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Abstract: We examine the synchronization transition of a pair of unidirectionally
coupled gyroscope. Based on Lyapunov stability theory and linear matrix inequal-
ities (LMI), some necessary and sufficient criteria for stable synchronous behaviour
are obtained and an exact analytic estimate of the threshold for complete chaos syn-
chronization is derived. Finally, numerical simulation results are presented to validate
the feasibility of the theoretical analysis.
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1 Introduction

In the last two decades, an intensive research activity has been devoted to the study
of dynamics of coupled and driven chaotic systems. Despite the considerable body of
knowledge that has already been gained and established, research on coupled nonlinear
systems still remains an active field. In view of the importance of the classical results
from the dynamics of driven or coupled harmonic oscillators in science and technology,
the question of which phenomena emerge when chaotic oscillators are coupled or somehow
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driven or perturbed has been and is still of great interest. The most relevant and widely
studied phenomena until now are the synchronization [1–5] and the suppression of chaos
[2, 4–8]. Due to the potential applications in various areas of science and technology,
synchronization between two dynamical system has stimulated a wide range of research
activity and many effective methods have been presented [1, 9–11].

In the past, research on chaos synchronization and its applications has intensively
focused on the autonomous chaotic systems such as Lorenz, Chen, Rössler etc, but re-
cently, the dynamics and synchronization of non-autonomous chaotic systems such as
Duffing oscillator, gyroscopes, etc have witnessed tremendous research interest due to
their potential applications in engineering and life sciences [12–18]. In particular, the
gyroscopes, from a purely scientific viewpoint show strange and interesting properties,
and from engineering viewpoint, they have great utility in the navigation of rockets, air-
crafts, spacecrafts and in the control of complex mechanical system. In the past years,
the gyroscope has been found with rich phenomena [12, 19, 20], for example, when sub-
jected to harmonic vertical base excitations, it exhibits a variety of interesting dynamical
behaviours that span the range from regular to chaotic motions [11, 12, 20–22].

The synchronization of the symmetric gyroscope model presented in Ref. [12] has
been achieved using different methods, for example, four different kinds of one way cou-
pling [12], active control [23], backstepping design [13, 24], fuzzy logic controller [25],
sliding mode control [26, 27], sliding based fuzzy control [28] and so on. Very recently,
synchronization of uncertain gyros was considered in [29]. Among the above methods,
it is well known that linear feedback method provides simple control inputs for syn-
chronization and has lately been employed to achieve stable synchronization in various
unidirectionally coupled systems including, double well Duffing oscillators (DDOs) [30],
parametrically excited Duffing oscillators [31] and the gyroscope. However, a crucial
issue is the assessment of stability analysis for feedback controlled system and the de-
termination of appropriate feedback gains that would guarantee stable synchronization.
Since the beginning of the studies on synchronization of chaotic systems, the stability of
synchronous motion was considered the most crucial question needed to be addressed, in
order to furnish the proper conditions for a laboratory verification of theoretical findings.
The problem of stability can be tackled in different ways and different criteria could be
established, depending on specific conditions of interest.

One of the most popular and widely used criterion is the conditional Lyapunov ex-
ponents, which constitute average measurements of expansion or shrinkage of small dis-
placements along the synchronized trajectory. However, it has been shown that neg-
ativity of the conditional Lyapunov exponents is not a sufficient condition for a stable
synchronized state due to some unstable invariant sets in the stable synchronization man-
ifold [32]. Whether this condition is necessary or not has remained an open issue (see [33]
and references therein), and needs to be studied further. In [30], we proposed a linear
state error feedback approach based on Lyapunov stability theory and Linear Matrix In-
equality (LMI) [34], to analyze the stability of the synchronized state and also determine
sufficient criteria for stable synchronous behaviour. This method is used because, it is
known that many engineering optimization problem can be easily translated into linear
matrix inequality (LMI) problems and a wide variety of problems arising in system and
control theory can be reduced to a few standard convex or quasi-convex optimization
problems involving LMI. The resulting optimization problem can be solved numerically
with very high efficiency [35]. Moreover, the Lyapunov methods which are traditionally
applied to the analysis of system stability, can just as well be used to determine thresh-
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old coupling, kth, at which complete synchronization could be reached in master-slave
or mutually coupled oscillators. Critical coupling for the on-set of stable synchroniza-
tion in coupled or driven oscillators is relevant for various scientific and technological
applications [36].

