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1 Introduction

Let G : R
n −→ R be a continuously differentiable function such that G′ : R

n −→
G′(Rn) be an homeomorphism. Let A be a matrix of order n and h : R −→ R

n be
a continuous T− periodic (T > 0) function with zero mean value. Consider the non-
coercive Hamiltonian

H(t, r, p) = G(p−Ar) + h(t) · (r, p).

Here x.y is the usual inner product of x, y ∈ R
2n. We are interested in the boundary

value problem
ẋ = JH ′(t, x) (H)

with
x(0) = x(T ). (C)

The goal of this work is to prove the existence of solutions to the problem (H)(C) and
to approximate these solutions.
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For T and h given, we define the dual action integral ϕ : E −→ R ∪ {+∞} as

ϕ(v) =
1

2

∫ T

0

Jv · πvdt +

∫ T

0

H∗
0 (v − h)dt,

where H0(r, p) = G(p−Ar), H∗
0 is the Fenchel’s transformation of H0 and E is the closed

subspace of L2(0, T ;R2n) defined by:

E =

{

v ∈ L2(0, T ;R2n)/

∫ T

0

v(t)dt = 0

}

.

Under some suitable assumptions on G, we will prove, in Section 2, that the problem
(H)(C) has at least one solution and is equivalently to the following problem:

find v ∈ E such that 0 ∈ ∂̄ϕ(v), (R)

where we introduce the notation ∂̄ to distinguish the sub differential in E and in
L2(0, T ;R2n). In Section 3, we will introduce some problems (HN )(CN ), (RN ), (PN )
defined in a finite dimensional space and related together by a discret dual action prin-
ciple. In Section 4, we will study the existence of solutions to problem (PN ), which
give solutions to problem (RN ). In Section 5, we will study some convergence problems
related to this discretisation. We want to know if the differences system (HN ) is near to
system (H) for example for a very large integer N . In Section 6, we will give an example
of application and in Section 7, we will conclude this work.

2 Existence of Periodic Solutions

Let G : Rn −→ R be a continuously differentiable convex function, A be a symmetric
matrix of order n and h : R −→ R

2n be a continuous T -periodic function with zero mean
value on [0, T ]. Consider the assumptions:

Assumption 2.1

lim
|x|−→∞

G(x) = +∞. (G1)

Assumption 2.2 There exist α ∈]0, π
T (1+|A|2) [ and β ≥ 0 such that

∀x ∈ R
n, G(x) ≤

α

2
|x|

2
+ β, (G2),

where |A| is the usual norm of A. Consider the non-coercive sub-quadratic Hamiltonian:

H(t, r, p) = G(p−Ar) + h · (r, p).

We are interested in the existence of solutions for the boundary value problem

ẋ = JH ′(t, x) (H)

with
x(0) = x(T ), (C)

where H ′ is the derivative of H with respect to the second variable x and J is the
standard (2n× 2n) symplectic matrix:

J =

(

0 −In
In 0

)

,

where In is the identity matrix of order n.
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Example 2.1 Consider a relativistic particle with a very small charge e and rest
mass m0, subject to a uniform constant magnetic field B and a uniform electric field
E(t). The energy expressed as a function of (t, r, p), i.e. a Hamiltonian, is given by

H(t, r, p) = c
[

m2
0c

2 +
∣

∣

∣
p−

e

2
B(t) ∧ r

∣

∣

∣

2 ] 1
2

− E(t).r,

where c is the velocity of light, p the usual mechanical momentum of particle and r is its
position. The particle motion is described by the associated Hamiltonian system (H).

The function
H0(r, p) = G(p−Ar)

is convex and its Fenchel’s transformation H∗
0 is given for all (s, q) ∈ R

n × R
n by (see

[7])

H∗
0 (s, q) =

{

G∗(q), if s+A∗q = 0,
+∞, if s+A∗q 6= 0.

Consider the functional

ψ(y) =

∫ T

0

[
1

2
Jẏ.y +H∗

0 (ẏ − h)]dt (2.1)

defined over the space
{y ∈ H1(0, T ;R2n)/y(0) = y(T )}.

Note that, from the periodicity condition:

∀ξ ∈ R
2n, ψ(y + ξ) = ψ(y),

the true variable in (2.1) is ẏ and we can choose for y any primitive we like. The only
condition on ẏ is:

ẏ ∈ L2(0, T ;R2n) and

∫ T

0

ẏdt = 0.

In other terms, we have
ψ(y) = ϕ(ẏ),

where ϕ is the functional

ϕ(v) =

∫ T

0

[
1

2
Jv · πv +H∗

0 (v − h)]dt

defined on the space

E = {v ∈ L2(0, T ;R2n)/

∫ T

0

v(t)dt = 0},

where πv is the primitive of v with zero mean value:

d

dt
(πv) = v and

∫ T

0

(πv)(t)dt = 0

or also

(πv)(t) =

∫ t

0

v(s)ds−
1

T

∫ T

0

∫ r

0

v(s)dsdr.
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This allows to introduce the following problem:

find v ∈ E such that 0 ∈ ∂̄ϕ(v). (R)

The problems (R) and (H)(C) are related by a dual action principle.

