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Abstract: In this paper a novel Huang-Hilbert Transform (HHT) based adaptive
tracking control strategy is proposed for a class of uncertain systems subjected to
actuator saturation. HHT is used in this work for the online feature extraction of the
uncertainties in the systems which are approximated by Wavelet Neural Networks
(WNNs). Adaptation laws are developed iteratively using the Intrinsic Modal Func-
tions (IMF) for the online tuning of wavelets parameters. The uniformly ultimate
boundedness of the closed-loop tracking error is verified even in the presence of WNN
approximation errors and bounded unknown disturbances, using the Lyapunov ap-
proach and with novel weight updating rules. Finally some simulations are performed
to verify the effectiveness and performance of the theoretical development.

Keywords: Hilbert-Huang transform; empirical mode decomposition; intrinsic mode
function; wavelet neural networks; adaptive control; Lyapunov functional.

1 Introduction

In many practical systems, the system model always contains some uncertain elements;
these uncertainties may be due to additive unknown internal or external noise, envi-
ronmental influence, nonlinearities such as hysteresis or friction, poor plant knowledge,
reduced-order models, and uncertain or slowly varying parameters. The analytical study
of adaptive nonlinear control systems involving online approximation structures has
evolved considerably during the last decade [1–3] The design of online approximation
based controllers can be broken up into two stages: first, the unknown nonlinearity is
represented by some online approximators. Hence, the designer needs to choose a specific
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adaptive network configuration, including the general structure of the online approxima-
tor, the number of layers (in case of multi layer neural networks), the number of adjustable
weights, etc. In the second stage, the designer needs to develop an appropriate feedback
control law for updating the adjustable weights.

Characteristics of practical actuators are in general nonlinear, usually described by
the nonlinearities such as saturation, hysteresis, backlash etc. Nonlinear behavior of the
actuator causes the detuning of plant as well as controller parameters which may lead to
the poor performance or even may cause the destabilization of the system. Out of these
nonlinearities saturation is the frequently encountered nonlinearity and is addressed by
several researchers [4, 5].

In recent years, learning-based control methodology using Neural networks (NNs)
has become an alternative to adaptive control since NNs are considered as general tools
for modeling nonlinear systems. Work on adaptive NN control using the universal NN
approximation property is now pursued by several groups of researchers [6, 7]. By using
neural network (NN) as an approximation tool, the assumptions on linear parameterized
nonlinearities in adaptive controller designing aspects have greatly been relaxed. It also
broadens the class of the uncertain nonlinear systems which can be effectively dealt by
adaptive controllers. However there are some difficulties associated with NN based con-
troller. The basis functions are generally not orthogonal or redundant; i.e., the network
representation is not unique and is probably not the most efficient one and the conver-
gence of neural networks may not be guaranteed. Also the training procedure for NN
may be trapped in some local minima depending on the initial settings. Wavelet neural
networks are the modified form of the NN having the properties of space and frequency
localization properties leading to a superior learning capabilities and fast convergence.
Thus WNN based control systems can achieve better control performance than NN based
control systems [6–9].

Recently, a new signal analysis approach, Hilbert-Huang transform (HHT), is pro-
poses by Huang et. al. [10, 11]which is a combination of empirical mode decomposition
(EMD) and Hilbert spectral analysis (HSA). By EMD, a signal is decomposed into a se-
ries of mono-component modes defined as intrinsic mode functions (IMFs), and Hilbert
transform can thus be applied to each IMF to obtain the instantaneous frequency and the
instantaneous magnitude. Unlike Fourier series representation in which base functions
are always sinusoidal functions, HHT adopts different IMFs to describe various signals,
resulting in adaptive base functions. Also HHT is valid for nonlinear and nonstationary
signals. Because of the distinct characteristics of HHT, it has attracted considerable
research interest in exploring its potential as a frequency identification tool.

