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1 Introduction

Calculus on time scales was introduced by Hilger (see [6]), as a theory which is under-
going rapid development as it provides a unifying structure for the study of differential
equations in the continuous case and the study of difference equations in the discrete case.
Some preliminary definitions and theorems on time scales can be found in books [3]4]
which are excellent references for calculus of time scales. Also, there is much attention
paid to the study of multipoint boundary value problem (see [TL2,[7HI3]).

In [5] the following m-point boundary value problem on time scales was studied

uBY(t) +q(t) f(u(t)) =0, te[0,T]r,

u?(0) = Z biu® (&), uw(T) = i a;u(&;),
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where a;,0; >0 (i =1,2,....m—2),and & € (0,p(T))r with 0 < & < & < ... <&ma <
p(T). And the existence of at least two positive solutions of the above problem was
established by means of a fixed point theorem in a cone.

Zhao and Ge [I3] studied the following m-point boundary value problem on time
scales

(6p(u)Y () + h(t) f(t,u(t),u(t)) = 0, t€ (0,00)r,
w(0) =Y aqu(n), ut(+o0) = Z Biu (my),

where a;,8; >0 (i = 1,2,....,m —2), and 7; € (0,00)7 with d(0) < < 12 < ... <
Nm—2 < +00. They established new criteria for the existence of at least three unbounded
positive solutions by using Avery-Peterson’s fixed point theorem.

Ji, Bai and Ge [7] studied the following singular multipoint boundary value problem
on time scales

(¢p(w') () +at)f(u(t) =0, te(0,1),
u'(0) = Z au(), u'(l) = Z aiu(n;),

i=1

where 0 < § <& < .. <€pa<L,0<m <M < ... < N2 <1, & < my, oy >0 for
1=1,2,...,m— 2. By using fixed point index theory and the Legget-Williams fixed point
theorem, sufficent conditions for the existence of countably many positive solutions are
established.

Sun, Wang and Fan [I0] studied the nonlocal boundary value problem with p-
Laplacian of the form

(@p(u®)Y () +h(&)f(tu(t)) =0, ¢ € [tr,tm]r,

n m—2
uB(t) =Y Gut(ny) = Y su(&) =0, uB(tn) =0,
j=1 i=1

where 0 <1 <§ <& < <2 <tpand0<t; <m < < ... <2 <ty and
g >0, 6; >0fort=1,2,....,mand 5 =1,2,...,n. By using the Four functionals fixed
point theorem and Five Functionals fixed point theorem, they obtained the existence
criteria of at least one positive solution and three positive solutions.

Inspired by the mentioned works, in this paper we consider the following m-point
boundary value problem (BVP) with p-Laplacian

(6p(x2)Y () + h(t) f(t,x(t), 2 (t)) =0, te[0,1]r, (1)

zA(O) o a;x(&) =0, xA(l) + i a;x(n;) =0, (2)

1 1
where T is a time scale, ¢, (s) = |s|P72s for p > 1, (¢p) 7 (s) = Py(s), and — + = = 1.
p q

We assume that the following conditions are satisfied:
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(H1) 0<& <& < <Epoa<p(l), 0<m <N < ..<fm— 2<p( ), & < mi,a; >0
- 2

m—2 m—
fori=1,2,..,m-2 Y a&<1 and [Y ai(l-¢) 2+Zazlf§1 1,
=1 =1 =1

(H2) feC([0,1] x [0,00) X (—00,00), (0, 00)),
(H3) h e Cld([O, 1]']1‘, [0, OO))

By using Avery-Peterson fixed point theorem, we establish the existence of at least
three positive solutions for the BVP ([)-([2). The remainder of this paper is organized as
follows. Section 2 is devoted to some preliminary lemmas. We give and prove our main
result in Section 3.