Theorem 2.1 (Dual action principle). Assume that the function G satisfies (G1),
(G2) and let v ∈ E. Then the two following assertions are equivalent:
(i) v is a solution of problem (R),
(ii) there exists a constant ξ in R

2n such that the function x(t) = Jπv(t)+ξ is a solution
of problem (H)(C).

Proof. To prove this theorem, we need the following lemma.
Consider the functional

g(v) =

∫ 0

T

H∗
0 (v − h)dt, v ∈ E,

we have

Lemma 2.1 The sub-differential of g|E in a point v ∈ E where g has finite value, is
given by

∂̄g(v) = {u ∈ L2(0, T ;R2n)/∃ξ ∈ R
2n, u(t) + ξ ∈ ∂H∗

0 (v(t) − h(t)) a.e.}.

Proof. If u ∈ L2(0, T ;R2n), v ∈ E and ξ ∈ R
2n are such that u(t) + ξ ∈ ∂H∗

0 (v(t) −
h(t)) a.e, we prove easily that u is in ∂̄g(v). Reversely, it is clear that

∂̄g(v) = ∂(g + δE)(v),

where

δE(v) =

{

0, if v ∈ E,
+∞, elsewhere.

Since it is clear that ∂δE(v) is the set of constant functions and it is well known that
(see [3])

∂g(v) = {u ∈ L2(0, T ;R2n)/u(t) ∈ ∂H∗
0 (v(t) − h(t)) a.e.},

the result will be proved if we have

∂(g + δE)(v) = ∂g(v) + ∂δE(v).

Let us establish that ∂(g + δE)(v) = ∂g(v) + ∂δE(v). It is enough to prove that g∗∇δ∗E
is exact (see [1]). By identifying the set of constant functions to R

2n, we see that

δ∗E = δR2n .

We deduce that for all u in L2:

(g∗∇δ∗E)(u) = inf
x∈R2n

∫ T

0

H0(u − h+ x)dt

and by (G2), we obtain

0 ≤ (g∗∇δ∗E)(u) ≤

∫ T

0

H0(u − h)dt ≤ α(1 + |A|2)||u− h||2L2 + βT. (2.2)
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By convexity and (2.2), we conclude that g∗∇δ∗E is continuous (see [3]).
Now, let us write u = (r, p) and h = (h1, h2), we have (g∗∇δ∗E)(u) = infξ∈Rn F (ξ), where

F (ξ) =

∫ T

0

G(p− h2 −A(r − h1) + ξ)dt.

By properties of G, it is easy to see that F is continuous and lim|ξ|−→∞ F (ξ) = +∞.
Consequently F achieves its minimum on R

n and then g∗∇δ∗E is exact. On the other
hand, g and δE are convex, l.s.c and propers, therefore for all v in E where g is finite,
we have

∂̄g(v) = ∂g(v) + R
2n.

The proof of Lemma 2.1 is complete.

Let v ∈ E be such that
0 ∈ ∂̄ϕ(v). (2.3)

This is equivalent to
0 ∈ −Jπv + ∂̄g(v). (2.4)

By Lemma 2.1, formula (2.4) is equivalent to the existence of ξ ∈ R
2n satisfying

J(πv)(t) + ξ ∈ ∂H∗
0 (v(t) − h(t)) a.e. (2.5)

Let us put x(t) = Jπv(t) + ξ. By Fenchel’s reciprocity, formula (2.5) can be rewritten as

v(t) − h(t) = H ′
0(x(t))

or
ẋ(t) = JH ′(t, x(t))

and it is clear that x is T− periodic. Then x is a solution of problem (H)(C) and Theorem
2.1 is proved.

Now, we associate with (R) the problem:

find v̄ ∈ E such that inf
v∈E

ϕ(v) = ϕ(v̄). (P)

The problem (P) allows to give a solution of problem (R).

Theorem 2.2 Assume assumptions (G1), (G2) hold, then problem (H)(C) has at
least one solution.

The proof of Theorem 2.2 follows immediately from Lemma 2.1 and the following
lemma.

Lemma 2.2 Problem (P) possesses a solution: there exists a point v̄ ∈ E such that

min
E

ϕ = ϕ(v̄).

