procedure, based on singular perturbation technique, for discrete Lur’e-type systems is
presented, and conditions to ensure asymptotic stability of the fast and reduced-order
decoupled subsystem as well as the original system (1) are given.

3 Two-Time-Scale Decoupling

By reordering and/or rescaling of states, let the nonlinear discrete system be structured
in the two-time-scale model:

[

x1
k+1

x2
k+1

]

=

[

A11 A12

A21 A22

] [

x1
k

x2
k

]

, (6)

where x1
k and x2

k are n1 and n2 dimensional state vectors, respectively, and the overall
system is of dimension n = n1 + n2, x

1
k ∈ ℜn1 and x2

k ∈ ℜn2 . This system is assumed
to possess a two-time-scale property, which means that the n eigenvalues of the system
can be separated into n1 slow modes and n2 stable fast modes related to x1

k, and x2
k,
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respectively. The fast subsystem x2
k, assumed to be stable, is active only during a short

initial period, after, it is negligible and the characterization of the system can be described
by its slow subsystem x1

k.
An explicit two-time-scale property of this model can be introduced by assuming that:

A∗

11 = µ−1 (A11 − In1
) , (7)

A∗

12 = µ−1A12, (8)

A∗

21 = A21, (9)

A∗

22 = A22. (10)

The transformed system is expressed in the standard singular perturbation system struc-
ture [38] and [27, 28, 34, 37]:

[

x1
k+1

x2
k+1

]

=

[

In1 + µA∗

11 µA∗

12

A∗

21 A∗

22

] [

x1
k

x2
k

]

, (11)

where µ is a small positive singular perturbation parameter and det (In2
−A∗

22) 6= 0 [47].
As µ → 0, the eigenvalues of (11) cluster into two groups and, the original system (6)

can be decoupled in slow subsystem Ss and fast subsystem Sf candidates:

Ss : xs
k+1 = (In1

+ µAs)x
s
k, (12)

Sf : x
f
k+1 = A∗

22x
f
k , (13)

with
As = A∗

11 +A∗

12 (In2
−A∗

22)
−1

A∗

21, (14)

where xs ∈ ℜn1 and xf ∈ ℜn2 are, respectively, the slow and the fast subsystems state
vectors defined using a decoupling transformation [12, 40, 47], if it exists.

The slow subsystem is defined by neglecting the fast stable dynamics, which is equiv-
alent to replace the second equation of (11) by its steady-state algebraic equation. The
fast subsystem, supposed to be stable, is derived by assuming that slow variables are
constant during fast transients and µ = 0.

4 Main Results

By considering the instantaneous characteristic polynomial PS(., λ) of (1), (2) or (3):

P ( . , λ)=λn +

n
∑

i=1

gi (.)λ
n−i (15)

and distinct arbitrary constant parameters αj , j = 1, 2, · · · , n − 1, αi 6= αj , ∀i 6= j, it
comes the following notations:

βj =

n−1
∏

k=1
k 6=j

(αj − αk )
−1, ∀j = 1, 2, · · · , n− 1, (16)

γj(.) = −P ( . , αj), ∀j = 1, 2, · · · , n− 1, (17)
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δn(.) = −g1(.)−

n−1
∑

i=1

αi. (18)

Let S be a Lur’e- type system of the form (1)-(3) and let Ss be the decoupled Lur’e-
type subsystem (12). By applying the Borne-Gentina practical stability criterion [8,9,20]
to the discrete Lur’e type systems characterized by the Benrejeb arrow form matrix [2–
6, 10, 18], we obtain the following theorems and corollary.

