
Nonlinear Dynamics and Systems Theory, 13 (3) (2013) 270–285

Existence of Solutions for m-Point Boundary Value

Problem with p-Laplacian on Time Scales

Ozlem Batit Ozen and Ilkay Yaslan Karaca*

Department of Mathematics Ege University, 35100 Bornova, Izmir, Turkey

Received: July 6, 2012; Revised: July 15, 2013

Abstract: We consider the existence of positive solutions for a class of second-
order m-point boundary value problem with p-Laplacian on time scales. By using
Avery-Peterson’s fixed point theorem, sufficent conditions for the positive solutions
are established. Meanwhile an example is worked out to illustrate the main result.

Keywords: m-point boundary value problems; p-Laplacian operator; positive solu-

tions; fixed point theorems; time scales.

Mathematics Subject Classification (2010): 39A10, 34B15, 34B16.

1 Introduction

Calculus on time scales was introduced by Hilger (see [6]), as a theory which is under-
going rapid development as it provides a unifying structure for the study of differential
equations in the continuous case and the study of difference equations in the discrete case.
Some preliminary definitions and theorems on time scales can be found in books [3, 4]
which are excellent references for calculus of time scales. Also, there is much attention
paid to the study of multipoint boundary value problem (see [1, 2, 7–13]).

In [5] the following m-point boundary value problem on time scales was studied

u△∇(t) + q(t)f(u(t)) = 0, t ∈ [0, T ]T,

u∆(0) =

m−2
∑

i=1

biu
∆(ξi), u(T ) =

m−2
∑

i=1

aiu(ξi),
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where ai, bi ≥ 0 (i = 1, 2, ...,m− 2), and ξi ∈ (0, ρ(T ))T with 0 < ξ1 < ξ2 < ... < ξm−2 <

ρ(T ). And the existence of at least two positive solutions of the above problem was
established by means of a fixed point theorem in a cone.

Zhao and Ge [13] studied the following m-point boundary value problem on time
scales

(φp(u
△))∇(t) + h(t)f(t, u(t), u∆(t)) = 0, t ∈ (0,∞)T,

u(0) =

m−2
∑

i=1

αiu(ηi), u∆(+∞) =

m−2
∑

i=1

βiu
∆(ηi),

where αi, βi ≥ 0 (i = 1, 2, ...,m − 2), and ηi ∈ (0,∞)T with σ(0) < η1 < η2 < ... <

ηm−2 < +∞. They established new criteria for the existence of at least three unbounded
positive solutions by using Avery-Peterson’s fixed point theorem.

Ji, Bai and Ge [7] studied the following singular multipoint boundary value problem
on time scales

(φp(u
′))′(t) + a(t)f(u(t)) = 0, t ∈ (0, 1),

u′(0) =

m−2
∑

i=1

αiu(ξi), u′(1) =

m−2
∑

i=1

αiu(ηi),

where 0 < ξ1 < ξ2 < ... < ξm−2 < 1, 0 < η1 < η2 < ... < ηm−2 < 1, ξi < ηi, αi > 0 for
i = 1, 2, ...,m− 2. By using fixed point index theory and the Legget-Williams fixed point
theorem, sufficent conditions for the existence of countably many positive solutions are
established.

Sun, Wang and Fan [10] studied the nonlocal boundary value problem with p-
Laplacian of the form

(φp(u
△))∇(t) + h(t)f(t, u(t)) = 0, t ∈ [t1, tm]T,

u∆(t1)−
n
∑

j=1

θju
∆(ηj)−

m−2
∑

i=1

εiu(ξi) = 0, u∆(tm) = 0,

where 0 ≤ t1 ≤ ξ1 ≤ ξ2 ≤ ... ≤ ξm−2 ≤ tm and 0 ≤ t1 ≤ η1 ≤ η2 ≤ ... ≤ ηm−2 ≤ tm and
εi > 0, θi ≥ 0 for i = 1, 2, ...,m and j = 1, 2, ..., n. By using the Four functionals fixed
point theorem and Five Functionals fixed point theorem, they obtained the existence
criteria of at least one positive solution and three positive solutions.

Inspired by the mentioned works, in this paper we consider the following m-point
boundary value problem (BVP) with p-Laplacian

(φp(x
△))∇(t) + h(t)f(t, x(t), x∆(t)) = 0, t ∈ [0, 1]T, (1)

x∆(0)−
m−2
∑

i=1

αix(ξi) = 0, x∆(1) +

m−2
∑

i=1

αix(ηi) = 0, (2)

where T is a time scale, φp(s) = |s|p−2s for p > 1, (φp)
−1(s) = φq(s), and

1

p
+

1

q
= 1.