A straightforward method could be that, after application of HHT to a signal, com-
parisons are made between Fourier spectra of the obtained IMFs and that of the original
signal to find out the relationships between IMFs and vibration modes. Then by com-
puting the amplitude weighted average frequencies based on the Hilbert spectra, modal
frequencies can be identified. Besides, Yang et al. [12] proposed a method in which, be-
fore they are analyzed by HHT, the signals are processed by some pre-selected bandpass
filters, the thresholds of which are determined by referring to the Fourier spectra of the
signals. Efficacious as they are, these two HHT-based frequency identification methods
however have to rely on some a priori information about the natural frequencies to be
identified, whether by comparing Fourier spectra of original signals and those of the IMFs
or by selecting the thresholds of the bandpass filters. From a practical point of view, it
is difficult to obtain some a priori information about the frequencies of random signals.
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So the theoretical Eigen analysis techniques are not appropriate to provide a sufficiently
accurate estimation of natural frequencies. That is, frequency information is usually un-
available before identification procedures are carried out. Koh et al. [13] and Chhoa et
al. [14] introduced a criterion that the IMF component with the highest energy compared
to other IMF components most probably represents the fundamental frequency of the
system. The criterion was applied to experimental signals collected from the real time
systems and successfully identified the IMFs related to the fundamental frequencies. Due
to noise contamination, however, the fundamental frequency of a system may relegate
from one IMF to the next IMF during the time range of the signal [15], and the identi-
fication of the relationships between IMFs and multiple physical vibration modes might
be more involved as a modal frequency may be contained along specific segments of the
whole time duration of one or more IMFs.

The major limitation of HHT and EMD is that the signal under analysis must be
known so that its maxima and minima can be calculated. But in this work, the nonlinear
function present in the dynamics of the system is uncertain in nature. To overcome this
problem we have proposed a technique to estimate the uncertain function by WNN
first and then through iterative EMD algorithm, the uncertain function is approximated
very accurately. Multiple WNNs are cascaded to solve this problem. Every layer has
different number of nodes and different tuning laws derived by gradient descent rule. The
output of each WNN is used for the derivation of the adaptive tuning laws of the next
cascaded WNN. This process is repeated until the residue becomes zero, which means
the approximation is best possible. This novel technique of using HHT and EMD to
approximate the features of an uncertainties present in the nonlinear systems has never
been cited in the literature to the best of the knowledge of authors and hence reflects
the contribution of this work.

This paper deals with the designing of HHT based wavelet adaptive tracking controller
for a class of uncertain nonlinear systems. WNN are used for approximating the system
uncertainty as well as to optimize the performance of the control strategy. HHT algorithm
generates the features of these uncertainties to be fed to the consecutive WNN.

The paper is organized as follows: Section 2 deals with the system preliminaries,
system description is given in Section 3. WNN based controller designing aspects are
discussed in Section 4. Section 5 describes the proposed HHT based wavelet adaptive
controller design. The stability analysis of the proposed control scheme is given in Section
6. Effectiveness of the proposed strategy is illustrated through an example in Section 7
while Section 8 concludes the paper.

2 System Preliminaries

2.0.1 Actuator Saturation

The output of an actuator u(t)with input v(t) subjected to the condition of saturation
is defined as

u =







umax, v ≥ umax,

v, umin < v < umax,

umin, v ≤ umin,

(1)

where umax and umin are upper and lower saturation limits as shown in Figure 1.

For symmetric actuator saturation umin = −umax part of the control effort which can
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Figure 1: Saturation function.

not be implemented under this condition is defined as

∆u =







umax − v, v ≥ umax,

0, umin < v < umax,

umin − v, v ≤ umin,

(2)

where ∆u describes the effect of actuator saturation and can be effectively approximated
by using a wavelet neural network.