Proof. By using assumption (G2) and going through the conjugate, we verify that

∀y ∈ R
2n, H∗

0 (y) ≥
1

2α(1 + |A|2)
|y|2 − β. (2.6)
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On the other hand, by Wirtinger’s inequality and using Fourier expansion, we have

∀v ∈ E, ||πv||L2 ≤
T

2π
||v||L2 . (2.7)

We deduce from (2.6), (2.7) and Hölder’s inequality that

∀v ∈ E,ϕ(v) ≥
1

2
[

1

α(1 + |A|2)
−

T

2π
]||v||L2 − βT. (2.8)

Now, let (vk) be a minimising sequence, then by (2.8), (vk) is bounded. Since the space
E is reflexive, then there exists a subsequence (vkp

) weakly convergent to a v̄ ∈ E.
It is well known that the functional g introduced above is l.s.c, so we have

lim inf
p−→∞

∫ T

0

H∗
0 (vkp

− h)dt ≥

∫ T

0

H∗
0 (v̄ − h)dt. (2.9)

Elsewhere, the operator π is compact, so

πvkp
−→ πv̄, in  L2

and then

lim
p−→∞

∫ T

0

Jvkp
· πvkp

dt =

∫ T

0

Jv̄ · πv̄dt. (2.10)

Consequently, we deduce from (2.9) and (2.10) that

min
E

ϕ = ϕ(v̄).

3 A Discrete Dual Action Principle

Giving a period T > 0 and a forcing h, we have defined in the previous section the
space E = L2

0(0, T ;R2n) and the functional ϕ : E −→ R̄. We will write a problem (RN )
obtained by writing (R) not in L2 but in a finite dimensional space. This will allow us,
having put a differences system (HN ) and a constraint (CN ), to establish a ”discrete dual
action principle” connecting (RN ) to (HN )(CN ).

Notations. For x ∈ R
nN , we will adopt the following agreement writing:







x = (x1, x2, ..., xn), where xi ∈ R
N ,

x = (x1, x2, ..., xN ), where xj ∈ R
n,

xji ∈ R, i = 1, 2, ..., n, j = 1, 2, ..., N.

This allows us to define the space

EN = {v = (r, p) ∈ R
2nN/

N
∑

j=1

rj =
N
∑

j=1

pj = 0}.

Let us define on R the sequence (tj)j=1,2,...,N by

{

t1 = 0, tN+1 = T,
tj+1 − tj = δ = T

N
, ∀j = 1, 2, ..., N.
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With any vector x ∈ R
nN , we can associate a step function x̃ from R into R

n, which will
be, by construction, T− periodic, as follows:

{

x̃(t) = xj , ∀t ∈ [tj , tj+1[, ∀j = 1, 2, ..., N ;
x̃(t+ kT ) = x̃(t), ∀t ∈ [0, T [, ∀k ∈ Z.

Then we can write ϕ applied to any element v = (r, p) of R2nN . We will denote by ϕN (v)
its value (the index N in ϕ is to recall that we have calculated ϕ for elements of R2nN ).
We obtain

ϕN (v) =
δ2

2

N
∑

j=1

j
∑

k=1

Jvj · vk + δ

N
∑

j=1

H∗
0 (vj − hj).

The vector hj is obtained by discretising h with respect to (tj)j=1,2,...,N , which is possible
since h is T− periodic.

Definition 3.1 We recall the problem (RN ):

find v ∈ EN such that 0 ∈ ∂̄ϕN (v). (RN )

Definition 3.2 We will denote by wN = (rN , pN ) the continuous piecewise linear
functions, defined with respect to (tj)j=1,2,...,N . For these functions, we define the dif-
ferences system

−J
wN (tj+1) − wN (tj)

tj+1 − tj
= H ′

0(
wN (tj+1) + wN (tj)

2
) + h(tj), j = 1, ..., N. (HN )

Then we look for wN satisfying (HN ) and the constraint

wN (0) = wN (T ). (CN )

Theorem 3.1 (Discrete dual action principle). Assume G satisfies (G1), (G2).
Then for v ∈ EN the following two assertions are equivalent:
(i) v is a solution of (RN ),
(ii) there exists a constant ξN in R

2N such that the function

wN (t) = J

∫ t

0

ṽ(τ)dτ + ξN

is a solution of (HN )(CN ), where ṽ is defined with respect to v as above.

Proof. 1) The function wN defined in (ii) is a continuous linear piecewise function
as in Definition 3.2.
2) Given the definition of EN , it is clear that wN satisfies condition (CN ) if and only if
v belongs to this space, since

∫ T

0

ṽ(τ)dτ =

N
∑

j=1

∫ tj+1

tj
ṽ(τ)dτ = δ

N
∑

j=1

vj .

3) In the following, we will need the next result:
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Lemma 3.1 Let

F (v) =
N
∑

j=1

H∗
0 (vj),

then we have
∂F (v) = {u ∈ R

2nN/uj ∈ ∂H∗
0 (vj), ∀j = 1, ..., N},

where u = (u1, ..., uN).