We assume that the following conditions are satisfied:
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(H1) 0 < ξ1 < ξ2 < ... < ξm−2 < ρ(1), 0 < η1 < η2 < ... < ηm−2 < ρ(1), ξi < ηi, αi > 0

for i = 1, 2, ...,m− 2,

m−2
∑

i=1

αiξi < 1 and [

m−2
∑

i=1

αi(1− ξi)]
2 +

m−2
∑

i=1

αi(1− ξi) < 1,

(H2) f ∈ C([0, 1]T × [0,∞)× (−∞,∞), (0,∞)),

(H3) h ∈ Cld([0, 1]T, [0,∞)).

By using Avery-Peterson fixed point theorem, we establish the existence of at least
three positive solutions for the BVP (1)-(2). The remainder of this paper is organized as
follows. Section 2 is devoted to some preliminary lemmas. We give and prove our main
result in Section 3.

2 Preliminaries

To prove the main result in this paper, we will employ several lemmas. These lemmas
are based on the BVP

(φp(x
△))∇(t) + y(t) = 0, t ∈ [0, 1]T, (3)

x∆(0)−
m−2
∑

i=1

αix(ξi) = 0, x∆(1) +
m−2
∑

i=1

αix(ηi) = 0. (4)

Lemma 2.1 Let (H1)− (H3) hold. Then for y ∈ Cld[0, 1]T, the BVP (3)-(4) has the
unique solution

x(t) =

φq(Ax) +

m−2
∑

i=1

αi

∫ 1

ξi

φq(Ax −

∫ s

0

y(τ)∇τ)△s

m−2
∑

i=1

αi

−

∫ 1

t

φq(Ax −

∫ s

0

y(τ)∇τ)△s, (5)

where Ax satisfies

φq(Ax) + φq

(

Ax −

∫ 1

0

y(s)∇s

)

+

m−2
∑

i=1

αi

∫ ηi

ξi

φq

(

Ax −

∫ s

0

y(τ)∇τ

)

△s = 0. (6)

Moreover, there exists a unique Ax ∈ (0,
∫ 1

0 y(s)∇s) satisfying (6).
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Proof. Integrating (3) from 0 to t, we have

x△(t) = φq

(

φp(x
△(0))−

∫ t

0

y(s)∇s

)

. (7)

Integrating (7) from t to 1, we get

x(t) = x(1)−

∫ 1

t

φq

(

Ax −

∫ s

0

y(τ)∇τ

)

△s, (8)

where Ax = φp(x
△(0)). Setting t = ξi in (8) we have

x(ξi) = x(1)−

∫ 1

ξi

φq

(

Ax −

∫ s

0

y(τ)∇τ

)

△s, i = 1, 2, 3, ...,m− 2

and
m−2
∑

i=1

αix(ξi) =

m−2
∑

i=1

αix(1)−
m−2
∑

i=1

αi

∫ 1

ξi

φq

(

Ax −

∫ s

0

y(τ)∇τ

)

△s

then

x(1) =

φq(Ax) +

m−2
∑

i=1

αi

∫ 1

ξi

φq

(

Ax −

∫ s

0

y(τ)∇τ

)

△s

m−2
∑

i=1

αi

. (9)

Substituting (9) into (8) we see that x(t) satisfies (5) on [0, 1]T. (4) boundary conditions
satisfy

x△(0) + x△(1) =

m−2
∑

i=1

αix(ξi)−
m−2
∑

i=1

αix(ηi)

φq(Ax) + φq

(

Ax −

∫ 1

0

y(s)∇s

)

=

m−2
∑

i=1

αi(x(ξi)− x(ηi))

=

m−2
∑

i=1

αi

(

−

∫ 1

ξi

φq

(

Ax −

∫ s

0

y(τ)∇τ

)

△s+

∫ 1

ηi

φq

(

Ax −

∫ s

0

y(τ)∇τ

)

△s

)

= −
m−2
∑

i=1

αi

∫ ηi

ξi

φq

(

Ax −

∫ s

0

y(τ)∇τ

)

△s.

So that BVP (3)-(4) has a solution x(t) where Ax satisfies (6).

For any x ∈ C△
ld [0, 1]T, define

Hx(c) = φq(c) + φq

(

c−

∫ 1

0

h(s)f(s, x(s), x△(s))∇s

)

+

m−2
∑

i=1

αi

∫ ηi

ξi

φq

(

c−

∫ s

0

h(τ)f(τ, x(τ), x△(τ))∇τ

)

△s.
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Then Hx : R → R is continuous and strictly increasing. Hx(0) < 0,

Hx

(
∫ 1

0

h(s)f(s, x(s), x△(s))∇s

)

> 0, imply the existence of a unique

c = Ax ∈ (0,

∫ 1

0

h(s)f(s, x(s), x△(s))∇s) such that Hx(Ax) = 0. ✷

Lemma 2.2 If (H1)− (H3) hold, then for x ∈ C△
ld [0, 1]T, the unique solution x(t) of

BVP (3)-(4) has the following properties:
(i) x(t) is concave on [0, 1]T,
(ii) x(t) > 0.