Theorem 4.1 The discrete nonlinear system S of the form (1) is asymptotically
stable, if there exist constant parameters αi ∈ ℜ; αi 6= αj , ∀i 6= j, such that

|αi| < 1 ∀i = 1, · · · , n− 1 (19)

and

1−
∣

∣δ
n
(·)

∣

∣−

n−1
∑

j=1

∣

∣γj (·)
∣

∣ |βj | (1− |αj |)
−1

> 0. (20)

Theorem 4.2 For chosen stable fast subsystem, i.e., |αi| < 1 ∀i = n1, · · · , n−1, the
discrete nonlinear decoupled system (12) is asymptotically stable if there exist arbitrary
constant parameters αi ∈ ℜ; αi 6= αj , ∀i 6= j, such that the following conditions are
satisfied and

|αi| < 1 ∀i = 1, ..., n1 − 1, (21)

1−

∣

∣

∣

∣

∣

∣

δ
n
(·) +

n−1
∑

j=n1

γj (·)βj (1− αj)
−1

∣

∣

∣

∣

∣

∣

−

n1−1
∑

j=1

∣

∣γj (·)
∣

∣ |βj | (1− |αj |)
−1

> 0. (22)

Corollary 4.1 For chosen stable fast subsystem, i.e., |αi| < 1 ∀i = n1, · · · , n − 1,
the discrete nonlinear decoupled subsystem (12) (respectively the original system (1)) is
asymptotically stable if the original system (1) (respectively decoupled subsystem (12)) is
asymptotically stable and, if there exists constant parameter αi ∈ ℜ; αi 6= αj, ∀i 6= j,
such that the following conditions are satisfied















αj > 0, ∀j = 1, ..., n1 − 1,
n−1
∑

i=1

αi > −g1 (.) ,

γj (.)βj > 0, ∀j = 1, ..., n1 − 1.

(23)

Proof. (Theorem 4.1) Let us consider the Lur’e-type system S of the form (1)-3). A
change of coordinate defined by:

yk = Txk (24)

with yk ∈ ℜn and

T =















0 0 · · · 0 1
1 αn−1 α2

n−1 · · · αn−1
n−1

1 αn−2 α2
n−2 · · · αn−1

n−2
...

...
... · · ·

...
1 α1 α2

1 · · · αn−1
1















. (25)
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leads to the following state space description

yk+1 = G (.) yk. (26)

Allowing the synthesis of sufficient stability conditions easy to test, the new instanta-
neous characteristic matrix G (.) is chosen to be in the arrow form [2–6,10,18], Appendix
2, as follows

G (.) = T A(.)T−1 =











δn (·) β1 · · · βn−1

γ1 (·) α1

...
. . .

γn−1 (·) αn−1











, (27)

where βi, γi, δn and αi, ∀i = 1, 2, · · · , n− 1 are defined (16)–(18).

A pseudo-overvaluing matrix M (G (·)) of the system (26), corresponding to the use
of the vector norm (Appendix 1):

p (y) = [|y1| , |y2| , ... , |yn|]
T
, (28)

y = [y1, y2, ... , yn]
T
, for the stability study, can be obtained from the inequality:

p(yk+1) ≤ M (G (·)) p(yk) (29)

satisfied for each corresponding component; that leads to the following comparison system

zk+1 = M (G (·)) zk (30)

with

M (G (.)) =











|δn (·)| |β1| · · · |βn|
|γ1 (·)| |α1|

...
. . .

|γn (·)| |αn|











(31)

such as: z0 = p (y0).

If the nonlinearities of the comparison nonlinear system (30) are isolated in one row of
M (G (·)), the verification of the Kotelyanski condition (Appendix 1) enables to conclude
about the stability of the original system characterized by G (·) [3, 9, 10].

It comes the following sufficient asymptotic stability condition of original system:

(In −M (G (·)))

(

1 2 . . . j

1 2 . . . j

)

> 0 ∀j = 1, . . . , n. (32)

This ends the proof of Theorem 4.1.

Proof. (Theorem 4.2) Note that the satisfaction of the condition (19), i.e. |αi| <
1, i = 1, · · · , n− 1, means that the fast system characterized by a diagonal matrix {αi},
i = n1, · · · , n− 1 is stable. Conditions |αi| < 1, i = 1, · · · , n1 − 1 are necessary to satisfy
for the reduced slow subsystem stability.