Proof. We have

u ∈ ∂F (v) ⇐⇒ ∀x ∈ R
2nN/F (x) ≤ F (v) + (x− v) · u

⇐⇒ ∀x ∈ R
2nN ,

N
∑

j=1

H∗
0 (xj) ≤

N
∑

j=1

H∗
0 (vj) +

N
∑

j=1

(xj − vj) · uj

=⇒ ∀j = 1, ..., N, ∀xj ∈ R
2n, H∗

0 (v1) + ...+H∗
0 (xj) + ...+H∗

0 (vN )

≤

N
∑

j=1

H∗
0 (vj) + (xj − vj) · uj

=⇒ ∀j = 1, ..., N, ∀xj ∈ R
2n, H∗

0 (xj) ≤ H∗
0 (vj) + (xj − vj) · uj

=⇒ ∀j = 1, ..., N, uj ∈ ∂H∗
0 (vj).

Reversely, if ∀j = 1, ..., N, uj ∈ ∂H∗
0 (vj), then

∀j, ∀xj ∈ R
2n, H∗

0 (xj) ≤ H∗
0 (vj) + (xj − vj) · uj

=⇒ ∀x ∈ R
2nN ,

N
∑

j=1

H∗
0 (xj) ≤

N
∑

j=1

H∗
0 (vj) +

N
∑

j=1

(xj − vj) · uj

=⇒ ∀x ∈ R
2nN , F (x) ≤ F (v) + (x− v) · u

=⇒ u ∈ ∂F (v).

Now, consider the functional

ϕN (v) = QN (v) + δ

N
∑

j=1

H∗
0 (vj − hj)

defined over the space EN , with

QN(v) =
δ2

2

N
∑

j=1

j
∑

k=1

Jvj · vk.

We have

QN (v) =
δ2

2
[Jv2 · v1 + ...+ JvN · v1] + terms without v1,

so
∂QN

∂v1
=
δ2

2
[Jv2 + Jv3 + ...+ JvN ] = −

δ2

2
Jv1.
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Similarly for 2 ≤ j ≤ N ,

QN (v) =
δ2

2
[Jvj .(v1 + ....+ vj−1) + (Jvj+1 + ...+ JvN ).vj ] + terms without vj ,

so
∂QN

∂vj
=
δ2

2
[−J(v1 + ...+ vj−1) + J(vj+1 + ...+ vN )]

=
δ2

2
[−J

j−1
∑

k=1

vk − J

j
∑

k=1

vk] = −
δ2

2
J(2

j−1
∑

k=1

vk + vj).

Therefore

∂ϕN (v) = {u ∈ R
2nN/∀j = 1, ..., N, uj ∈ −

δ2

2
(2

j−1
∑

k=1

vk + vj) + δ∂H∗
0 (vj − hj)}.

4) By writing

∂ϕN (v) =

{

0, if v ∈ EN ,
+∞, elsewhere,

we have

∂̄ϕN (v) = ∂(ϕN + δEN
)(v),

where we introduce the notation ∂̄ to distinguish the sub-differentials in EN and in R
2nN .

Lemma 3.2 We have

∂̄ϕN (v) = ∂ϕN (v) + ∂δEN
(v).

Proof. By writing

gN (v) =

N
∑

j=1

H∗
0 (vj − hj),

it is enough to prove that ∂̄gN (v) = ∂gN (v) + ∂δEN
(v). It is clear that ∂̄gN(v) = ∂(gN +

δEN
)(v). The result will be proved if we have

∂(gN + δEN
)(v) = ∂gN (v) + ∂δEN

(v).

For this, it is enough to prove that g∗N∇δ∗EN
is exact. We have δ∗EN

= δE⊥

N
. Let us

determine E⊥
N . We have

u = (r, p) ∈ E⊥
N ⇐⇒ ∀v ∈ EN , u · v = 0 ⇐⇒ ∀(s, q) ∈ EN ,

N
∑

j=1

(sj · rj + qj · pj) = 0

=⇒ [∀i 6= j = 1, ..., N, ∀si, sj ∈ R
n, si + sj = 0 =⇒ si · ri + sj · rj = 0]

=⇒ [∀i 6= j = 1, ..., N, ∀si ∈ R
n, si · (ri − rj) = 0]

=⇒ ∀i, j = 1, ..., N, ri = rj .
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Similarly, ∀i, j = 1, ..., N, pi = pj . Therefore we have

(r, p) ∈ E⊥
N =⇒ r1 = ... = rN , p1 = ... = pN .

Reversely, if (r, p) ∈ R
2nN is such that r1 = ... = rN and p1 = ... = pN , then

∀(s, q) ∈ EN , (s, q) · (r, p) =

N
∑

j=1

sj · rj +

N
∑

j=1

qj · pj = (

N
∑

j=1

sj) · r1 + (

N
∑

j=1

qj) · p1 = 0.