Proof. Suppose that x(t) is a solution of BVP (3)-(4), then
(i) (φp(x

△))∇(t) = −h(t)f(t, x(t), x∆(t)) ≤ 0, φp(x
△) is nonincreasing so that x△(t) is

nonincreasing. This implies that x(t) is concave.

(ii) We have x∆(0) =

m−2
∑

i=1

αix(ξi) = φq (Ax) > 0 and

x∆(1) = φq

(

Ax −

∫ 1

0

h(s)f(s, x(s), x△(s))∇s

)

< 0. Furthermore, we get

α1x(ξ1)− α1x(0) = α1

∫ ξ1

0

x∆(s)∆s ≤ α1ξ1x
∆(0) = α1ξ1

m−2
∑

i=1

αix(ξi)

α2x(ξ2)− α2x(0) = α2

∫ ξ2

0

x∆(s)∆s ≤ α2ξ2x
∆(0) = α2ξ2

m−2
∑

i=1

αix(ξi).

If we continue like this, we have

αm−2x(ξm−2)− αm−2x(0) = αm−2

∫ ξm−2

0

x∆(s)∆s ≤ αm−2ξm−2x
∆(0)

= αm−2ξm−2

m−2
∑

i=1

αix(ξi).

Using (H1), we obtain

m−2
∑

i=1

αix(ξi)−
m−2
∑

i=1

αix(0) ≤
m−2
∑

i=1

αix(ξi)

m−2
∑

i=1

αiξi <

m−2
∑

i=1

αix(ξi),

which implies that x(0) > 0. Similarly,

α1x(1)− α1x(η1) = α1

∫ 1

η1

x∆(s)∆s ≥ α1(1 − η1)x
∆(1) = −α1(1 − η1)

m−2
∑

i=1

αix(ηi),

α2x(1)− α2x(η2) = α2

∫ 1

η2

x∆(s)∆s ≥ α2(1 − η2)x
∆(1) = −α2(1 − η2)

m−2
∑

i=1

αix(ηi).
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If we continue like this, we have

αm−2x(1)− αm−2x(ηm−2) = αm−2

∫ 1

ηm−2

x∆(s)∆s ≥ αm−2(1 − ηm−2)x
∆(1)

= −αm−2(1− ηm−2)
m−2
∑

i=1

αix(ηi).

Using (H1), we have

m−2
∑

i=1

αix(1) > 0, x(1) > 0. Therefore, we get x(t) > 0, t ∈ [0, 1]T. ✷

Let E = C△
ld [0, 1]T, then E is a Banach space with the norm

‖x‖ = max{ sup
t∈[0,1]T

|x(t)|, sup
t∈[0,1]T

|x∆(t)|}

and choose the cone P ⊂ E denoted by

P = {x ∈ E : x(t) ≥ 0, x∆(0) =
m−2
∑

i=1

αix(ξi), x(t) is concave on [0, 1]T}.

Define the operator T : P → E by

Tx(t) =

φq(Ax) +
m−2
∑

i=1

αi

∫ 1

ξi

φq(Ax −

∫ s

0

h(τ)f(τ, x(τ), x△(τ))∇τ)△s

m−2
∑

i=1

αi

−

∫ 1

t

φq(Ax −

∫ s

0

h(τ)f(τ, x(τ), x△(τ))∇τ)△s. (10)

Lemma 2.3 If (H1) holds, then supt∈[0,1]T x(t) ≤ M supt∈[0,1]T |x
∆(t)| for x ∈ P ,

where

M = 1 +
1

m−2
∑

i=1

αi(1− ξi)

. (11)

Proof. For x ∈ P, one arrives at

x(1)− x(0) ≤
x(ξi)− x(0)

ξi
.

Hence,
m−2
∑

i=1

αi(1− ξi)x(0) ≤
m−2
∑

i=1

αix(ξi).
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By x∆(0) =

m−2
∑

i=1

αix(ξi), we get

x(0) ≤
1

m−2
∑

i=1

αi(1− ξi)

x∆(0).

Hence

x(t) =

∫ t

0

x△(s)△s+ x(0)

≤ tx△(0) + x(0)

≤ tx△(0) +
1

m−2
∑

i=1

αi(1− ξi)

x△(0)

≤ [1 +
1

m−2
∑

i=1

αi(1− ξi)

]x△(0)

= Mx∆(0),

i.e,

sup
t∈[0,1]T

x(t) ≤Mx∆(0) =M sup
t∈[0,1]T

x∆(t) ≤M sup
t∈[0,1]T

|x∆(t)|.

