Nonlinear Dynamics and Systems Theory, 13 (3) (2013) 316-320

${\mathcal F}$ Mixing and ${\mathcal F}$ Scattering

Xinhua Yan*

Department of Mathematics and Physics, Beijing Institute of Petro-Chemical Technology, Beijing 102617, P.R. China

Received: March 27, 2012; Revised: July 21, 2013

Abstract: In this paper, we study the complexity of group actions from the viewpoint of Furstenberg families, we characterize the \mathcal{F} uniform rigidity and \mathcal{F} equicontinuity using topological sequence complexity function, and we establish the connection between \mathcal{F} mixing and \mathcal{F} scattering.

Keywords: \mathcal{F} uniform rigidity; \mathcal{F} mixing; \mathcal{F} scattering.

Mathematics Subject Classification (2010): 37B05, 54H20.

1 Introduction

Blanchard, Host and Maass used open covers to define a complexity function for a continuous map on a compact metric space, and discussed the equicontinuity and scattering properties. Subsequently, Yang discussed the relations of \mathcal{F} mixing and \mathcal{F} scattering of a continuous map(see [1–3]). We study the complexity of group actions from the viewpoint of Furstenberg families. The results are as follows: we characterize the \mathcal{F} uniform rigidity and \mathcal{F} equicontinuity using topological sequence complexity function, and we establish the connection between \mathcal{F} mixing and \mathcal{F} scattering.

Suppose (X, T) is a semi-dynamical system, where X is a compact metric space, T is a topological semigroup and contains the unit element.

• Suppose X is a topological space, T is a topological semigroup, if a map

$$\pi: X \times T \to X$$

satisfies

$$\pi(\pi(x,t),s) = \pi(x,ts), \forall x \in X, \ \forall t,s \in T,$$

© 2013 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua316

^{*}Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (PHR201008363).

Corresponding author: mailto:yxh823@163.com

then we call π a right action of T on X. If the right action π is continuous, then (X, T, π) is called a semi-dynamical system (abbreviation: (X, T)). Often we write $\pi(x, t) = xt$.

• We denote by \mathcal{P} the collection of all subsets of T. Subset \mathcal{F} of \mathcal{P} is called a family, if \mathcal{P} has hereditary upward, i.e., if $F_1 \subset F_2$ and $F_1 \in \mathcal{F}$, then $F_2 \in \mathcal{F}$. The family \mathcal{F} is a proper family when it is a proper subset of \mathcal{P} , neither empty nor all of \mathcal{P} .

For a family \mathcal{F} , we define the dual family:

$$k\mathcal{F} = \{F|F \cap F_1 \neq \emptyset, \text{ for all } F_1 \in \mathcal{F}\} \\ = \{F|T \setminus F \notin \mathcal{F}\}.$$

• For $t \in T$ define $g^t: T \to T$ by $g^t(s) = ts, \forall s \in T, g^t$ is called a translation map. If for any $t \in T$ and any $F \in \mathcal{F}$, we have $(g^t)^{-1}(F) \in \mathcal{F}$, then a family \mathcal{F} is called translation invariant. Write $\tau \mathcal{F} = \{F | (g^{t_1})^{-1}(F) \cap \cdots \cap (g^{t_k})^{-1}(F) \in \mathcal{F}$, for any finite subset $\{t_1, t_2, \cdots , t_k\}$ of T. Let \mathcal{B} be a family of infinite subset of T, if $k\mathcal{B} \cdot \mathcal{F} = \{A \cap F | A \in k\mathcal{B}, F \in \mathcal{F}\} \subset \mathcal{F}$, then a proper family \mathcal{F} is called full.

• Assume that \mathcal{F} is a family, $x \in X$. Write $\omega_{\mathcal{F}}(x) = \bigcap_{F \in k\mathcal{F}} \overline{xF}$, then $\omega_{\mathcal{F}}(x)$ is called a \mathcal{F} limit set of $x; y \in \omega_{\mathcal{F}}(x)$, i.e., for any neighborhood U of $y, D(x, U) = \{t | xt \in U\} \in \mathcal{F}$, then y is called a \mathcal{F} limit point of x. Recall that the continuous action π on X induces a continuous action π_* of T on $C^u(X, X)$ by $(\pi_t)_*(h) = \pi_t \circ h$. We call $(X, T) \mathcal{F}$ uniformly rigid, if $id \in \omega_{\mathcal{F}}(id)$, i.e., for any $\varepsilon > 0$, $\{t | d(\pi_t, id) < \varepsilon\} \in \mathcal{F}$ (where $d(\pi_t, id) = sup\{d(\pi_t(x), x) | x \in X\}$).