2.0.2 Wavelet neural network

Wavelet network is a type of building block for function approximation. The building
block is obtained by translating and dilating the mother wavelet function. In contrast
to conventional wavelets, a biased wavelet has a nonzero mean and can better reproduce
signal components that are in the low-frequency region on the time-frequency plane since
the nonzero mean enlarges low-frequency gain. Output of a biased n dimensional wavelet
network with m nodes is

f = αTϕ (x,w, c) + βTφ (x,w, c) , (3)

where x = [x1, x2, ..., xn]
T
∈ Rn is the input vector, ϕ = [ϕ1, ϕ2,..., ϕm]

T
∈ ℜm and φ =

[φ1, φ2,..., φm]T ∈ ℜmare wavelet and bias functions respectively; w = [w1, w2, ..., wm]T ∈

Rmxn and c = [c1, c2,..., cm]
T

∈ Rmxn are dilation and translation parameters respec-

tively ; α = [α1, .., αm]T ∈ Rm and β = [β1, .., βm]T ∈ Rm are weights of wavelet and
bias function respectively.

Let f∗ be the optimal function approximation using an ideal wavelet approximator
then

f = f∗ +∆ = α∗Tϕ∗ + β∗Tφ∗ +∆, (4)

where ϕ∗ = ϕ (x,w∗, c∗) and φ∗ = φ (x,w∗, c∗), α∗, β∗, w∗, c∗ are the optimal parameter
vectors of α, β, w, c respectively and ∆ denotes the approximation error and is assumed
to be bounded by |∆| ≤ ∆∗, in which ∆∗ is a positive constant.
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Optimal parameter vectors needed for best approximation of the function are difficult
to determine so define an estimate function as

f̂ = α̂T ϕ̂+ β̂T φ̂, (5)

where ϕ̂ = ϕ (x, ŵ, ĉ) , φ̂ = φ (x, ŵ, ĉ) and α̂, β̂, ŵ, ĉ are the estimates of α∗, β∗, w∗, c∗

respectively. Define the estimation error as

f̃ = f − f̂ = f∗ − f̂ +∆ =αT ϕ̃+ α̂T ϕ̃+ α̃T ϕ̂+ β̃T φ̃+β̂T φ̃+β̃T φ̂+∆, (6)

where α̃ = α∗−α̂, β̃= β∗−β̂,ϕ̃= ϕ∗−ϕ̂,φ̃= φ∗−φ̂.
By properly selecting the number of nodes, the estimation error f̃ can be made

arbitrarily small on the compact set so that the bound
∥

∥

∥
f̃
∥

∥

∥
=f̃m holds for all x ∈ ℜ.

Use Taylor expansion linearization technique to transform the nonlinear function
into a partially linear form as a step towards the derivation of online tuning laws for the
wavelet parameters to achieve the favorable estimation of system dynamics

ϕ̃ = AT
1 w̃ +BT

1 c̃+ h1φ̃ = AT
2 w̃ +BT

2 c̃+ h2, (7)

where w̃ = w∗ − ŵ, c̃ = c∗ − ĉ and h1, h2 are the vectors of higher order terms and

A1 =
[

dϕ1

dw
, dϕ2

dw
, ..., dϕm

dw

]∣

∣

∣

w=ŵ
, A2 =

[

dφ1

dw
, dφ2

dw
, ..., dφm

dw

]∣

∣

∣

w=ŵ
,

B1 =
[

dϕ1

dc
, dϕ2

dc
, ..., dϕm

dc

]∣

∣

∣

c=ĉ
, B2 =

[

dφ1

dc
, dφ2

dc
, ..., dφm

dc

]∣

∣

∣

c=ĉ
,

with
dϕ̂i

dw
=

[

0...0 dϕ̂i

dw1i

, dϕ̂i

dw2i

, ..., dϕ̂i

dwni

, 0...0
]T

,

dϕ̂i

dc
=

[

0...0 dϕ̂i

dc1i
, dϕ̂i

dc2i
, ..., dϕ̂i

dcni

, 0...0
]T

,

dφ̂i

dw
=

[

0...0, dφ̂i

dw1i

, dφ̂i

dw2i

, ..., dφ̂i

dwni

, 0...0
]T

,

dφ̂i

dc
=

[

0...0, dφ̂i

dc1i
, dφ̂i

dc2i
, ..., dφ̂i

dcni

, 0...0
]T

.