The proof is complete. ✷

From Lemma 2.3, we obtain

‖x‖ = max{ sup
t∈[0,1]T

|x(t)|, sup
t∈[0,1]T

|x∆(t)|}

≤ max{M sup
t∈[0,1]T

|x△(t)|, sup
t∈[0,1]T

|x∆(t)|}

≤ M sup
t∈[0,1]T

|x△(t)|.

Lemma 2.4 For x ∈ C△
ld [0, 1]T, let Ax satisfy (6) corresponding to x. Suppose that

(H1)− (H3) hold, then Ax : C△
ld [0, 1]T −→ R is continuous about x.

Proof. Suppose {xn} ∈ C△
ld [0, 1]T with xn −→ x0 ∈ C△

ld [0, 1]T, then there exists r0
such that

max{‖x0‖, sup
n∈N−{0}

‖xn‖} < r0.

Let An (n = 0, 1, ...) be constants decided by (6) corresponding to xn (n = 0, 1, 2, ...).
By (H2), we get that f(t, u, v) is bounded on [0, 1]T × [0, r0]

2. Set

Br0 = sup{f(t, u, v) : (t, u, v) ∈ [0, 1]T × [0, r0]
2}.
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Since
∫ 1

0

h(s)f(s, x(s), x∆(s))∆s ≤ Br0

∫ 1

0

h(s)∆s = Br0Λ,

where Λ =

∫ 1

0

h(s)∆s, An ∈ [0,

∫ 1

0

h(s)f(s, x(s), x∆(s))∆s] ⊆ [0, Br0Λ], which means

{An} is bounded. Suppose that sequence {An} does not convergence, then there exist

two subsequences {A
(1)
nk

}, {A
(2)
nk

} of {An} with A
(1)
nk

−→ c1, A
(2)
nk

−→ c2, and c1 6= c2.

Combining (H2) and using the Lebesgue’s dominated convergence theorem, we get

φq(c1) = − lim
nk→+∞

φq(A
(1)
nk

−

∫ 1

0

h(s)f(s, xnk
(s), x∆nk

(s))∇s)

− lim
nk→+∞

m−2
∑

i=1

αi

∫ ηi

ξi

φq(A
(1)
nk

−

∫ s

0

h(τ)f(τ, xnk
(τ), x∆nk

(τ))∇τ)∆s

= −φq( lim
nk→+∞

A(1)
nk

− lim
nk→+∞

∫ 1

0

h(s)f(s, xnk
(s), x∆nk

(s))∇s

−
m−2
∑

i=1

αi

∫ ηi

ξi

φq( lim
nk→+∞

A(1)
nk

− lim
nk→+∞

∫ s

0

h(τ)f(τ, xnk
(τ), x∆nk

(τ))∇τ)∆s

= −φq(c1 −

∫ 1

0

h(s)f(s, x0(s), x
∆
0 (s))∇s

−
m−2
∑

i=1

αi

∫ ηi

ξi

φq(c1 −

∫ s

0

h(τ)f(τ, x0(τ), x
∆
0 (τ))∇τ)∆s.

Since sequence {An} is unique, we get c1 = A0. Similarly c2 = A0. So c1 = c2, which is

a contradiction. Therefore An −→ A0 for xn −→ x0, which means Ax : C△
ld [0, 1]T −→ R

is continuous. The proof is complete. ✷

Lemma 2.5 Suppose that (H1)− (H3) hold, then T : P −→ P is completely contin-
uous.

Proof. We divide the proof into three steps.

Step 1. We show that TP ⊂ P . For x ∈ P, by (H1)− (H3), we have (Tx)(t) ≥ 0 and

(Tx)△(0) =

m−2
∑

i=1

αi(Tx)(ξi).

If t ∈ [0, 1]T is left scattered, then

(Tx)∆∇(t) =
(Tx)∆(t)− (Tx)∆(ρ(t))

t− ρ(t)
≤ 0

on t ∈ [0, 1]T. If t ∈ [0, 1]T is left dense, then

(Tx)∆∇(t) = lim
s→t

(Tx)∆(t)− (Tx)∆(s)

t− s
≤ 0

on t ∈ [0, 1]T. Hence Tx is nonnegative, concave on [0, 1]T, i.e., TP ⊂ P .
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Step 2. We show that T : P −→ P is continuous. Let xn −→ x as n −→ +∞ in P ,
then there exists r0 such that

max{‖x‖, sup
n∈N−{0}

‖xn‖} < r0.