In this paper, we consider the synchronization of unidirectionally coupled gyroscopes.
We propose a novel stability criterion using Lyapunov stability theory and linear ma-
trix inequality (LMI) to determine the threshold coupling, kth, at which full and stable
synchronous behaviour could be reached in the master-slave coupled gyroscope. The
advantage of our method is that the coupling parameters of the system can be obtained
at the same time by solving the LMI without predetermining them to check the crite-
rion. Furthermore, the LMI can be easily solved by various optimization algorithms.
The sufficient criteria can be applied to directly design the coupling strength resulting in
the synchronization. The rest of the paper is structured as follows: in the next section,
we present the synchronization scheme, while Section 3 is devoted to synchronization
threshold and stability criteria, Section 4 is devoted to numerical results and discussions
and the paper is concluded in Section 5.

2 Model and Synchronization Preliminaries

Here, we consider the motion of the symmetric gyro with linear-plus-cubic damping given
as [12]

θ̈ + α2 (1− cos θ)2

sin3 θ
− β sin θ + c1θ̇ + c2θ̇

3 = (f sinωt) sin θ,

where f sinωt is a parametric excitation, c1θ̇ and c2θ̇
3 are linear and nonlinear damping,

respectively and α2 (1−cos θ)2

sin3 θ
− β sin θ is a nonlinear resilence force. After necessary

transformation, the gyroscope equation in non-dimensional form can be written as

ẋ1 = x2, (1)

ẋ2 = −α2 (1− cosx1)
2

sin3 x1

− c1x2 − c2x
3
2 + (β + f sinωt) sinx1,

where

α =
βφ

I1
=

I3ωz

I1
, c1 =

D1

I1
, c2 =

D1

I1
, β =

Mgl

I1
, f =

Mgl

I1
. (2)

The nonlinear gyro given by Eq. (1) exhibits varieties of dynamical behaviour in-
cluding chaotic motion displayed in Figure 1 for the following parameters α2 = 100, β =
1, c1 = 0.5, c2 = 0.05, ω = 2, and f = 35.5 as given in [12].

By letting η(t) = β + f sinωt and using the first two terms of the Taylor series

expansion of (1−cosx1)
2

sin3 x1

, system (1) can be written as:

ẋ1 = x2,

ẋ2 = −
α2x1

4
−

α2x3
1

12
− c1x2 − c2x

3
2 + η(t) sinx1. (3)

To facilitate the present analysis, we express system (3) in the following vector form:

ẋ = Ax− f(x) +G(x), (4)
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Figure 1: (a) The Poincaré map and (b) phase portrait showing a chaotic attractor of nonlinear
gyroscope with the following parameters α2 = 100, β = 1, c1 = 0.5, c2 = 0.05, ω = 2, and
f = 35.5.

where x = (x1, x2)
T ∈ R2 are state space variables and

A =

(

0 1
−α2

4 −c1

)

, f(x) = α

(

0 0

−
α2x3

1

12 −c2x
3
2

)

, G(x) = η

(

0
sinx1

)

.

In order to examine the synchronization between two unidirectional coupled gyro-
scopes, we construct a master-slave synchronization scheme for two identical chaotic
gyroscopes by linear state error feedback controller in the following form:

M : ẋ = Ax− f(x) +G(x),

S : ẏ = Ay − f(y) +G(x) + u(t),

C : u(t) = K(x− y), (5)

where u = K(x−y) is the linear state feedback control input and K ∈ R2×2 is a constant
control matrix that determines the strength of the feedback into the response system.
By defining the synchronization error variable as the difference between the relevant
dynamical variables given by

e = x− y, (6)

we obtain the error dynamics for the master-slave system (5) as:

ė = (A−K +M(x,y) +G(x1, y1))e, (7)

where

M(x,y) =

(

0 0

−α2m1(x1,y1)
12 −c2m2(x2, y2)

)

,

m1(x1, y1) = x2
1 + x1y1 + y21 , m2(x2, y2) = x2

2 + x2y2 + y22 ,

G(x1, y1) = η

(

0 0
g(x1, y1) 0

)

, g(x1, y1) = −
(sinx1 − sin y1)

x1 − y1
. (8)
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In the absence of the control matrix K Eq. (7) would have an equilibrium at (0, 0). Our
aim is to choose the appropriate coupling matrix K such that the trajectories of the
master system x(t) and slave one y(t) satisfy

lim
t→∞

||e|| = lim
t→∞

||x(t) − y(t)|| = 0, (9)

where || ∗ || represents Euclidean norm of a vector.