Substituting (7) into (6)

f̃ = α̃T
(

ϕ̂−AT
1 ŵ −BT

1 ĉ
)

+ w̃T
(

A1α̂+A2β̂
)

+ c̃T
(

B1α̂+B2β̂
)

+β̃T
(

φ̂−AT
2 ŵ −BT

2 ĉ
)

+ ε,
(8)

where the uncertain term is given by the following expression

ε = α∗Th1 + α̃TAT
1 w

∗ + α̃TBT
1 c

∗ + β∗Th2 + β̃TAT
2 w

∗ + β̃TBT
2 c

∗.

2.0.3 Hilbert-Huang Transform

This section briefly summarizes the principles and procedures of HHT. HHT is an adap-
tive data analysis method designed for analyzing non-stationary signals. In HHT, the
signal is decomposed into a finite small number of components, called Intrinsic Mode
Functions (IMF). This process of decomposition is called Empirical Mode Decompo-
sition (EMD). Presented by Huang et al. [8], HHT essentially consists of two steps:
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empirical mode decomposition and Hilbert spectral analysis. By EMD, a complicated
signal is decomposed into a series of simple oscillatory modes, designated as intrinsic
mode functions, and a residue. Hilbert spectral analysis is then invoked for each IMF to
obtain the instantaneous frequencies and the instantaneous magnitudes, which comprise
the Hilbert-Huang spectrum of the signal.

i. Empirical Mode Decomposition (EMD) The EMD decomposes the signal in terms
of IMFs, each of which is a mono-component function. Given an arbitrary signal x(t)
following the EMD method, sifting processes are used to extract the IMFs. In a typical
single sifting process, the local maxima are first identified and connected by cubic spline

functions, resulting in an upper envelope u
(1)
1 (t) of the signal. A lower envelope l

(1)
1 (t)

is similarly obtained based on local minima. Then a function m
(1)
1 (t) is defined as the

mean of the upper and lower envelopes. Finally, subtracting the mean function m
(1)
1 (t)

from signal x(t), the first iterate h
(1)
1 (t), or the first proto-IMF is obtained. The above

procedures are iterated until the proto-IMF h
(k+1)
1 (t) converges to the first IMF q1 if the

following conditions are satisfied:

• For h
(k+1)
1 (t), the number of extrema and the zeros differ at most by 1.

• The difference between the mean m
(k)
1 (t) and zero is within the pre-selected toler-

ance.

The above sifting process is shown in (9)

m
(k+1)
1 =

u
(k+1)
1 + l

(k+1)
1

2
h
(k+1)
1 = hk

1 −m
(k+1)
1 , (9)

where k = 0, 1, 2, . . .and h0
1 = x. One kind of iteration stopping criterion is that the

value of standard deviation SD is less than a preselected value, where SD is defined as

SDk =
∑

i

(h(k+1)(ti)− h(k)(ti))
2

(h(k)(ti))
2 (10)

or

SDk =

∑

i

(h(k+1)(ti)− h(k)(ti))
2

∑

i

(h(k)(ti))
2 . (11)

The shifting process is stopped, when SDk becomes smaller than a pre-determined
value. Once the shifting process is stopped, the first IMF q1 can be obtained, which
contains the finest scale or the shortest period component of the signal. After separating
q1 from the original signal x(t), the residue of the signal is obtained

x(t) − q1 = r1. (12)

A new sifting process is applied to r1, which leads to the second IMF q2 and the
residue r2:

r1 − q2 = r2 (13)

Similarly, for nth IMF,
rn−1 − qn = rn. (14)
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The sifting processes are iterated until rn becomes a constant, a monotonic function,
or a function with only one extremum. Therefore, by EMD, the original signal x(t) is
denoted as

x(t) =

n
∑

i=1

qi + rn. (15)