By (H2), we get that f(t, u, v) is bounded on [0, 1]T × [0, r0]
2. Set

Br0 = sup{f(t, u, v) : (t, u, v) ∈ [0, 1]× [0, r0]
2}.

We get

|φp((Txn)
∆(t))− φp((Tx)

∆(t))|

= |Axn
−

∫ t

0

h(s)f(s, xn(s), x
∆
n (s))∇s −Ax −

∫ t

0

h(s)f(s, x(s), x∆(s))∇s|

≤ |Axn
−Ax|+

∫ t

0

h(s)|f(s, xn(s), x
∆
n (s))− f(s, x(s), x∆(s))|∇s

≤ |Axn
−Ax|+ 2Br0Λ = 2Br0Λ + 2Br0Λ = 4Br0Λ.

Therefore by the Lebesgue’s dominated convergence theorem, we have

|φp((Txn)
∆(t))− φp((Tx)

∆(t))| −→ 0 as n −→ +∞.

By using Lemma 2.3 we get

0 ≤ ‖(Txn)(t) − (Tx)(t)‖ ≤M sup
t∈[0,1]T

|(Txn)
∆(t)− (Tx)∆(t)| −→ 0 as n −→ +∞.

Hence T is continuous.
Step 3. We show that T : P −→ P is relatively compact. Let Ω be any bounded set

of P . Then there exists L > 0 such that ‖x‖ ≤ L for all x ∈ Ω. Set

BL = sup{f(t, u, v) : (t, u, v) ∈ [0, 1]× [0, r0]
2}.

For x ∈ Ω, we have

‖Tx‖ = max{ sup
t∈[0,1]T

Tx(t), sup
t∈[0,1]T

|(Tx)∆(t)|}

≤ M(Tx)△(0)

≤ Mφq(Ax) ≤Mφq(BLΛ).

Hence TΩ is uniformly bounded.
Now we show that TΩ is locally equicontinuous on [0, 1]T. For t1, t2 ∈ [0, 1]T and

x ∈ Ω, we may assume that t2 > t1.

|φp((Tx)
∆(t1))− φp((Tx)

∆(t2))|

= |Ax −

∫ t1

0

h(s)f(s, x(s), x∆(s))∇s−Ax +

∫ t2

0

h(s)f(s, x(s), x∆(s))∇s|.

Hence,
|φp((Tx)

∆(t1))− φp((Tx)
∆(t2))| −→ 0 as t1 −→ t2.
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Since

sup
t∈[0,1]T

|(Tx)∆(t1)− (Tx)∆(t2)| −→ 0 as t1 −→ t2,

we get

‖(Tx)(t1)− (Tx)(t2)‖ −→ 0 as t1 −→ t2.

Hence TΩ is locally equicontinuous on [0, 1]T. From step 1− 3, we get
T : P −→ P is completely continuous. The proof is complete. ✷

3 Existence of Three Positive Solutions

Let γ and θ be nonnegative continuous convex functionals on a cone P , α be nonnegative
continuous concave functional on P and ψ be nonnegative continuous functional on P .
Then for positive real numbers a, b, c and d, we define the following convex sets

P (γ, d) = {x ∈ P : γ(x) < d},

P (γ, α, b, d) = {x ∈ P : b ≤ α(x), γ(x) ≤ d},

P (γ, θ, α, b, c, d) = {x ∈ P : b ≤ α(x), θ(x) ≤ c, γ(x) ≤ d},

R(γ, ψ, a, d) = {x ∈ P : a ≤ ψ(x), γ(x) ≤ d}.

Theorem 3.1 (Avery-Peterson’s Fixed Point Theorem) [13] Let P be a cone in a real
Banach space E. Assume that there exist two positive number M and d, two nonnegative
continuous convex functionals γ and θ on P , a nonnegative continuous concave functional
α on P and a nonnegative continuous functional ψ on P such that ψ(λx) ≤ λψ(x) for
all 0 ≤ λ ≤ 1 and

α(x) ≤ ψ(x), ‖x‖ ≤Mγ(x)

for all x ∈ P (γ, d). Suppose that T : P (γ, d) −→ P (γ, d) is completely continuous and
there exist three positive numbers a, b and c with a < b such that

(S1) {x ∈ P (γ, θ, α, b, c, d)|α(x) > b} 6= ∅ and α(Tx) > b for x ∈ P (γ, θ, α, b, c, d);

(S2) α(Tx) > b for x ∈ P (γ, α, b, d) with θ(Tx) > c;

(S3) 0 6∈ R(γ, ψ, a, d) and ψ(Tx) < a for x ∈ R(γ, ψ, a, d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P (γ, d) such that

γ(xi) ≤ d, i = 1, 2, 3, ψ(x1) < a, a < ψ(x2) with α(x2) < b, α(x3) > b.