• Let $C = \{U_1, \dots, U_k\}$ be an open cover of X. If S is a infinite subset of T, denote the set of all finite subsets of S by F(S). For $A \in F(S)$, denote $C_0^A = \bigvee_{t \in A} (\pi_t)^{-1}C$. Let $r_S(T, C, A)$ denote the number of sets in a finite subcover of C_0^A with smallest cardinality. We get a map $r_S(T, C, \cdot) : F(S) \to Z^+$, $A \mapsto r_S(T, C, A)$. $r_S(T, C, \cdot)$ is said to be the topological complexity function of the cover C along S. Put $E = \{1, \dots, k\}$. One defines a map $\omega : T \to E, t \mapsto \omega(t)$. If $x \in \bigcap_{t \in S} \pi_t^{-1}U_{\omega(t)}$, then ω is called a C_S -name of x. Denote $J^*(\omega) = \bigcap_{t \in T} \pi_t^{-1}U_{\omega(t)}, J_S^*(\omega) = \bigcap_{t \in S} \pi_t^{-1}U_{\omega(t)}$. If $\bigcup_{i \in I} J_S^*(\omega_i) = X$, then we say that the set of C_S -names ω_i covers X. Let M(T, E) be the set of maps from T to E and M(S, E) be the set of maps from S to E.

• For any open set U, V of X, if $D(U, V) = \{t \in T | U \cap \pi_t^{-1} V \neq \emptyset\} \in \mathcal{F}$, then (X, T) is called \mathcal{F} transitive. If $(X \times X, T)$ is \mathcal{F} transitive, then (X, T) is called \mathcal{F} mixing; If for any $S \in \mathcal{F}$, and any finite cover C of X by non-dense open sets, we have $r_S(T, C, \cdot)$ is unbounded, then (X, T) is called \mathcal{F} scattering.

2 \mathcal{F} Uniformly Rigid, \mathcal{F} Mixing and \mathcal{F} Scattering

Lemma 2.1 Suppose T is countable, a finite cover $C = (U_1, \dots, U_k)$ has complexity bounded by m if and only if there exist $\omega_1, \dots, \omega_m \in M(T, E)$ such that $\bigcup_{i=1}^m J^*(\omega_i) = X$.

Proof. Since T is countable, suppose $T = \{t_1, t_2, \dots, t_n, \dots\}$. Take $A_n = \{t_1, \dots, t_n\}$, then $r_T(T, C, A_n) \leq m$.

Denote by H(n) the set of *m*-tuples (v_1, \dots, v_m) of elements of M(T, E) such that $(J_{A_n}^*(v_1), \dots, J_{A_n}^*(v_m))$ covers X, the set H(n) is non-empty and a closed subset of $M(T, E)^m$. If $(J_{A_n}^*(v_1), \dots, J_{A_n}^*(v_m))$ covers X, then $(J_{A_{n-1}}^*(v_1), \dots, J_{A_{n-1}}^*(v_m))$ covers X too, hence $H(n) \subseteq H(n-1)$, the intersection $H = \bigcap_{n=0}^{\infty} H(n)$ is non-empty, so there is $\omega = (\omega_1, \dots, \omega_m) \in H$. Obviously $\bigcup_{i=1}^m J^*(\omega_i) = \lim_{n \to \infty} \bigcup_{i=1}^m J^*_{A_n}(\omega_i) = X$.

XINHUA YAN

Theorem 2.1 Suppose T is a topological group satisfying the second axiom of countability. Then (X,T) is \mathcal{F} uniformly rigid if and only if there is a set $S \in \mathcal{F}$ containing a unit element, for any finite cover C of X, $r_S(T,C,\cdot)$ is bounded and C_S -names ω_i covering X are k instant.