3 Threshold and Criteria for Synchronization

Here, we have employed the Lyapunov’s direct method and linear matrix inequality
(LMI) [37] to establish some criteria for global chaos synchronization in the sense of error
system (7). The classical method of Lyapunov stability theory which employs Lyapunov
functionals was known for the analysis and synthesis of synchronization dynamics of
coupled and driven oscillators (e.g see Refs. [38,39]). In addition to the familiar approach
of analyzing and synthesizing the synchronization behaviour of coupled systems; the
present paper employed the Lyapunov direct method to obtain the threshold coupling at
which the two systems become completely synchronized.

To begin with, we have applied the following assumption and lemma to prove the
main theorem of this paper.

Assumption. The chaotic trajectory of the master gyroscope (1) is bounded i.e. for
any bounded initial condition x(0) within the defining domain of the drive system, there
exists a positive real constant, σ, such that |(x(t)| ≤ σ ∀t ≥ 0.

Remark 1 This assumption is reasonable and valid in the context of bounded feature
of chaotic attractors [40].

Lemma 1 For g(x1.y1) defined earlier, the inequality

|g(x1, y1)| ≤ 1 (10)

holds.
Proof. By the differential mean-value theorem:

sinx1 − sin y1 = (x1 − y1) cosφ, φ ∈ (x1, y1) or φ ∈ (y1, x1) (11)

so that,

g(x1, y1) =
−(sinx1 − sin y1)

x1 − y1
= −(cosφ). (12)

Hence, the inequality (10) holds.
Next, we proceed by utilizing the stability theory on time-varied systems [34] to derive

sufficient criteria for global chaos synchronization in the sense of the error system (7).
The following theorem is related to the general control matrix

K =

(

k11 k12
k21 k22

)

∈ R2×2. (13)

Theorem 1 The master-slave system (4) achieves global chaos synchronization if a
symmetric positive matrix

P =

(

p11 p12
p12 p22

)

(14)
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and a coupling matrix K ∈ R2×2 defined in (13) are chosen such that for any t > 0

Ω1 = −p11k11 − p12k21 + |p12|ω
β < 0, (15)

Ω2 = p12(1 − k12)− p22(k22 + c1 + 3c2σ
2
2) < 0, (16)

4Ω1.Ω2 > L2, (17)

L =
[

|p11(1− k12)− p12(k11 + k22 + c1 + 3c2σ
2
2)− p22k21|p22ω

β
]

,

where ωβ = β + |f |+
α2σ2

1

4 − α2

4 .
Proof. Let us assume a quadratic Lyapunov function of the form:

V (e) = eTPe, (18)

where P is a positive definite symmetric matrix defined in (14). The derivative of the
Lyapunov function with respect to time, t, along the trajectory of the error system (7)
is of the form:

V̇ (e) = ėTPe+ eTPė. (19)

Substituting Eq. (7) into the system (19), we have

V̇ (e) = eT
[

(A−K+M+G)TP+P(A−K+M+G)
]

e (20)

V̇ (e) < 0, if
λ = (A−K +M +G)TP+P(A−K+M+G) < 0, (21)

that is

λ =

(

µ11 µ12

µ12 µ22

)

, (22)

where µ11 = −2p11k11+2p12

(

ηg −
(

α2

4 + α2m1

12 + k21

))

, µ12 = p11(1−k12)−p12(k11+

k22 + c1 + c2m2) + p22

(

ηg −
(

α2

4 + α2m1

12 + k21

))

and µ22 = 2p12(1 − k12) − 2p22(c1 +

c2m2 + k22) respectively. The symmetric matrix in (22) is negative definite if and only if

−2p11k11 + 2p12L
α < 0, (23)

2p12(1− k12)− 2p22(c1 + c2m2 + k22) < 0, (24)

4L1L2 − L3 > 0, (25)

where Lα = ηg −
(

α2

4 + α2m1

12 + k21

)

,

L1 = [p12L
α − p11k11] ,

L2 = [p12(1 − k12)− p22(c1 + c2m2 + k22)] ,

L3 = [p11(1 − k12)− p12(k11 + k22 + c1 + c2m2) + p22L
α]2 .