Set

Ω =

∫ ν

w

h(τ)∇τ,

and define the maps

γ(x) = sup
t∈[0,1]T

|x∆(t)|, ψ(x) = θ(x) = sup
t∈[0,1]T

x(t), α(x) = min
t∈[w,v]T

x(t). (12)
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Theorem 3.2 Assume (H1)− (H3) hold. Let

2b

w

1
∑m−2

i=1 αi

[

m−2
∑

i=1

αi + 1−
m−2
∑

i=1

αiξi

]

< c < d,

max

{

ξi,
1

∑m−2
i=1 αi

[

2

m−2
∑

i=1

αi −
m−2
∑

i=1

αiξi +

m−2
∑

i=1

αi(1 − ξi)

m−2
∑

i=1

αi(ηi − ξi)− 1

]

,

2b

c

1
∑m−2

i=1 αi

[

m−2
∑

i=1

αi + 1−
m−2
∑

i=1

αiξi

]}

< w < ν <
1

2

and suppose that f satisfies the following conditions

(A1) f(t, u, v) ≤ 1
2Λφp(d) for (t, u, v) ∈ [0, 1]T × [0,Md]× [0, d];

(A2) f(t, u, v) > 1
Ωφp(

b
A
) for (t, u, v) ∈ [w, v]T × [b, c]× [0, d];

(A3) f(t, u, v) < 1
2Λφp(

a
M
) for (t, u, v) ∈ [0, 1]T × [0, a]× [0, d];

where M, Λ are defined as in (11) and Lemma 2.4 respectively, and

A = 1
m−2
∑

i=1

αi

[(

1 +
∑m−2

i=1 αi(w − ξi)
)

1
2+

∑m−2

i=1
αi(ηi−ξi)

−
∑m−2

i=1 αi(1− ξi)
]

.

Then the BVP (1)-(2) has at least three positive solutions x1 x2 and x3 such that

γ(xi) ≤ d, i = 1, 2, 3, ψ(x1) < a, a < ψ(x2) with α(x2) < b, α(x3) > b.

Proof. The boundary value problem (1)-(2) has a solution x = x(t) if and only
if x solves the operator equation x = Tx. Thus we set out to verify that the operator
T satisfies Avery-Peterson’s fixed point theorem which will prove the existence of three
fixed point of T. Now the proof is divided into four steps.

Step 1 : We will show that (A1) implies that

T : P (γ, d) −→ P (γ, d).

For x ∈ P (γ, d), there is γ(x) = supt∈[0,1]T |x
∆(t)| ≤ d. From Lemma 2.3,

sup
t∈[0,1]T

x(t) ≤M sup
t∈[0,1]T

|x∆(t)| ≤Md,

then the condition (A1) implies

f(t, x(t), x∆(t)) ≤
φp(d)

2Λ
.
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On the other hand, for x ∈ P, we get

γ(Tx) = sup
t∈[0,1]T

|(Tx)∆(t)|

= sup
t∈[0,1]T

|φq(Ax −

∫ t

0

h(s)f(s, x(s), x∆(s))∇s)|

≤ φq(Ax +

∫ 1

0

h(s)f(s, x(s), x∆(s))∇s)

≤ φq(2

∫ 1

0

h(s)f(s, x(s), x∆(s))∇s)

≤ φq(
φp(d)

Λ

∫ 1

0

h(s)∇s) = d.

Step 2. We show that condition (S1) in Theorem 3.1 holds. We take

x(t) =
c

2

1−
∑m−2

i=1 αiξi

1−
∑m−2

i=1 αiξi +
∑m−2

i=1 αi

[

∑m−2
i=1 αi

1−
∑m−2

i=1 αiξi
t+ 1]

for t ∈ [0, 1]T. By (12), we get

γ(x) = supt∈[0,1]T
|x∆(t)| = c

2

∑m−2

i=1
αi

1−
∑m−2

i=1
αiξi+

∑m−2

i=1
αi

< d,

ψ(x) = θ(x) = supt∈[0,1]T x(t) = x(1) = c
2 < c,

α(x) = mint∈[w,v]T x(t) = x(w) > b.
Hence {x ∈ P (γ, θ, α, b, c, d : α(x) > b} 6= Ø.
Since

φq(Ax) = φq

(
∫ 1

0

h(s)f(s, x(s), x∆(s))∇s −Ax

)

+

m−2
∑

i=1

αi

∫ ηi

ξi

φq

(
∫ s

0

h(τ)f(τ, x(τ), x∆(τ))∇τ −Ax

)