Proof. ⇒. Since (X,T) is *F* uniformly rigid, $id \in \omega_{\mathcal{F}}(id)$. Let *ε* be a Lebesgue number of *C*, then $S = \{t \in T | sup_{x \in X} d(\pi_t(x), x) < \frac{\varepsilon}{2}\} \in \mathcal{F}$. Let $x_1, \dots, x_m \in X$ be such that the open balls $\{B(x_i, \frac{\varepsilon}{2}) | i = 1, 2, \dots, m\}$ cover *X*. For any $t \in S$, we have $B(x_i, \frac{\varepsilon}{2})t \subset B(x_i, \varepsilon)$, and for any $1 \leq i \leq m$, there is $U_{l(i)} \in C$ such that $B(x_i, \varepsilon) \subset U_{l(i)}$. Then for any finite set *A* of *S*, we have $B(x_i, \frac{\varepsilon}{2}) \subset \bigcap_{t \in A} \pi_t^{-1} U_{l(i)}$, suppose the number of $U_{l(i)}$ is *k*. Since $\{\bigcap_{t \in A} \pi_t^{-1}(U_{l(i)}) | i = 1, \dots, m\}$ is a finite cover of $\bigvee_{t \in A} \pi_t^{-1}(C)$, then $r_S(T, C, A) \leq k$. By Lemma 2.1, for a countable dense set *D* of *S*, we have $\bigcup_{i=1}^k \bigcap_{t \in D} \pi_t^{-1}(U_{l(i)}) = X$. By the denseness of *D*, $\bigcup_{i=1}^k \bigcap_{t \in S} \pi_t^{-1}(U_{l(i)}) = X$. \Leftarrow . If (*X*,*T*) is not *F* uniformly rigid, then there is $\varepsilon > 0$, such that $\{t|d(\pi_t, id) < t < t\}$.

Theorem 2.2 (X,T) is \mathcal{F} equicontinuous if and only if there is $F \in \mathcal{F}$, and for any finite open cover C, $r_F(T,C,\cdot)$ is bounded.

Proof. The proof is similar to the proof of Proposition 2.2 in [4].

Remark 2.1 In the case $T = Z_+$, \mathcal{F} is the family of infinite subsets. If X is represented as the unit circle in C, then $\tilde{\theta}^1$ is given by $\tilde{\theta}^1(Z) := \alpha z(z \in C, |z| = 1)$ with $\alpha := exp(2\pi i\theta)$, let θ be irrational, then $(X, Z_+, \tilde{\theta}^1)$ is \mathcal{F} equicontinuous.

In the following we discuss the existence of \mathcal{F} equicontinuous point, and the connection between \mathcal{F} mixing and \mathcal{F} scattering.

Lemma 2.2 Assume \mathcal{F} is a translation invariant proper family, (X,T) is not $k\mathcal{F}$ mixing if and only if there is a non-empty open set U, V of X and $S \in \mathcal{F}$, such that for any $t \in S$ either $\pi_t^{-1}U \cap U = \emptyset$ or $\pi_t^{-1}V \cap U = \emptyset$.

Proof. The proof is similar to the proof of Lemma 3.1 of [2].

Theorem 2.3 Assume that \mathcal{F} is a translation invariant proper family, if there is $F \in \mathcal{F}$, such that there is a F equicontinuous point x, then (X, T) is not $k\mathcal{F}$ mixing.

Proof. Take $y \in X$ and $y \neq x$, let $\varepsilon < d(y, x)$. Since x is a F equicontinuous point, there is δ , $0 < \delta < \frac{\varepsilon}{4}$, if $d(x, z) < \delta$, we have $d(xt, zt) < \frac{\varepsilon}{4}$ ($\forall t \in F$). Let $U = B(y, \delta), V = B(x, \delta)$, if there is $t \in F$ such that $\pi_t^{-1}U \cap V \neq \emptyset$, then $\pi_t V \cap U \neq \emptyset$, thus $\pi_t V \cap V = \emptyset$, that is $\pi_t^{-1}V \cap V = \emptyset$. By Lemma 2.2, (X, T) is not $k\mathcal{F}$ mixing.

Lemma 2.3 If the family \mathcal{F} is full, then (X,T) is \mathcal{F} mixing if and only if (X,T) is $\tau \mathcal{F}$ transitive.

Proof. The proof can be found in [4].

Theorem 2.4 Assume that T is commutative, \mathcal{F} is full, and (X,T) is \mathcal{F} mixing, then (X,T) is $k\tau\mathcal{F}$ scattering.

Proof. For any non-trivial closed cover $\alpha = (W_1, \dots, W_n)$ of X. Let U_1, U_2, V_1, V_2 be non-empty open sets of X, since (X, T) is \mathcal{F} mixing,

$$F = D(U_1, U_2) \cap D(V_1, V_2) \in \mathcal{F}.$$

Take $t \in F$, let $U = U_1 \cap \pi_t^{-1}U_2$, $V = V_1 \cap \pi_t^{-1}V_2$. By Lemma 2.3, (X, T) is $\tau \mathcal{F}$ transitive, then $D(U, V) \in \tau \mathcal{F}$. Because of $D(U, V) \subset D(U_1, U_2) \cap D(V_1, V_2)$, and $\tau \mathcal{F}$ is a family, then $D(U_1, U_2) \cap D(V_1, V_2) \in \tau \mathcal{F}$.