It follows from the Assumption that for all t ≥ 0,

|m1(x1, y1)| = |x2
1 + x1y1 + y21 | ≤ 3σ2

1 ,

|m2(x2, y2)| = |x2
2 + x2y2 + y22 | ≤ 3σ2

2

|η(t)| = b|β + f sinωt| ≤ β + |f |.
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Since the matrix P is positive definite, we have p11p22 − p212 > 0, so that −2p11k11 +
2p12L

α ≤ −2p11k11 − 2p12k21 + |2p12|L
α ≤ 2Ω1,

|p11(1 − k12) − p12(k11 + k22 + c1 + c2m2) + p22

[

ηg −
(

α2

4 + α2m1

12 + k21

)]

| ≤ |p11(1 −

k12)− p12(k11 + k22 + c1 + 3c2σ
2
2)− p22k21|+ p22

(

η − α2

4 +
α2σ2

1

4

)

.

The inequalities (23)-(25) hold if the inequalities (15)-(17) are satisfied. This completes
the proof.

For the purpose of applications, it is necessary that the simplest possible synchro-
nization controllers are employed. Hence, the following corollaries can be obtained from
the main theorem of this paper.

Corollary 1 If the coupling matrix is defined by K = diag{k1, k2} and the symmetric
positive definite matrix P is as defined in (24) such that

k1 >
|p12|

(

β + |f |+
α2σ2

1

4 − α2

4

)

p11
, (26)

k2 >
p12 − (c1 + 3c2σ

2
2)p22

p22
, (27)

4[|p12|

(

β + |f |+
α2σ2

1

4
−

α2

4

)

− p11k1][p12 − p22(k2 + c1 + 3c2σ
2
2)] >

[

|(p11 − p12(k1 + k2 + c1 + 3c2σ
2
2)|+ p22

(

β + |f |+
α2σ2

1

4
−

α2

4

)]2

, (28)

then the master-slave system (4) achieves global chaos synchronization.
Proof. The inequalities (26) - (28) can be obtained according to the inequalities

(15)-(17) with k11 = k1, k22 = k2 and k12 = k21 = 0.
Corollary 2 The master-slave system (4) achieves global chaos synchronization if

the coupling matrix K = diag{k, k} and the positive symmetric matrix P defined in (14)
are chosen such that

k = max

(

|p12|(β + |f |+
α2σ2

1

4 − α2

4 )

p11
,

p12 − (c1 + 3c2σ
2
2)p22

p22

)

≥ 0, (29)

4(p11p22 − p212)k
2 − 4k[2p22|p12|

(

β + |f |+
α2σ2

1

4 − α2

4

)

+p11(p12 − (c1 + 3c2σ
2
2)p22))− |p12(p11 − (c1 + 3c2σ

2
2)p12|]

+4|p12|
(

β + |f |+
α2σ2

1

4 − α2

4

)

(p12 − (c1 + 3c2σ
2
2)p22)

−
[

|p11 − (c1 + 3c2σ
2
2)p12|+ p22

(

β + |f |+
α2σ2

1

4 − α2

4

)]2

> 0.

(30)

Proof. Letting k1 = k2 = k in the partial synchronization conditions (26) and (27),
the inequality (29)) can be obtained.

For k > 0 given by (29), we have
[

|p11 − p12(2k + c1 + 3c2σ
2
2)|+ p22

(

β + |f |+
α2σ2

1

4 − α2

4

)]2

≤
[

|p11 − (c1 + 3c2σ
2
2)p12|+ 2k|p12|+ p22

(

β + |f |+
α2σ2

1

4 − α2

4

)]2

.

Hence, the inequality (30) can be realised by partial synchronization criterion (28)
with k1 = k2 = k. Since p11p22 − p212 > 0, the solution k to the inequality (30) exists.
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Remark 2 We select the elements of the positive symmetric matrix P as p12 =

0, p11 = p22

(

β + |f |+
α2σ2

1

4 − α2

4

)

, and obtain the following algebraic synchronization

criterion via the inequalities (29) and (30).