2 Preliminaries

To prove the main result in this paper, we will employ several lemmas. These lemmas
are based on the BVP

(@p(x)V (1) +y(t) =0, te(0,1]r, (3)
- Z_ ax(&) =0, z2(1) + Z_ a;z(n;) = 0. 4)

Lemma 2.1 Let (H1) — (H3) hold. Then fory € Ci4[0,1]r, the BVP (3)-{{]) has the
unique solution

¢q(Am>+mZQai/_1¢q(Am /O (1)V)A
) = L
/ Cou(As [ urvnss (5)

where A, satisfies

bo(As) + & (Am— /0 1y(s)Vs)

+§ai /; ba (Az - /Osy(T)VT) As =0, (6)

Moreover, there exists a unique A, € (0, fo $)Vs) satisfying (@).
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Proof. Integrating @) from 0 to ¢, we have

22(t) = 6, (¢p<xﬂ<0>> -/ ty(s)Vs) . (7)

Integrating () from ¢ to 1, we get

s =at)- [ o (4.~ [ umrwr) s ®)

where A, = ¢,(z2(0)). Setting t = & in (§) we have

1 s
z(&) = z(1) — /E bq (Az _/0 y(T)VT) Ns, i=1,2,3...m—2

gam(&)gai m; / (A /Osymw) As

and

then

2(1) = =1 & . 9)

Substituting (@) into (8]) we see that x(t) satisfies (Bl on [0, 1]y. (@) boundary conditions
satisfy

m—2

P20) 22 (1) = Y (@) — Y waln)

i=1

bulAs) + 64 <Am/01 ) Zja (&) — v(n))

iiaz( /1 (Az—/osy(T)VT) As—i—/ml y (Am—/osy(r)vr> AS)

izaz/m%< / (T)VT) As.

So that BVP ([B)-(@) has a solution z(t) where A, satisfies (0.
For any = € Cl% [0, 1]T, define

He(c) = ¢q(c) + ¢q (c - /01 h(s)f(s,(s), wA(S))VS)

+T§%‘ /; g <c/Osh(T)f(T,:c(T),zA(T))vT> As.
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Then H, : R — R is continuous and strictly increasing. H,(0) < 0,

1
H, (/ h(s)f(s,xz(s), > (s))Vs) > 0, imply the existence of a unique
0
1

c=4, ¢ (0,/0 h(s)f(s,z(s),z>(s))Vs) such that H,(A,) = 0. O

Lemma 2.2 If (H1) — (H3) hold, then for x € Cﬁ [0, 1], the unique solution x(t) of
BVP (3)-{{) has the following properties:
(i) z(t) is concave on [0, 1],
(ii) x(t) > 0.

Proof. Suppose that z(t) is a solution of BVP (@B)-), then
(1) (gp @)V (t) = —h(t)f(t,z(t),z2(t)) <0, ¢p(z*) is nonincreasing so that =2 (t) is
nonincreasing. This implies that z(t) is concave.

m—2
(ii) We have 22(0) = > a;a(&) = ¢ (Az) > 0 and
=1

22(1) = ¢y (AI - /1 h(s)f(s,x(s),acA(s))Vs) < 0. Furthermore, we get
0

&1 m—2
ar1x(§1) — aqx(0) = Oél/ 2 (s)As < a162%(0) = &y Z a;x(&;)
0 i=1

&2 m=2
asz(€2) — asx(0) = ag/ 22(s)As < axbaz™(0) = sty Z a;x(&;).
0 i=1

If we continue like this, we have
5m—2
m—22(Em—2) — am—2x(0) = Oém_g/ J]A(S)AS < am_gfm_ng(O)
0

m—2
= am_ggm—Q Z CYVT(&)

i=1
Using (H1), we obtain
m—2 m—2 m—2 m—2 m—2
D&))=Y aw(0) < Y aw(&) Y aib < Y (&),
i=1 i=1 i=1 i=1 i=1

which implies that x(0) > 0. Similarly,

agz(l) — aqa(m) = o / xA(s)As >a(1— nl)xA(l) =—a1(1—m) Z a;x(n;),

aox(1) — anx(n2) = ag/ zA(s)As > as(l — ng)xA(l) = —as(l —1n2) i a;x(n;).