In order to synthesize the stability conditions of the two-time-scale decoupled system
S, we first, reorder the transformed nonlinear system states (3). Resulting A11, A12,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 13 (2) (2013) 203–216 209

A21 and A22 matrices are then in the form (33), where the matrix A11 is candidate to
characterize the slow subsystem of (6) and A22 the fast one:

A
11

=











δn (·) β1 · · · βn1−1

γ1 (·) α1

...
. . .

γn1−1 (·) αn1−1











, A
12

=











βn1
· · · βn−1

0 · · · 0
...

...
0 · · · 0











,

A
21

=







γn1
(·) 0 · · · 0
...

...
...

γn−1 (·) 0 · · · 0






, A

22
=







αn1

. . .

αn−1






.

(33)

Arbitrary constant parameters αi, i = n1, · · · , n− 1, are chosen in concordance with the
estimation of the dynamics that we consider physically fast for the studied system.

Substituting the relations (33), (7)-(10) and (14) into (12) and (13), yields the fol-
lowing discrete slow and fast subsystems, respectively:

xs
k+1 = As (.)x

s
k,

x
f
k+1 = Afx

f
k ,

(34)

and then comparison systems, respectively:

ysk+1 = M (As (·)) y
s
k, (35)

y
f
k+1 = M (Af ) y

f
k , (36)

where As ∈ ℜn1xn1 and Af ∈ ℜn2xn2 are given by

As =















δn (.) +
n−1
∑

j=n1

γj(.)βj

(1−αj)
β1 · · · βn1−1

γ1 (.) α1

...
. . .

γn1−1 (.) αn1−1















, (37)

Af =







αn1

. . .

αn−1






, (38)

and M (As (·)) and M (Af (·)) are respectively the pseudo-overvaluing matrices of the
slow and fast subsystems (12) and (13), corresponding to the use of the vector norm (28).
By applying the practical Borne-Gentina criterion [3, 9, 10, 16] to the comparison sys-
tems (35) and (36) of (34), we deduce the stability conditions of the decoupled discrete
systems. Theorem 4.2 is then proved.

Proof. (Corollary 4.1) The proof can be easily obtained by substituting the
relations (23) in (22).

5 Illustrative Example

To show the effectiveness of the derived theorems, a numerical example is studied below.
Consider the discrete nonlinear Lur’e system described by means of the following block-
oriented nonlinear model (Figure 1), where f (.) : ℜ → ℜ is a nonlinear function, B0 (s) =
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1

D s

y0r
0
B

T

k

kf
ku

N s

Figure 1: Lur’e systems.

1−e−Ts

s
is a zero order holder, T = 0.2s the sampling time, and D (s) and N (s) are

polynomials defined by:

D (s) = s (1 + τ1s) (1 + τ2s) , (39)

N (s) = λ2s
2 + λ1s+ λ0. (40)

A state space representation (3) synthesized in the canonical Frobenius form gives:

A (εk) =





0 0 −1, 19.10−6f (εk)
1 0 −0, 13 + 0, 23.10−1f (εk)
0 1 1, 13− 1, 92f (εk)



 . (41)

By choosing α1 = 0.9 and α2 = 0.1 satisfying (19), the synthesized transformed state
space representation in the arrow form is defined by:

N (εk) =





0, 14− 0, 19f (εk) 1, 20 −1, 20
0, 69.10−1 − 0, 14f (εk) 0, 90 0
−0, 32.10−2 − 0, 37.10−3f (εk) 0 0, 10



 . (42)

Furthermore, by taking µ = 0.1, the decoupled slow and the fast subsystems are given
respectively by

Ns =

[

0, 14− 0, 19f (εk) 1, 20
0, 69.10−1 − 0, 14f (εk) 0, 90

]

,

Nf = 0, 10.
(43)

The stability conditions of the original system deduced from Theorem 4.1, are, for
chosen α1 and α2:

1− |0, 14− 0, 19f (εk)| − 12×
∣

∣0, 69.10−1 − 0, 14f (εk)
∣

∣

−1.33×
∣

∣−0, 32.10−2 − 0, 37.10−3f (εk)
∣

∣ > 0

or

− 0.01 < f (εk) < 1.05. (44)

