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Abstract: We prove an existence result of entropy solution to the obstacle problem
associated with the equation of the type

—div(a(z,u, Vu)) + g(z,u, Vu) = f € L'(Q)

in generalized Sobolev spaces, without assuming the sign condition in the nonlinearity
g via penalization methods.

Keywords: generalized Sobolev spaces; boundary value problems; truncations; pe-
nalized equations.

Mathematics Subject Classification (2010): 35J20, 35J60, 35B30.

1 Introduction

The obstacle problem is, roughly speaking, about solving a partial differential equa-
tion with the additional constraint that the solution is required to stay above a given
function, the obstacle. This leads to a variational inequality. From a minimization point
of view, the problem is to find a minimizer with fixed boundary value in the set of
functions lying above the obstacle function. Such a set is convex and thus, a unique min-
imizer exists under reasonable assumptions. The balayage concept of potential theory
which is the potential theoretic viewpoint of the obstacle problem is finding the smallest
superharmonic function which lies above the obstacle.
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In this paper, we deal with the obstacle problem associated with the following quasi-
linear elliptic equations

—div(a(x,u, Vu)) + g(z,u, Vu) = f € L*(Q) (1)

with non-standard structural conditions which involve a variable growth exponent p(.).
We prove some existence result of entropy solution under the assumption that g has a
constant sign. A problem like ([I]) was studied by Azroul, Benboubker and Rhoudaf in [T],
where they proved the existence of entropy solutions by using a decomposition method
of the measure p.

The study of partial differential equations and variational problems involving p(z)-
growth conditions has received specific attention in recent decades. This is a consequence
of the fact that such equations can be used to model phenomena which arise in math-
ematical physics. Electrorheological fluids and elastic mechanics are two examples of
physical fields which benefit from such kinds of studies. In that context, we refer to
Diening [7], Ruzicka [I8], and the references therein.

Most materials can be modelled with sufficient accuracy using classical Lebesgue and
Sobolev spaces LP and WP, where p is a fixed constant, we recall some papers (and
references therein), in which this theory is developed: [IL[EL6L1T]. For electrorheological
fluids, this is not adequate, but rather the exponent p should be able to vary. This
situation leads us to the study of variable exponent Lebesgue and Sobolev spaces, LP(-)
and WP() where p(.) is a real-valued function.

The variable exponent Lebesgue Spaces LP(), where p(.) is a real-valued function,
appeared in the literature for the first time in 1931 in the paper by W.Orlicz [16]. In the
1950s, this study was carried out by Nakano [14] who made the first systematic study of
spaces with a variable exponent. Later, Polish and Czechoslovak mathematicians inves-
tigated the modular function spaces (see e.g. [13] and [10]). Variable exponent Lebesgue
spaces on the real line have been independently developed by Russian researchers. In
that context, we refer to the work of Tsenov [19] and Zhikov ( [22,23]). The interested
reader of the theory of Lebesgue and Sobolev spaces with a variable exponent can find
numerous further references in the monograph [§]. Recently, some papers have appeared
in the case of the obstacle problem with a variable exponent. See ( [IB[I7]) for ex-
istence and uniqueness of an entropy solution, in the framework of Lewy-Stampacchia
inequalities.

A treatment of the obstacle problem () in the LP-case can be found in [3] where the
main goal in this work is to obtain a solution with f € L*(f) in the general settings of
Orlicz-Sobolev spaces. We are interested, in this paper, in the single obstacle problem
associated with equation (II), where the techniques used to study this problem are based
on the following approximate problems,

P.) —div(a(z, ue, Vue)) + ge(x, e, Vue) = fe in Q,
€ ue =0 on 99,

9(x,s,8)
1+¢elg(z,s,6)|

Nevertheless, this approximation can not enable to obtain the a priori estimates in our
case, this is due to the fact that u.g.(z, u., Vue) has no sign. To overcome this difficulty,
one has introduced a doubling approximation, that is we penalized the problem (P.) by

where g.(z,s,£) = and f. is a sequence of regular functions.

1 _
('PU) 7diV(a(:L', ’U,g, vug)) + gg(xvuga vug) - _2|T’l (ug )|p(z)—1 = fe in Qv
€ € 3
uZ =0 on d,
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where g7 (x,$,&) = d5(8)gc(x, 8,€) and where 0, (s) is some increasing Lipschitz-function
(see Sections 4 and 5). Note also that the obstacle in the problem considered in this
paper seems to follow the sign of the nonlinearity g.