72
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If we continue like this, we have

1
m—22(l) — am—2x(Pm—2) = am,g/ SCA(S)AS > p—o(1 — nm,g):cA(l)
MNm—2

m—2

= —am_o(l —nm_2) Z a;x(n;).

i=1

m—2
Using (H1), we have Z a;x(1) > 0, (1) > 0. Therefore, we get z(¢) > 0,t € [0,1]r. O
i=1
Let £ = Clﬁ [0,1]T, then E is a Banach space with the norm

[l = max{ sup |z(t)], sup |=2(t)]}
tE[O,l]T tE[Oal]T

and choose the cone P C E denoted by
m—2
P={xcE:z(t)>0,2°(0) = Z a;x(&;), x(t) is concave on [0,1]r}.
i=1
Define the operator T': P — E by

bo(Ae) + Y o /§_ ba(As / () f(ra(r), 22 (1) Vr) As
Ta(t) = L

—/t ¢q(Ag — /OS h(T)f(T,SC(T),:L'A(T))VT)AS. (10)

Lemma 2.3 If (H1) holds, then sup,co 1), (t) < M sup,e(o 1, |zA(t)| for x € P,
where

1
M=1+ — (11)
ai(1—&)
i=1
Proof. For x € P, one arrives at
i) —z(0
Hence,
m—2 m—2
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By #2(0) = i a;z(&;), we get
2(0) < — L z2(0).
ai(1—&)
Hence
x = tZCA S S X
0 = [ e*@as+a)
< tz®(0) + z(0)
<t (0) + — L > (0)
Z a;(1=¢&)
S ———Y)
_ ai(1—&)
= Maz®(0),

sup z(t) < Mz®(0) =M sup z2(t) <M sup |z2(t).

tel0,1]r tel0,1]r tel0,1]r

The proof is complete. O
From Lemma 23] we obtain

|zl = max{ sup |z(t)], sup |z2(t)[}
t€(0,1]r te(0,1]r
< max{M sup |z2(t)], sup |2%(1)]}
te(0,1]r te(0,1]r
< M suwp 221,
t€(0,1]r

Lemma 2.4 For z € Cﬁ [0,1]T, let A, satisfy (@) corresponding to x. Suppose that
(H1) — (H3) hold, then A, : Cl% [0,1]Tr — R is continuous about x.

Proof. Suppose {z,} € c@[o, 1] with z, — x9 € Cﬁ [0, 1], then there exists rg
such that
max{||zol, sup }H»’CnH} <70
0

neN—

Let A, (n =0,1,...) be constants decided by (@) corresponding to z,, (n =0,1,2,...).
By (H2), we get that f(t,u,v) is bounded on [0, 1] x [0, ro]?. Set

By, = sup{f(t,u,v) : (t,u,v) € [0, 1] x [0,70]*}.
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Since
/ h(s)f(s,z(s),z2(s))As < Bm/ h(s)As = By A,
0 0

1 1

where A = / h(s)As, A, € [0,/ h(s)f(s,z(s),z>(s))As] C [0, By,A], which means
0

{A,} is bounded. Suppose that sequence {A,} does not convergence, then there exist

two subsequences {A%lk)}, {Agk)} of {A,} with A%lk) — a, Aﬁ? — ¢9, and ¢ # co.

Combining (H2) and using the Lebesgue’s dominated convergence theorem, we get

bolcr) = — lim gy(AD / W($) £ (5 e (5), 22, (5))V'5)

nE—+0o00

nE——+00 4

m—2 i s
—  lim i ) _ 2
: Z;agéi¢AAm A h(T) (7, 2 (1) 2, (7)) VT) As

= —¢q( lim Agllk)— lim 1h(s)f(s,xnk(s) x5 (s))Vs

)
nE—+00 ng——+o00 0 Tk
s

m—2 i
o / "oul lm AD — tim [ R (7). 2 (7)) V7)As
i=1 &

ng——+o00 ng——+oo 0

= geler - / h(s)f (s, zo(s), 28 () Vs
_ z_: o /; bylcr — /0 h(F) £ (7, 20(7), 22 (7)) VT) As.

Since sequence {A,} is unique, we get ¢; = Ap. Similarly co = Ag. So ¢1 = ¢o, which is
a contradiction. Therefore A,, — Aq for x,, — xo, which means A, : Cﬁ [0,1]r — R
is continuous. The proof is complete. O

Lemma 2.5 Suppose that (H1) — (H3) hold, then T : P — P is completely contin-
uoUS.