Therefore, we have

E⊥
N =

{

(r, p) ∈ R
2nN/r1 = ... = rN , p1 = ... = pN

}

.

For u in R
2nN , we have

(g∗N∇δ∗EN
)(u) = inf

u1+u2=u
(g∗N (u1) + δ∗EN

(u2)) = inf
ξ∈E⊥

N

g∗N (u+ ξ) = inf
ξ∈E⊥

N

N
∑

j=1

H0(uj + ξj)

= inf
(x,y)∈R2n

N
∑

j=1

H0(uj + (x, y)) = inf
(x,y)∈R2n

N
∑

j=1

G(uj2 −Auj1 + y −Ax) = inf
x∈Rn

K(x),

where uj = (uj1, u
j
2) and

K(x) =

N
∑

j=1

G(uj2 −Auj1 + x).

Since K is continuous and goes to infinity as |x| −→ ∞, then K achieves its minimum
on R

n. The proof of Lemma 3.2 is complete.
We have ∂δEN

(v) = E⊥
N then ∂̄ϕN (v) = ∂ϕN (v) + E⊥

N . Consequently, we have

u ∈ ∂̄ϕN (v) ⇐⇒ u ∈ ∂ϕN (v) + E⊥
N

⇐⇒ ∃ξ ∈ R
2n/

{

u1 ∈ −δ2

2 Jv1 + ξ + δ∂H∗
0 (v1 − h1)

uj ∈ −δ2

2 J(2
∑j−1

k=1 v
k + vj) + ξ + δ∂H∗

0 (vj − hj), ∀j = 2, ..., N.

5) v is a critical point of ϕN if and only if there exists a constant ξN ∈ R
2n such that

{

0 ∈ −δ2

2 Jv̄1 − ξN + δ∂H∗
0 (v̄1 − h1),

0 ∈ −δ2

2 J(2
∑j−1

k=1 v̄
k + vj) − ξN + δ∂H∗

0 (v̄j − hj), ∀j = 2, ..., N.

⇐⇒ ∃ξN ∈ R
2n such that

{

ξN + δ
2Jv̄

1 ∈ ∂H∗
0 (v̄1 − h1),

ξN + δ
2J(2

∑j−1
k=1 v̄

k + vj) ∈ ∂H∗
0 (v̄j − hj), ∀j = 2, ..., N.

Let us associate with v ∈ R
2nN , the step function ṽ and the continuous piecewise linear

function wN defined by

wN (t) = J

∫ t

0

ṽ(τ)dτ + ξN .
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In particular, we have

wN (tj+1) = J

∫ tj+1

0

ṽ(τ)dτ + ξN = J

j
∑

k=1

∫ tk+1

Tk

ṽ(τ)dτ + ξN = δJ

j
∑

k=1

vk + ξN ,

which implies
{

wN (tj+1) − wN (tj) = δJṽ(tj),

wN (tj+1) + wN (tj) = 2[ δ2 (2J
∑j−1

k=1 ṽ(tk) + ṽ(tj)) + ξN ].

Therefore we have
{

wN (tj+1) − wN (tj) = δJṽ(tj),
wN (tj+1) + wN (tj) ∈ 2∂H∗

0 (vj − hj).

This yields

wN (tj+1) + wN (tj)

2
∈ ∂H∗

0 (−J
wN (tj+1) − wN (tj)

tj+1 − tj
− h(tj)).

By using Fenchel’s reciprocity formula, we obtain

−J
wN (tj+1) − wN (tj)

tj+1 − tj
= H

′

0(
wN (tj+1) + wN (tj)

2
) + h(tj).

4 Existence Results

To resolve the problem (HN )(CN ), it suffices, by using Section 3, to find a point v̄ of
R

2nN solution of (RN ), i.e.

find v̄ ∈ EN such that 0 ∈ ∂̄ϕN (v̄). (RN )

For this, we can study the existence of a minimum to the associate problem

find v̄ ∈ EN satisfying inf
v∈EN

ϕN (v) = ϕN (v̄). (PN )

Assume that G and h satisfy the assumptions of Section 2.

Remark 4.1 In Section 3, we have seen that we can associate with a point v in R
2nN

a step function ṽ defined from R into R
2n by the relations:

{

(i) ṽ(t) = vj , ∀t ∈ [tj , tj+1[, ∀j = 1, ..., N,
(ii) ṽ(t+ kT ) = ṽ(t), ∀k ∈ Z, ∀t ∈ [0, T [.

(4.1)

It is easy to see that the restriction ṽ|[0,T ] of ṽ to [0, T ] is in L2(0, T ;R2n).