K = diag{k, k},

k >

√

(c1 + 3c2σ2
2)

2 + 4
(

β + |f |+
α2σ2

1

4 − α2

4

)

− (c1 + 3c2σ
2
2)

2
= k1th. (31)

Corollary 3 The synchronization scheme (5) achieves global chaos synchronization
if the control matrix K = diag{k, 0} and a symmetric positive definite matrix P given in
(14) are selected such that

k > b
|p12|γ

p11
, (32)

np12 − (c1 + 3c2σ
2
2)p22 < 0, (33)

k[|p12(p11 − (c1 + 3c2σ
2
2)p12)|+ |p12|p22γ − 2((c1 + 3c2σ

2
2)p22 − p12)p11]

p212k
22 + 4|p12|((c1 + 3c2σ

2
2)p22 − p12)γ + [|p11 − (c1 + 3c2σ

2
2)p12|+ p22γ]

2 < 0,
(34)

where γ = β + |f |+
α2σ2

1

4 − α2

4 .
Remark 3 We select the symmetric positive definite matrix

P = p22

(

γ 0
0 1

)

with p22 > 0.
The following synchronization criterion is gained based on the criteria (31)-(34).

K = diag{k, 0}, k >
β + |f |+

α2σ2

1

4 − α2

4

2(c1 + 3c2σ2
2)

. (35)

4 Results and Discussion

In this section, we present numerical simulation results to confirm the obtained criteria.
We utilized the fourth order Runge-Kutta routine with the following initial conditions
(x1(0), y1(0)) = (1.0,−1.0), (x2(0), y2(0)) = (1.0,−1.2), a time-step of 0.001 and fixing
the parameter values of α2 = 100, β = 1, c1 = 0.5, c2 = 0.05, ω = 2, and f = 35.5 as in
Figure 1, to ensure chaotic motion, we solved the master-slave system (4) with the control
matrices as defined in Eqs. (31) and (35). The simulation results obtained reveal that the
trajectory of the master gyroscope depicted in Figure 1 is bounded and the error dynamics
shown in Figure 2 oscillate chaotically with time when the two systems are decoupled.
The partial variables x1 and x2 of the chaotic attractor satisfy x1(t) = x2(t) < 1.25 for
any t ≥ 0. Thus we find out that the constant σ1 = σ2 = 1.25.

The critical coupling at which complete synchronization could be observed is vital
for many scientific and technological applications because it provides useful information
regarding the operational regime for optimal performance in coupled systems. In Figure
3, we displayed a simulation result of average error, Eave, against coupling, k, and noticed
that as k increases and as full synchronization is approached, Eave → 0 asymptotically
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Figure 2: Average error, Eave, as a function of time for the uncoupled systems with the same
parameters as in Figure 1.

at the threshold coupling, kth ≈ 5.98. Then for all k > kth, Eave = 0 and remains stable
as t → ∞ implying that the oscillators are completely synchronized. Interestingly, we
noticed that by direct calculations of Eq. (31) for the control matrix K = diag{k, k},
k > kth = 6.18. Thus the obtained criterion is in good agreement with numerical
simulation result.

Figure 3: Average Error dynamics, Eave, as a function of the coupling strength, k. Here the
parameters of the system are as in Figure 1.

Using the criterion defined by Eq. (31), one readily obtains a coupling matrix K =
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diag{6.18, 6.18} by which the master-slave system (4) achieves chaos synchronization.
Figure 4 shows the synchronization for k = 6.2. Finally, we depict the simulation results
for the second case in which we choose constant control matrix K = diag{k, 0}, such that
k > 34.43 which satisfies the condition in Eq. (35). The simulation results displayed in
Figure 4 confirmed that complete synchronization is achieved for k = 35.0 > kth. Notice
that in both cases, the synchronization is already reached at t = 1.0, showing an excellent
transient performance.

Figure 4: Chaos synchronization of two linearly coupled gyroscopes with the coupling strength
K = diag{6.20, 6.20} and K = diag{35.0, 0}.

5 Conclusions

In this paper an analytical method based on Lyapunov stability theory and linear matrix
inequality (LMI) have been utilized to examine the stability of synchronized dynamics
and thus determine the threshold coupling, kth, at which stable synchronization regime
could be observed in master-slave parametrically excited gyroscope. The criteria obtained
in this paper are in algebraic form and could be easily employed for designing the feedback
control gains that would guarantee complete and stable synchronization. Finally, we have
presented numerical simulation results to verify the effectiveness of the obtained criteria.
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