Proof. We divide the proof into three steps.
Step 1. We show that TP C P. For z € P, by (H1) — (H3), we have (T'z)(t) > 0 and
m—2
(T2)2(0) = Y ai(T)(&).
i=1
If t € [0,1]7 is left scattered, then

_ (T2)2(t) — (T2)>(p(t))
(Tz)2Y () = ——r <0

ont € [0,1]y. If t € [0, 1]r is left dense, then

T2 (1)t TD0) = (T2)2(s)

<0
s—t t—s -

on t € [0,1]r. Hence Tz is nonnegative, concave on [0, 1], i.e., TP C P.
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Step 2. We show that T : P — P is continuous. Let x,, — x as n — 400 in P,
then there exists ro such that

max{||z||, sup |z} < ro.
neN—{0}

By (H2), we get that f(t,u,v) is bounded on [0, 1]t x [0, r¢]?. Set

B, = sup{f(t,u,v) : (t,u,v) € [0,1] x [0,70)*}.

We get
165(T2n)A (6)) — dp(T2)A (1))
— s sxns,zAs s— A, — s s,zs,:cAs s
A, /Ohmf(, (5), 25 (s)) Vs — A /Oh()f( (), 2% () V3|
< A, - A+ / B(S)| (5, (), 22 (5)) — (5, 2(5), 25 (5))| Vs
< Ay, — Ay| + 2B, A = 2B, A + 2B, A = 4B, A.

Therefore by the Lebesgue’s dominated convergence theorem, we have
|6p((Ta) > (1)) = ¢p((T2) ()| — 0 as n — +oc.
By using Lemma we get

0 <||(Txn)(t) — (Tz)()] < Mtes[})q:l)] (Tan)2(t) — (Tx)2(t)) — 0 as n — +00.

Hence T' is continuous.
Step 3. We show that T': P — P is relatively compact. Let 2 be any bounded set
of P. Then there exists L > 0 such that ||z| < L for all z € . Set

Br, = sup{f(t,u,v) : (t,u,v) € [0,1] x [0,70]*}.

For x € Q, we have

ITz|| = max{ sup Ta(t), sup |(Tz)(t)[}
t€[0,1]r t€(0,1]r
M (Tx)*(0)

<
< M¢q(Az) < M¢q(BLA)-

Hence T is uniformly bounded.
Now we show that T is locally equicontinuous on [0, 1]y. For ¢1,t2 € [0, 1] and
x € €, we may assume that to > t;.

60 (T2)2 (1)) = B, (T)(12))]
= - 1 S S, TS SCAS S — Ay h S S, TS SCAS S|.
= A= [R5 ()= et [ H6) (5025 (5) Vs

Hence,
|pp(Tx)2 (t1)) — ¢p(Tx) 2 (t2))| — 0 as t; — ta.
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Since

sup |(T1')A(t1) — (TZL')A(tQ)| — 0 as t, — tQ,
t€[0,1]r

we get
|(Tz)(t1) — (Tx)(t2)|| — 0 as t; — to.

Hence T is locally equicontinuous on [0, 1]7. From step 1 — 3, we get
T : P — P is completely continuous. The proof is complete. O

3 Existence of Three Positive Solutions

Let v and 6 be nonnegative continuous convex functionals on a cone P, « be nonnegative
continuous concave functional on P and 1 be nonnegative continuous functional on P.
Then for positive real numbers a, b, ¢ and d, we define the following convex sets

P(y,d) ={z € P:v(x) <d},
P(y,a,b,d) ={x € P:b< alx), y(z) <d},
P(v,0,a,b,¢,d) ={x € P:b<az), 0(z) <c, y(z)<d},
R('Yawaaad) = {$ €P:a< ¢($)a ’7(1‘) < d}

Theorem 3.1 (Avery-Peterson’s Fixed Point Theorem) [13] Let P be a cone in a real
Banach space E. Assume that there exist two positive number M and d, two nonnegative
continuous convex functionals v and 0 on P, a nonnegative continuous concave functional
a on P and a nonnegative continuous functional 1p on P such that p(Ax) < Mp(zx) for
all0 <A <1 and

a(z) <P(z), |l < M~y(z)

for all x € P(v,d). Suppose that T : P(y,d) — P(v,d) is completely continuous and
there exist three positive numbers a, b and c with a < b such that

(S1) {x € P(v,0,a,b,¢c,d)|a(z) > b} # 0 and a(Tx) > b for x € P(~,60,a,b,c,d);
(52) a(Tz) > b for x € P(y,a,b,d) with 0(Tz) > c;
(S8) 0 & R(v,v,a,d) and Y(Tx) < a for x € R(v,%,a,d) with ¢(x) = a.