Definition 4.1 1) Denote by FN the subset of L2(0, T ;R2n) defined by

FN = {ω ∈ L2(0, T ;R2n)/ω verifies (4.1)},

where






(i) ω is defined for all t ∈ [0, T ],
(ii) ω(t) = ωj , ∀t ∈ [tj , tj+1[, ∀j = 1, ..., N,
(iii) ω(T ) = ω1 = ω(0).
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Firstly, remark that FN is a closed subspace of L2(0, T ;R2n).
2) Denote by ηN the function defined from R

2nN into FN

ηN (v) = ṽ|[0,T ], v ∈ R
2nN .

Remark that
ϕN (v) = ϕ(ηN (v)).

Lemma 4.1 The function ηN establishes a diffeomorphism between FN and R
2nN ,

so we can identify R
2nN with FN .

Proof. Since the partition (tj)j=1,...,N is fixed, then ηN is a differentiable linear map
and we can verify easily that it is invertible.

Lemma 4.2 R
2nN can be provided with the topology obtained by diffeomorphism from

the topology induced from L2(0, T ;R2n) on FN .

Proof. It is a consequence from the fact that FN is a closed subspace of L2(0, T ;R2n).

Remark 4.2 By denoting ‖.‖2 the norm in L2(0, T ;R2n) and |.|2n the norm in R
2n,

we have the equality

‖ηN (v)‖2 = [
1

N

N
∑

j=1

∣

∣vj
∣

∣

2

2n
]
1
2 .

The right quantity defines a norm in R
2nN , we will denote it by |.|2,N . With these

notations, ηN appears as an isometry from (L2(0, T ;R2n), ‖.‖2) into (R2nN , |.|2,N).

Theorem 4.1 Under assumptions (G1), (G2), the problem (PN ) has, for all integer
N , a solution vN .

Proof. By identifying R
2nN to FN , the proof is the same as that of the general case

(P). It is based on the following estimate:

∀v ∈ R
2nN , ϕN (v) ≤

1

2
[

1

α(1 + |A|2
−

T

2π
] ‖ηN (v)‖

2
2 − βT

or also

∀v ∈ R
2nN , ϕN (v) ≤

1

2
[

1

α(1 + |A|2)
−
T

2π
] |v|

2
2,N − βT.

The previous theorem permits to assert that if assumptions (G1), (G2) are satisfied,
then for all integer N , we can find a minimum for ϕN on EN which is also a solution
of (RN ). Therefore, by the discrete dual action principle introduced in Section 3, the
problem (HN )(CN ) has a solution.

Now we define a sequence (v1)l∈N∗ by setting

{

(i) N = 2l,
(ii) vl is a solution of (PN ).

The estimate of the previous theorem permits to state the following lemma:
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Lemma 4.3 Under assumption (G2), there exists a constant M > 0 such that

∀l ∈ N
∗, ‖ηN (v1)‖

2
2 = |v1|

2
2,N ≤M.

Proof. Note that, from the previous results, we have

∀l ∈ N
∗, ϕN (vl) = ϕ(ηN (vl)) ≤

kl
2
‖ηN (vl)‖

2
2 − k2

where k1 = 1
α(1+|A|2) −

T
2π and k2 = βT . We have also

∀l′ ≤ l, ϕN (vl) ≤ ϕN (vl′) with N = 2l.

Since
ϕN (vl′ ) = ϕN ′(vl′) with N

′ = 2l
′

,

we get
∀l′ ≤ l, ϕ(ηN (vl)) = ϕN (vl) ≤ ϕN ′(vl′ ).

Therefore, we have

∀l ∈ N
∗,

1

2
k1 ‖ηN (vl)‖

2
2 − k2 ≤ ϕN (vl) ≤ ϕ1(v1).

Since ϕ1(v1) is a constant with respect to l, the proof of Lemma 4.3 is complete.

5 Convergence Results

Under assumptions (G1), (G2), we have proved in the previous section that there exists a
sequence (vl)l∈N∗ of solutions for the problems (PN ) with N = 2l. Consider the sequence
(wl)l∈N∗ of piecewise linear functions defined by

wl(t) =

∫ t

0

ṽl(τ)dτ + ξl

with ξl ∈ R
2n such that

ξl ∈ −
δl
2
Jṽl(0) + ∂H∗

0 (ṽl(0) − hl(0)), δl =
T

2l
.

Remark 5.1 Giving the definition of H0, we can assume that ξl is of the type (0, λl)
with λl ∈ R

n. In fact, we have

(r, p) ∈ (a, b) + ∂H∗
0 (s, q) ⇐⇒ (s, q) = H

′

0((r, p) − (a, b))

⇐⇒ (s, q) = (−A∗G′(p− b −A(r − a)), G′(p− b−A(r − a)))

= (−A∗G′(p−Ar − b+Aa), G′(p−Ar − b+Aa))

⇐⇒ (s, q) = H
′

0(−a, p−Ar − b)

⇐⇒ −(a, b) + (0, p−Ar) ∈ ∂H∗
0 (s, q)

⇐⇒ (0, p−Ar) ∈ (a, b) + ∂H∗
0 (s, q).