Thus the decomposition of a signal in n-empirical modes is achieved. The components
of the EMD are physically meaningful, as the characteristic scales are defined by the
physical data. The instantaneous frequency can be computed by finding the Hilbert
Transform of the IMF components.

ii. Feature Extraction using Hilbert-Huang Transform.
The features of the disturbance signals are extracted by finding the energy of the

IMFs which are derived from each of the disturbance waveforms. Let q1, q2, q3 be the
first three IMF components and E1, E2 and E3 be their corresponding energies. Energy
of the IMF is calculated using the following equations

E1 = ‖q1‖
2
, (16)

E2 = ‖q2‖
2
, (17)

E3 = ‖q3‖
2
. (18)

3 System Description

Consider a nonlinear system of the form

ẋ1 = x2,

ẋ2 = x3,
...
ẋn = f(x) + gu,

y = x1,

(19)

where x = [x1, x2, ..., xn]
T
, u, y are state variable, control input and output respectively.

f(x) is a smooth unknown, nonlinear function of state variables.
Rewriting the system (19) as

ẋ = Ax+B(f(x) + u(t)),
y = Cx,

(20)

A =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
0 0 0 . . . 0















, B =















0
0
0
...
1















, C =
[

1 0 0 . . . 0
]

.

Using the actuator saturation defined in Section 2 system (20) can be transformed to

ẋ = Ax+B(δ(x) + (v +∆u)),
y = Cx,

(21)
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where δ(x, ȳd) = f(x) + ∆u. Let ȳd = [yd, ẏd, . . . ,
n−1
yd ]T be the vector of desired track-

ing trajectory. The objective is to formulate a state feedback control law to achieve
the desired tracking performance simultaneously nullifying the effect of actuator satura-
tion. The control law is formulated using the transformed system (21). The following
assumptions are taken for the systems under consideration.

Assumption 3.1 Desired trajectory yd (t) is assumed to be smooth, continuous Cn

and available for measurement.

4 Basic Controller Design Using Filtered Tracking Error

Define the state tracking error vector e(t) as

e(t) = x(t) − ȳd(t). (22)

The filter tracking error is defined as

r = Ke, (23)

where K = [k1, k2, . . . kn−1, 1] is an appropriately chosen coefficient vector such that
e → 0exponentially as ℜ → 0.

Applying the feedback linearization method, the control laws for every iteration level
are defined in the subsequent section.

5 Proposed Adaptive WNN Controller Design

A novel adaptive control strategy is proposed in this section which uses WNN to approx-
imate the nonlinear uncertainties δ(x) present in the systems through HHT algorithm. A
separate WNN network with different number of nodes and different adaptation laws is
implemented for every iteration level of HHT algorithm. The tuning laws for the WNN
at various iterations are derived as follows.

The cost function derived for the tuning of WNN parameters using (23) is given by

S =
1

2
ṙT ṙ. (24)

Using the gradient descent algorithm, the online tuning laws for the WNN parameters
are

α̇ = −η ∂S
∂α

= −ηṙ ∂ṙ
∂α

,

ẇ = −η ∂S
∂w

= −ηṙ ∂ṙ
∂w

,

ċ = −η ∂S
∂c

= −ηṙ ∂ṙ
∂c
.

(25)

i. First iteration.
Assuming q1be the WNN approximation for the first EMD, the control law can be

derived as

u = (
n
yd −

Kee

kn
− r − q1), (26)

where Ke = [0, k1, k2, . . . , kn−1].
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From (23), we get

ṙ = Kee+ kn(δ + u+
n
yd). (27)

And the online tuning laws for the first WNN are given by

α̇1 = η1knṙ
∂q1
∂α1

,

ẇ1 = η1knṙ
∂q1
∂w1

,

ċ1 = η1knṙ
∂q1
∂c1

.