Now, by applying Theorem 4.2, the stability conditions of the decoupled nonlinear
system (43) are:

1− |0, 14− 0, 19f (εk)| − 12×
∣

∣0, 69.10−1 − 0, 14f (εk)
∣

∣ > 0
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or

− 0.01 < f (εk) < 1.05. (45)

Furthermore, according to the corollary, if we impose the synthesized conditions (23)

{

0, 14− 0, 19f (εk) > 0,
−0, 32.10−2 − 0, 37.10−3f (εk) < 0,

(46)

we obtain

− 8.64 < f (εk) < 0.73. (47)

Consequently, the original Lur’e discrete-time system (42) and the decoupled sys-
tem (43) are asymptomatically stable for the common stability domain:

− 0.01 < f (εk) < 0.73. (48)

Stability domain (D1) of the original system (42) and the common stability domain
(D2) are introduced in Figure 2.

 

5 10-5-10

5

10

-10

-5

: D2

: D1

k

u

k
ε

k

Figure 2: Stability domains.

6 Conclusion

The problem of singular perturbed nonlinear Lur’e discrete-time systems is addressed and
a model reduction procedure based on the singular perturbation technique is introduced.
Sufficient conditions for stability of the decoupled system as well as the original nonlinear
Lur’e type discrete system( 1) are then derived. Supplementary stability conditions are
synthesized to ensure a common stability domain for the original and the decoupled
system. An example is studied to illustrate the efficiency of the proposed results.
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Appendix 1

Definition 6.1 (Vector Norm [45, 46]) Let E = ℜn be a vector space and
E1, E2, · · · , Ek be subspaces of E which verify: E = E1∪E2∪· · ·∪Ek. Let x ∈ E be an n

vector defined on E with a projection in the subspace Ei denoted by xi, xi = Pix, where
Pi is a projection operator from E into Ei, pi is a scalar norm (i = 1, · · · , k) defined on
the subspace Ei and p denotes the vector norm of dimension k and with ith component,
pi(x) = pi(xi), pi(x) : R

n → Rk
+, where pi(xi) is a scalar norm of xi.

Lemma 6.1 (Kotelyanski [19, 30]) The real parts of the eigenvalues of matrix A,
with non negative off diagonal elements, are less than a real number µ if and only if all
those of matrix M = µIn −A are positive, with In being the n identity matrix.

When successive principal minors of matrix (−A) are positive, Kotelyanski lemma
permits to conclude on stability property of the system characterized by A.

Appendix 2

Let us consider the observable nonlinear system:

zk+1 = A (.) zk,

A (.) =













0 · · · 0 −an (.)

1 0
... −an−1 (.)

0
. . . 0

...
0 0 1 −a1 (.)













,

where ai(.) are the instantaneous characteristic polynomial PA(., λ) coefficients of A (.),
such that:

PA( . , λ) = λn +

n
∑

i=1

ai(.) λ
n−i.

A change of base defined by:

ẑk = Tzk,

T =















0 0 · · · 0 1
1 αn−1 α2

n−1 · · · αn−1
n−1

1 αn−2 α2
n−2 · · · αn−1

n−2
...

...
...

...
...

1 α1 α2
1 · · · αn−1

1















,

where αj , j = 1, 2, · · · , n− 1 are distinct arbitrary constant parameters, allows the new
state matrix, denoted by F (.), to be in arrow form [2–6,10, 18]:

F (.) = T A(.)T−1 =











δn(.) β1 · · · βn−1

γ1(.) α1

...
. . .

γn−1(.) αn−1
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with

βj =

n−1
∏

k=1
k 6=j

(αj − αk )
−1, ∀ j = 1, 2, . . . , n− 1,

δj(.) = −PA( . , αj), ∀ j = 1, 2, . . . , n− 1,

δn(.) = −a1(.)−

n−1
∑

i=1

αi.
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