∆s

≥ φq

(
∫ 1

0

h(s)f(s, x(s), x∆(s))∇s

)

− φq(Ax)

+

m−2
∑

i=1

αi

∫ ηi

ξi

φq

(
∫ s

0

h(τ)f(τ, x(τ), x∆(τ))∇τ

)

∆s

−
m−2
∑

i=1

αi

∫ ηi

ξi

φq(Ax)∆s

≥ φq

(
∫ 1

0

h(s)f(s, x(s), x∆(s))∇s

)

− φq(Ax)

−
m−2
∑

i=1

αi(ηi − ξi)φq(Ax),

we have
[

2 +

m−2
∑

i=1

αi(ηi − ξi)

]

φq(Ax) ≥ φq

(
∫ 1

0

h(s)f(s, x(s), x∆(s))∇s

)

.



282 OZLEM BATIT OZEN AND ILKAY YASLAN KARACA

Hence, we get

φq(Ax) ≥
1

2 +

m−2
∑

i=1

αi(ηi − ξi)

φq

(
∫ 1

0

h(s)f(s, x(s), x∆(s))∇s

)

. (13)

Case 1. If α(Tx) = min
t∈[w,ν]T

Tx(t) = Tx(w) holds then from (10), (13) and (A2), we

obtain

Tx(w) =
1

m−2
∑

i=1

αi

[

φq(Ax) +

m−2
∑

i=1

αi

∫ 1

ξi

φq

(

Ax −

∫ s

0

h(τ)f(τ, x(τ), x∆(τ))∇τ

)

∆s

]

+

∫ w

1

φq(Ax −

∫ s

0

h(τ)f(τ, x(τ), x∆(τ))∇τ)∆s

=
1

m−2
∑

i=1

αi

[

φq(Ax) +

m−2
∑

i=1

αi

∫ w

ξi

φq

(

Ax −

∫ s

0

h(τ)f(τ, x(τ), x∆(τ))∇τ

)

∆s

]

≥
1

m−2
∑

i=1

αi

[

φq(Ax) +

m−2
∑

i=1

αi

∫ w

ξi

φq(Ax)∆s

−
m−2
∑

i=1

αi

∫ w

ξi

φq

(
∫ s

0

h(τ)f(τ, x(τ), x∆(τ))∇τ

)

∆s

]

≥
1

m−2
∑

i=1

αi

[

φq(Ax) +

m−2
∑

i=1

αi(w − ξi)φq(Ax)

−
m−2
∑

i=1

αi

∫ 1

ξi

φq

(
∫ 1

0

h(τ)f(τ, x(τ), x∆(τ))∇τ

)

∆s

]

=
1

m−2
∑

i=1

αi

[(

1 +

m−2
∑

i=1

αi(w − ξi)

)

φq(Ax)−

−
m−2
∑

i=1

αi(1− ξi)φq

(
∫ 1

0

h(τ)f(τ, x(τ), x∆(τ))∇τ

)

]

≥
1

m−2
∑

i=1

αi













(

1 +

m−2
∑

i=1

αi(w − ξi)

)

1

2 +

m−2
∑

i=1

αi(ηi − ξi)
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−
m−2
∑

i=1

αi(1− ξi)

]

φq

(
∫ 1

0

h(τ)f(τ, x(τ), x∆(τ))∇τ

)

= Aφq

(
∫ 1

0

h(τ)f(τ, x(τ), x∆(τ))∇τ

)

> Aφq

(
∫ ν

w

h(τ)
1

Ω
φp

(

b

A

)

∇τ

)

= A
b

A
φq(

1

Ω

∫ ν

w

h(τ)∇τ) = b.

Thus we get Tx(w) > b.

Case 2. If α(Tx) = min
t∈[w,ν]T

Tx(t) = Tx(ν) holds then from (10), (13) and (A2), we

get

Tx(ν) ≥
1

m−2
∑

i=1

αi













(

1 +

m−2
∑

i=1

αi(ν − ξi)

)

1

2 +

m−2
∑

i=1

αi(ηi − ξi)

−
m−2
∑

i=1

αi(1− ξi)

]

φq

(
∫ 1

0

h(τ)f(τ, x(τ), x∆(τ))∇τ

)

≥ Aφq

(
∫ 1

0

h(τ)f(τ, x(τ), x∆(τ))∇τ

)

> Aφq

(
∫ ν

w

h(τ)
1

Ω
φp

(

b

A

)

∇τ

)

= b.

Hence we get Tx(ν) > b.

Therefore we get α(Tx) > b for all x ∈ P (γ, θ, α, b, c, d). Consequently, condition (S1)
in Theorem 3.1 is satisfied.