In the following, we will take ξl of the form (0, λl), λl ∈ R
n, and we will prove that

the associated sequence (wl) has a subsequence strongly convergent in L2(0, T ;R2n) to
a solution w̄ of (H)(C).



312 M. TIMOUMI

Lemma 5.1 [7] The operator π from L2(0, T ;R2n) into itself, introduced in Section
2, is a Hilbert-Schmidt operator: it transforms quickly convergent sequences to strongly
convergent sequences.

Lemma 5.2 Under assumptions (G1), (G2), there exists a subsequence (wlk) of (wl)
strongly convergent in L2(0, T ;R2n) to w̄. Moreover w̄ is defined in 0 and T and satisfies
w̄(0) = w̄(T ).

Proof. It is easy to verify that the sequence (wl) is included in L2(0, T ;R2n). By
Lemma 4.3, the sequence (ṽl) is bounded in L2(0, T ;R2n), then it possesses a subsequence
(ṽlk) weakly convergent in L2(0, T ;R2n) to a point v̄. In particular (ṽlk) being defined
for all integer k and for all t ∈ [0, T ], the sequence (ṽlk(t)) is convergent in R

2n to v̄(t)
for all t ∈ [0, T ]. Recall that we have defined ξl by

ξl ∈ −
δl
2
Jṽl(0) + ∂H∗

0 (ṽl(0) − hl(0)), δl =
T

2l
.

We have

ξl +
δl
2
Jṽl(0) ∈ ∂H∗

0 (ṽl(0) − hl(0))

⇐⇒ ṽl(0) − hl(0) = H
′

0(ξl +
δl
2
Jṽl(0))

= H
′

0

(

(0, λl) +
δl
2
J(ṽ1l (0), ṽ2l )(0))

)

= H
′

0(
δl
2
ṽ2l (0), λl −

δl
2
ṽ1l (0)) ⇐⇒

ṽl(0) − hl(0) =
(

−A∗G′(λl −
δl
2

(ṽ1l (0) +Aṽ2l (0))), G′(λl −
δl
2

(ṽ1l (0) +Aṽ2l (0)))
)

.

Since G′ is an homeomorphism from R
n into G′(Rn) and since (δl) goes to zero in R

as l goes to infinity and (ṽlk(0)) is bounded and converges to v̄(0), the sequence (λlk)
converges to λ̄ in R

n with
λ̄ = (G′)−1(v̄2(0) − h2(0)).

By previous Remarks and Lemma 5.1, we deduce that the sequence (wlk) converges
strongly to w̄ in L2(0, T ;R2n) . Moreover

w̄(t) = J

∫ t

0

v̄(τ)dτ + ξ̄ with ξ̄ = (0, λ̄)

and then, in particular, we have w̄(0) = w̄(T ).

Lemma 5.3 The sequence (ylk) defined by

ylk = ṽlk − Jhlk ∈ L2(0, T ;R2n)

converges strongly in L2(0, T ;R2n) to ȳ = v̄ − Jh.

Proof. It is an immediately consequence of previous lemma’s proof.

Lemma 5.4 With the point wl of L
2(0, T ;R2n), we associate the element ωl of the

same space defined by






ωl(t
j) = 1

2 (wl(t
j+1) + wl(t

j)), ∀j = 1, ..., N,
ωl(0) = ωl(T ),
ωl(t) = ωl(t

j), ∀t ∈ [tj , tj+1[, ∀j = 1, ..., N.

Under assumptions (G1), (G2), the subsequence (ωlk) of (ωl) converges strongly in
L2(0, T ;R2n) to w̄.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 13 (3) (2013) 299–315 313

Proof. It suffices to prove

lim
k−→∞

‖ωlk − wlk‖2 = 0. (5.1)

Then we will use the inequality

‖ωlk − w̄‖ ≤ ‖ωlk − wlk‖2 + ‖wlk − w̄‖2

and we conclude by using Lemma 5.2.
We have

‖ωlk − wlk‖
2
2 =

∫ T

0

|ωlk(t) − wlk(t)|2dt,

where |.| denotes |.|2n. On the other hand, we have

‖ωlk − wlk‖
2
2 =

Nk
∑

j=1

∫ tj

tj+1

|ωlk − wlk |
2 dt, (5.2)

where Nk = 2lk . In [tj , tj+1[, wlk(t) can be written

∀t ∈ [tj , tj+1[, wlk(t) = wlk(tj) + (t− tj)ṽlk(tj).

Then equality (5.2) becomes

‖ωlk − wlk‖
2
2 =

Nk
∑

j=1

∫ tj

tj+1

∣

∣ωlk(tj) − wlk(tj) − (t− tj)ṽlk(tj)
∣

∣

2
dt.