Then T has at least three fixed points x1,x2, x5 € P(v,d) such that
Y(x;) <d, i=1,2,3, ¥(x1)<a, a<(xz) with a(ze) <b, alxs)>b.

Set

and define the maps
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Theorem 3.2 Assume (H1) — (H3) hold. Let

2 1 m—2 m—2

=1

m—2 m—2 m—2 m—2
maX{éz, - [2 =Y b+ Yy a(l—&) Y il —&) —1
Zz 1 2 i=1 i=1 i=1 i=1

2 1 m—2 m—2 1
Epp—" — 0414’1* aiéi]}<w<u<—

i=1
and suppose that f satisfies the following conditions
(A1) f(t,u,v) < 5xdp(d) for (t,u,v) € [0,1]r x [0, Md] x [0, d];
(A2) f(t,u,v) > %(bp(%) for (t,u,v) € [w,v]r X [b,c] x [0,d];
(A3) f(t,u,v) < Fxop() for (t,u,v) € 0,17 x [0,a] x [0,d];
where M A are deﬁned as in ({I1) and Lemma 24 respectively, and

A* [(1+Zz 1 az(w fz))m*z:ﬁfai(l—&) .
Zal

Then the BVP ([@)-(3) has at least three positive solutions x1 xo and x3 such that

v(x;) <d, i1 =1,2,3, (1) <a, a<(xz) with a(xe) <b, alxs) >D.

Proof. The boundary value problem (I)-([2) has a solution x = z(t) if and only
if x solves the operator equation z = Tx. Thus we set out to verify that the operator
T satisfies Avery-Peterson’s fixed point theorem which will prove the existence of three
fixed point of T. Now the proof is divided into four steps.

Step 1: We will show that (A1) implies that

T:P(y,d) — P(y,d).
For z € P(v,d), there is v(x) = sup;c( 1, |22 (t)] < d. From Lemma 23

sup x(t) <M sup |z2(t)] < Md,
te[0,1]r t€[0,1]7

then the condition (A1) implies

A ¢p(d)
ft,2(t),27(1) < =
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On the other hand, for z € P, we get

V(Tz) = sup [(Tz)™(t)|
tel0,1]r

= sup [gg(As / h(s)f (s, 2(s), 2 (5)) Vs)|

te[0,1]r

< gy(As+ / h(s)f (s, 2(s), 2 (5))Vs)

< 6,2 / h(s)f(s,2(5), 25 ())V's)

< ¢q(¢pT@l)/0 h(s)Vs) = d.

Step 2. We show that condition (S1) in Theorem [B.1] holds. We take

(S b iy VSR D eyl
21—y i+ 0 s 1= Y g
for t € [0, 1]r. By ([I2), we get
v(x) = supepo, 1y, [z2(t)| = %1,27@,72 ligl_JrE;w::z @ < d,

X

Y(z) =0(z) = SUPie(0,1]y z(t) =
a(x) = mingepy o, #(t) = z(w) > b.
Hence {z € P(~,0,a,b,¢,d : a(z) > b} # 0.
Since

x(t) =

t+1]

bulA) = 6 (

> ( / h(S)f(s,w(S),wA(S))VS) ~ b4(A)
+ :20@ /; be (/0 h(T)f(T,x(T),xA(T))vT) As
> on ([ 061162062695 ) ~ ()

we have

281
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Hence, we get

ba(As) 2 ! o (] 1 e (5,92 () Vs ) (13)

m—2
24+ > ai(ni — &)
=1

Case 1. If a(Tz) = min Tx(t) = Ta(w) holds then from (), [@3) and (A2), we

telw,v]r
obtain
m—2 1 s
Tz(w) = m}Q ¢q(Ay) + Z ai/ bq (Az —/ h(r)f (7, z(7), 2™ (T))VT) As
Z o i=1 &i 0
i=1

N — ’ T T, C\T ZL'AT T S
+ /@(Am /Ohmf(,(), (1) VA

1

—_

3
|
N

- (40 + mga /E w b0 (Am - W) (7, (), 2 <r>>Vr) As

- I
8

Y

3
|
N

B m—2 w
BRI /E 6u(40as

i
S

3
S

Y
.
Il
_

3
|
N

i
S
1

\
3
&
8
m\..
2

-

[te)
T~
c\

2
=

2

kﬁ

—

N

B

2

kS

>

—

\}
S~—
S~—

<

\}

~_
>

»

.
Il

_

3
S

i
S
1

\
3
.
8
A
i
\
Fa
\_./
<
)
N
S—
2
=
2
kﬁ
—
i
=2
2
8
>
2
<
\]
~_

s
Il
—

Y
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m—2

- A—qﬁq(é hr)V7) = b.