Step 3.We prove that (S2) in Theorem 3.1 holds. Since x is nonnegative and concave
on [0, 1]T, we obtain

x(w) = x

[ 1
w
(1 + t)− 1
1
w
(1 + t)

1
1
w
(1 + t)− 1

+
1

1
w
(1 + t)

t

]

≥
1
w
(1 + t)− 1
1
w
(1 + t)

x

(

1
1
w
(1 + t)− 1

)

+
1

1
w
(1 + t)

x(t)

≥
w

1 + t
x(t) ≥

w

2
x(t).

Therefore x(w) ≥ w
2 supt∈[0,1]T x(t) = w

2 θ(x). Similarly x(ν) ≥ ν
2 θ(x) >

w
2 θ(x) holds.

Hence
α(x) ≥

w

2
θ(x), x ∈ [0, 1]T.

Then we get

α(Tx) ≥
w

2
θ(Tx) >

w

2
c >

w

2

2b(L+ 1)

wL

= b

(

∑m−2
i=1 αi

1−
∑m−2

i=1 αi

+ 1

)

1−
∑m−2

i=1 αiξi
∑m−2

i=1 αi

> b
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for x ∈ P (γ, α, b, d) with θ(Tx) > c.

Step 4. Finally, we prove that (S3) in Theorem 3.1 is satisfied. Since ψ(0) = 0 < a,

0 6∈ R(γ, ψ, a, d). Suppose that x ∈ R(γ, ψ, a, d) with ψ(x) = a, then by (A3) and Lemma
2.3 we get

ψ(Tx) = sup
t∈[0,1]

Tx(t)

≤ M sup
t∈[0,1]

|(Tx)∆(t)|

≤ Mφq

[

2

∫ 1

0

h(s)f(s, x(s), x∆(s))∇s

]

< Mφq

[

2

∫ 1

0

h(s)
1

2Λ
φp(

a

M
)∇s

]

< M
a

M
φq(

1

Λ

∫ 1

0

h(s)∇s) = a.

Consequently condition (S3) in Theorem 3.1 holds. From steps 1 − 4 together with
Theorem 3.1 we get that the boundary value problem (1)-(2) has at least three positive
solutions x1, x2, x3 such that

sup
t∈[0,1]T

|x∆i (t)| ≤ d, i = 1, 2, 3, sup
t∈[0,1]T

x1(t) < a,

a < sup
t∈[0,1]T

x2(t) with min
t∈[w,ν]T

x2(t) < b, min
t∈[w,ν]T

x3(t) > b.

The proof is complete. ✷

Example 3.1 Let T = { 1
2n+1 : n ∈ N} ∪ {0, 1}. Consider the following problem

(φ3(x
△))∇(t) + 8f(t, x(t), x∆(t)) = 0, t ∈ [0, 1]T, (14)

x∆(0) =
1

4
x(

1

10
) +

1

6
x(

1

5
), x∆(1) = −

1

4
x(

1

3
)−

1

6
x(

1

2
), (15)

where

f(t, u, v) =

{

t[60u7 + ( v
103 )

4], u ≤ 1, 0 ≤ v, v ∈ T;
t[60 + ( v

103 )
4], u > 1, 0 ≤ v, v ∈ T.

It is easy to verify that (H1)− (H3) hold. Choose a = 1
10 , b = 1, c = 40, d = 43, w =

1
4 , v = 1

3 . Then by simple calculations, we can obtain that

M =
163

43
, Λ = 8, A =

4181

12650
, Ω =

2

3
.

So the nonlinear term f satisfies

f(t, u, v) ≤ 60 + ( 43
103 )

4 = 60.00000342 <
φp(d)
2Λ = 115.5625, (t, u, v) ∈ [0, 1]T × [0, 163]×

[0, 43],
f(t, u, v) ≥ 20 > φ3(

b
2A ) = 16.43184338, (t, u, v) ∈ [ 14 ,

1
3 ]T × [1, 40]× [0, 43],
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f(t, u, v) < 60. 1
107 + ( 43

103 )
4 = 0.000009418801 < 1

2Λφp(
a
M
) = 0.0000434952, (t, u, v) ∈

[0, 1]T × [0, 1
10 ]× [0, 43].

Therefore the conditions in Theorem 3.2 are all satisfied. So BVP (14)-(15) has at
least three positive solutions x1, x2, x3 such that

sup
t∈[0,1]T

|x∆i (t)| ≤ 43, i = 1, 2, 3, sup
t∈[0,1]T

x1(t) <
1

10
,

1

10
< sup

t∈[0,1]T

x2(t) with min
t∈[ 1

4
, 1
3
]T
x2(t) < 1, min

t∈[ 1
4
, 1
3
]T
x3(t) > 1.
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