This yields

‖ωlk − wlk‖
2
2 =

Nk
∑

j=1

∫ tj+1

tj

∣

∣ωlk(tj) − wlk(tj)
∣

∣

2
dt

+2

Nk
∑

j=1

∫ tj+1

tj

∣

∣t− tj ||ṽlk(tj)
∣

∣

∣

∣ωlk(tj) − wlk(tj)
∣

∣ dt+

Nk
∑

j=1

∫ tj+1

tj

∣

∣t− tj
∣

∣

2 ∣
∣ṽlk(tj)

∣

∣

2
dt

≤

Nk
∑

j=1

∫ tj+1

tj

∣

∣ωlk(tj) − wlk(tj)
∣

∣

2
+2

T

Nk

Nk
∑

j=1

[

∫ tj+1

tj

∣

∣ṽlk(tj)
∣

∣

2
dt]

1
2 [

∫ tj+1

tj

∣

∣ωlk(tj) − wlk(tj)
∣

∣

2
dt]

1
2

+(
T

Nk

)2
Nk
∑

j=1

∫ tj+1

tj
|ṽlk(tj)|2dt. (5.3)

The expression ωlk(tj) − wlk(tj) can be written

ωlk(tj) − wlk(tj) =
wlk(tj) + wlk(tj+1)

2
− wlk(tj) =

wlk(tj+1) − wlk(tj)

2
.

But we know that
wlk(tj+1) − wlk(tj)

2
=

1

2
δlk ṽlk(tj).
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Therefore the inequality (5.3) becomes

‖ωlk − wlk‖
2
2 ≤

9

4
(δlk)2

∫ T

0

∣

∣ṽlk(t)
∣

∣

2
dt. (5.4)

Since δlk = T
Nk

= T 2−lk goes to zero as k goes to infinity and ṽlk is bounded in

L2(0, T ;R2n), the relation (5.1) is proved.
If assumption (G2) is satisfied, Lemma 4.3 permits to write

δlk

∫ T

0

|vlk(t)|
2
dt =

T

2lk
[2lk

Nk
∑

j=1

∣

∣

∣
vjlk

∣

∣

∣

2

] ≤
T

2lk
M.

Therefore we can state the following convergence result:

Theorem 5.1 Under assumptions (G1), (G2) and Lemma 5.2 notations, the subse-
quence (ωlk) converges strongly in L2(0, T ;R2n) to a solution w̄ of (H)(C).

Proof. To prove this theorem, we will need the following theorem:

Theorem 5.2 [4] Let A be a monotone maximal operator from its domain D(A) ⊂
L2(0, T ;R2n) into L2(0, T ;R2n). Let (xl) and (yl) be two sequences satisfying

(i) xl ∈ DomA, ∀l ≥ l0,

(ii) yl = A(xl), ∀l ≥ l0,

(iii) (xl) converges weakly to x̄ in L
2(0, T ;R2n),

(iv) (yl) converges weakly to ȳ in L
2(0, T ;R2n),

(v) lim sup
l−→∞

(xlyl) ≤ x̄ȳ.

Then
(j) x̄ ∈ DomA,

(jj) ȳ = A(x̄).

By Section 3, we know that for all integer l, the following system is verified:










(i) wN (tj+1)−wN (tj)
tj+1−tj

= J [H
′

0
wN (tj+1)+wN (tj)

2 ) + hj ], ∀j = 1, ..., 2l

and

(ii) wN (tj+1)−wN (tj)
tj+1−tj

= vjl , ∀j = 1, ..., 2l.

By using the notations of Lemma 5.3, equation (i) can be rewritten

∀t ∈ [0, T ],−Jyl(t) = H
′

0(ω(t)).

Since the operator ”−J” from R
2n into R

2n is an isometry, we deduce from the previous
Lemmas that the sequences (−Jylk) and (ωlk) as the operator H

′

0 verify assumptions of
the previous Theorem, therefore we can assert that

∀t ∈ [0, T ],−Jȳ(t) = H
′

0(w̄(t))

or also
∀t ∈ [0, T ], v̄(t) = J(H

′

0(w̄(t)) + h(t)),

where

w̄(t) =

∫ t

0

v̄(τ)dτ + (0, λ̄).

Therefore w̄ is a solution of (H)(C).
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6 Conclusion

In this paper, we first prove the existence of solutions of a problem of non-coercive
convex Hamiltonian systems (H)(C) through the theory of critical point theory and the
dual action principle. Then we associate with (H)(C) a sequence of problems (HN )(CN ),
(RN ), (PN ) defined in a finite dimensional space and related together by a discrete dual
action principle. We prove that problems (HN )(CN ) possess a sequence of solutions which
converges to a solution of problem (H)(C).
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