Thus we get Tz(w) > b.
Case 2. If a(Tz) = min Txz(t) = Tz(v) holds then from ({I0), ([@3) and (A42), we

get

> a0, ) (), 2 7))

> Adgy < ; h(T)égbp (%) VT> =b.
Hence we get Tz (v) > b.
Therefore we get a(Tx) > b for all z € P(v, 6, a, b, ¢,d). Consequently, condition (S1)
in Theorem Bl is satisfied.
Step 3. We prove that (S2) in Theorem Bl holds. Since x is nonnegative and concave
on [0, 1], we obtain

B L1+t -1 1 1
r(w) = z[ %(14_15) %(1+t)—1+%(1+t)t]
T(1+t)—1 1 1
N z(%(1+t)—1)+%(1+t) w
> 1—H$(t)2§$(t)

Therefore z(w) > § supycp,1), 2(t) = §0(x). Similarly z(v) > §60(x) > F60(x) holds.
Hence

alz) > %9(:0), z € [0,1]r.

Then we get

w,o,w 2b(L+1)

2 wlL

_ b( Y a ) -3 i
Y a

a(Tz)

%
|
=
~
=
%
|
o

>b
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for z € P(y,a,b,d) with (Tz) > c.

Step 4. Finally, we prove that (S3) in Theorem Bl is satisfied. Since ¢(0) = 0 < a,
0 ¢ R(v,%,a,d). Suppose that x € R(v,, a,d) with ¥(z) = a, then by (43) and Lemma
we get

Y(Tz) = sup Tx(t)
te[0,1]

M sup |(Tz)>(t)|
telo,1]

Mn [2 [ 01 Gs005). 0693

IN

IN

< M%Péh@img?W}
< M%%(% /01 h(s)Vs) = a.

Consequently condition (S3) in Theorem Bl holds. From steps 1 — 4 together with
Theorem [B.1] we get that the boundary value problem (I))-(2]) has at least three positive
solutions 1, x2, x3 such that

sup |z2(t)| <d, i=1,2,3, sup z1(t) <a,

K2
t€(0,1]r t€(0,1]r

a < sup x2(t) with min x9(t) <b, min x3(t) > b.
te[0,1]r te(w,v]r tew,v]r
The proof is complete. O

Example 3.1 Let T = {ﬁ :n € N}U{0,1}. Consider the following problem

(63(z™)Y (1) + 8/ (t,z(t),22(t)) =0, te[0,1]r, (14)
1 1 1 1 1,1 1 1
2%(0) = Zx(l_O) + 690(3)’ a®(1) = —Ziﬂ(g) - 6$(§)’ (15)

where 1607 1 (<22}
_ ) H60u" + (755)°], u<1l, 0<wv, veT;
f(t’“’”>{ 60+ (%)Y, u>1, 0<v, veT.
It is easy to verify that (H1) — (H3) hold. Choose a = %, b=1, ¢c=40,d =43, w=
i, v = % Then by simple calculations, we can obtain that

=18 a2 g2
43 12650 3

So the nonlinear term f satisfies

{(t,zz],v) <60+ (%)4 = 60.00000342 < ¢§—§{i) = 115.5625, (t,u,v) € [0, 1]r x [0, 163] x
0,43],

flt,u,v) > 20 > ¢3(5y) = 16.43184338, (t,u,v) € [3, 2] x [1,40] x [0, 43],
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f(t,u,v) < 60.057 4 (F5)* = 0.000009418801 < k¢, (5) = 0.0000434952, (¢, u,v) €
[Oa 1]T X [Oa %] X [Oa43]

Therefore the conditions in Theorem are all satisfied. So BVP ([4)-(I%) has at
least three positive solutions x1, s, x3 such that

sup |z2(t)] <43, i=1,2,3, sup zi(t) < —,
t€[0,1]r te[0,1]r 10

— < sup wo(t) with min xz9(t) <1, min z5(t) > 1.
10 teqo,)e telg, 5l te[L, 1]y
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