Now we take U, V such that U, V do not simultaneously belong to any element of α . Let $S_1 = D(U, U) \cap D(U, V) \in \tau \mathcal{F}$, for any $S \in k\tau \mathcal{F}$ there are $t_1 \in S_1 \cap S$ and $x_1, x'_1 \in U$ such that

$$x_1t_1 \in U, \ x_1't_1 \in V.$$

So one takes $A_1 = \{t_1\}$, then $r_S(T, \alpha, A_1) \geq 2$. By the continuity of π , there exists a neighbourhood $U_1 \subset U$ of x'_1 such that $U_1t_1 \subset V$. Let $S_2 = D(U_1, U) \cap D(U_1, V) \in \tau \mathcal{F}$, then there are $t_2 \in S_2 \cap S$ and $x_2, x'_2 \in U_1$ such that

$$x_2t_1 \in V, x'_2t_1 \in V, x_2t_2 \in V, x'_2t_2 \in U.$$

Obviously $t_1 \neq t_2$. so we take $A_2 = \{t_1, t_2\}$ then $r_S(T, \alpha, A_2) \geq 3$. By the continuity of π , there exists a neighbourhood $U_2 \subset U_1$ of x'_2 such that $U_2t_1 \subset U_1$. Let $S_3 = D(U_2, U) \cap D(U_2, V) \in \tau \mathcal{F}$, then there are $t_3 \in S_3 \cap S$ and $x_3, x'_3 \in U_2$ such that

$$x_3t_1 \in V, x_3't_1 \in V, x_3t_2 \in V, x_3't_2 \in U x_3t_3 \in U, x_3't_3 \in V.$$

so one takes $A_3 = \{t_1, t_2\}$ then $r_S(T, \alpha, A_3) \ge 4$.

Using similar arguments repeatedly, we can get an infinite sequence

 $\{x_1, x_2, \dots, x_n, \dots\} \text{ and } \{t_1, \dots, t_n, \dots\} \text{ satisfy}$ $x_n \in U, \ i = 1, 2, \dots,$ $x_1 t_1 \in U, \ x_i t_1 \in V, \ i = 2, 3, \dots,$ $x_2 t_2 \in V, \ x_i t_2 \in U, \ i = 3, 4, \dots,$ $x_3 t_3 \in U, x_i t_3 \in V, \ i = 4, 5, \dots,$

For any $N \ge 1$, take $A_N = \{t_1, t_2, \dots, t_N\}$ then $r_S(T, \alpha, A_N) \ge N + 1$.

Example 2.1 In the case $T = Z_+$, \mathcal{F} is the family of infinite subsets. Let S be a finite set with at least two elements, say $S = \{0, \dots, s-1\}$ with $s \in N, s \geq 2$. Consider S as a finite discrete topological space and put $\Omega := S^{Z_+}$. Endowed with the product topology. Define a mapping $\sigma : \Omega \to \Omega$, $(x_0, x_1, x_2, \dots) \mapsto (x_1, x_2, \dots)$. Clearly (Ω, Z_+, σ) is \mathcal{F} mixing, then (Ω, Z_+, σ) is $k\tau \mathcal{F}$ scattering.

XINHUA YAN

3 Concluding Remarks

In this paper, we study the complexity of group actions. We characterize the \mathcal{F} uniform rigidity and \mathcal{F} equicontinuity using topological sequence complexity function, and we show that \mathcal{F} mixing implies $k\tau\mathcal{F}$ scattering.

References

- Blanchard, F., Host, B. and Maass, A. Topological complexity. Ergod. Th. and Dynam. Sys. 20 (2000) 641–662.
- [2] Yang, R. Topological sequence complexity and mixing. Chinese Annals of Mathematics 25A (6) (2004) 809–816.
- [3] Canovas, J. S. Topological sequence entropy and chaos of star maps. Nonlinear Dynamics and Systems Theory 5(1) (2005) 1–8.
- [4] Akin, E. Recurrence in topological dynamics: Furstenberg and Ellis actions. Plenum Press, New York, 1997.
- [5] J. de Vries. *Elements of Topological Dynamics*. Kluwer Academic Publishers, Dordrecht, Boston, London, 1993.

320