(28)

ii. Second iteration.
Assuming q2 be the WNN approximation for the second EMD, the control law can

be derived as

u = (
n
yd −

Kee

kn
− r − q1 − q2). (29)

Also the corresponding online tuning laws for WNN are derived as

α̇2 = η2knṙ
∂q2
∂α2

ẇ2 = η2knṙ
∂q2
∂w2

,

ċ2 = η2knṙ
∂q2
∂c2

.

(30)

iii. nth iteration.
Similarly assuming qnbe the WNN approximation for the nth EMD, the final control

law can be derived as

u = (
n
yd−

Kee

kn
− r − (

n
∑

i=1

qi)). (31)

Also the corresponding online tuning laws for WNN are derived as

α̇n = ηnknṙ
∂qn
∂αn

,

ẇn = ηnknṙ
∂qn
∂wn

,

ċn = ηnknṙ
∂qn
∂cn

.

(32)

Stability of the system (21) with the proposed control strategy will be analyzed in
the next section.

5.0.4 Stability Analysis

Consider a Lyapunov functional of the form [16]

V =
1

2
r2. (33)

Differentiate it along the trajectories of the system,

V̇ = r(Kee+K(δ(x) + u(t)− vr −
n
yd).

By the substitution of control law u(t) in the above equation, we get

V̇ = r(−Kr + δ̃(x)− vr),
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where δ̃(x) is the error between the actual value and the approximated value of

V̇ ≤ −Kr2 + |r|
∣

∣

∣
δ̃(x)

∣

∣

∣
− rvr).

Substitute the robust control term vr = − (ρ2+1)r
2ρ2 in the above equation,

V̇ ≤ −s1r
2 + s2(|r|

∣

∣

∣
δ̃(x)

∣

∣

∣
)2,

where s1 = (K + K
2 ) and s2 =

Kρ2

2 . The system is stable as long as

s1r
2 ≥ s2(|r|

∣

∣

∣
δ̃(x)

∣

∣

∣
)2. (34)
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Figure 2: Desired trajectory, actual trajectory, tracking error and control effort after first
iteration level.

5.0.5 Simulation results

Simulation is performed to verify the effectiveness of proposed HHT-WNN based control
strategy. Consider a system of the form

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = x4,

ẋ4 = 0.01x1 sinx2 + u,

y = x1.

(35)
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Figure 3: Desired trajectory, actual trajectory, tracking error and control effort after second
iteration level.
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Figure 4: Desired trajectory, actual trajectory, tracking error and control effort after third
iteration level.
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Figure 5: Desired trajectory, actual trajectory, tracking error and control effort after fourth
iteration level.

The system belongs to the class of uncertain nonlinear systems defined by (21) with
n = 4. The proposed controller strategy is applied to this system with an objective to
solve the tracking problem of system. Four iteration levels are used for the simulation.
The desired trajectory is taken as yd = 0.5 sin t. Initial conditions are taken as x (0) =

[0.3, 0, 0, 0]T . Attenuation levels for robust controller are taken as 0.01. Controller gain
vector is taken as (31). Wavelet networks with Mexican Hat wavelet as the mother
wavelet is used for approximating the unknown system dynamics. Wavelet parameters
for these wavelet networks are tuned online using the proposed adaptation laws. Initial
conditions for all the wavelet parameters are set to zero. Simulation results are shown in
Figures 2–5. As observed from the figures, system response tracks the desired trajectory
rapidly in consecutive iterations and after the fourth iteration the trajectory is perfectly
tracked. This reflects the efficiency of the proposed control strategy.

6 Conclusion

A novel HHT based Wavelet adaptive tracking control strategy is proposed for a class
of systems with unknown system dynamics and actuator saturation. Adaptive wavelet
networks are used for approximating the unknown system dynamics. HHT algorithm is
used for the better online feature extraction of uncertainties present in the dynamics of
the system. Adaptation laws are developed for online tuning of the wavelet parameters.
The stability of the overall system is guaranteed by using the Lyapunov functional. The
theoretical analysis is validated by the simulation results.
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