As application to the problem considered in this paper, we have the Stefan problem
which is a particular kind of boundary value problem for a partial differential equation
(PDE), adapted to the case in which a phase boundary can move with time. The classical
Stefan problem aims to describe the temperature distribution in a homogeneous medium
undergoing a phase change, for example ice passing to water.

Our simplest model is the following LP(-)-problem,

—div (|Vu[P=2Vu) + |u|"® | Vu|P®) = fin Q,u=0on dQ,

generated by the p(x)-Laplacian operator.

The paper is organized as follows. In Section 2, we present the preliminaries about
Lebesgue and Sobolev spaces with variable exponent. In Section 3, we introduce the
assumptions and prove some fundamental lemmas. In Section 4, we prove the existence
of entropy solutions to the obstacle problem associated with () for the case of positive
nonlinearity g. Finally, in Section 5, we prove the existence of entropy solutions to the
obstacle problem associated with () for the case of negative nonlinearity g.

2 A Framework for Function Spaces

For each open bounded subset Q of IRY (N > 2), we denote
CL(Q)={plpeC), p(x) > 1 for any x <€ Q}.

For every p € C(Q) we define: p, = supp( ) and p_ = ;Ielgp(l')

We define the variable exponent Lebesgue space by:

LP@(Q) = {u|u is a measurable real-valued funetion,/ Ju(z)|P®) da < oo} .
Q

The Luxemburg norm on the space LP(*)(Q) is defined by

p(z)
|u|p<m>=inf{A>o, || gl}.
Q

A
We denote by L¥'(#)(Q) the conjugate space of LP(*)(Q) where p(z) + 5 (z) =1 (see [9],
[21]). For any u € LP()(Q) and v € LP (*)(12), the Generalized Holder inequality

1 1
< - R /
/qudac < (o + o )l ol

Proposition 1 (see [9,121]) We denote p(u) = [, [u[t'®) dz, Vu € LP@(Q). If
Up,u € LP@)(Q) and pt < 400, then the followmg assertions hold:
(i) |ullpe) <1 (resp,=1,>1) & p(u) <1 (resp, =1,>1),
(59) iy > 1 = TulZy < p(0) < ol Tl <1 Tl < (o) <l
(ii1) [|unllp) =0 < plun) — 0; ||un||p -0 & pluy) = oo.

holds true.

p(z)’
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We define the generalized Sobolev space by
WP (Q) = {u € LP@(Q) and |Vu| € LP®)(Q)}.
It is endowed with the following norm
ullip) = lullpe) + 1 Vullp@y — Yue WHE(Q).

We denote by WoP")(Q) the closure of Cg°(Q) in WYP@)(Q) and p*(z) =

Np(z
N—p—;g(:Z) for p(x) < N.

Proposition 2 (see [9]) (i) Assuming p_ > 1, the spaces W'P)(Q) and
Wol’p(z)(ﬂ) are separable and reflexive Banach spaces.
(i) If ¢ € Co(Q) and q(x) < p*(x) for any x € Q, then WP (Q) s LI@)(Q) is
compact and continuous.
(iit) There is a constant C' > 0, such that

lullpy < CIVullpey  Yue WoP(Q), if pe ().

Therefore, ||Vullp.y and |[ully .y are equivalent norms in Wol’p(')(Q).

3 Basic Assumptions and Some Fundamental Lemmas

Let p € C4+ () such that 1 < p_ < p(z) < p4 < oo and denote Au = —div(a(x,u, Vu)),
where a : Q x IR x RN — IR is a Carathéodory function satisfying the assumptions :

la(z, 5,€)| < Blk(z) +|s[PO 7+ g1, (2)
la(z,5,€) — a(z,s,m)](€ —n) >0 for all €#ne RN, (3)
a(z, s,€)¢ > al¢P), (4)

for a.e. # € Q and for all (s,€) € IR x IR, where k(z) is a positive function lying in
LP@)(Q) and 3, > 0.

Furthermore, let g : Q x IR x RN — IR be a Carathéodory function having a constant
sign such that for a.e. z in Q and for all s € IR and & € IRV,

l9(z,5,€)| < b(]s])(c(x) + [¢[7)), (5)

9(x,0,§) =0, (6)
where b : R™ — IR is a continuous non-decreasing function and c¢(.) is a positive
function which belongs to L!(Q).

We introduce the functional spaces needed later. For p € C,(Q), 761’17(1) () is defined
as the set of measurable functions u : § — IR such that the truncated functions T} (u) €
Wo @ (Q), where Ti,(s) := max{—k, min{k, s}}, for s € R and k > 0.

We give the following lemma which is a generalization of Lemma 2.1 in [5] for gener-
alized Sobolev spaces. Note that its proof is a slight modification of Lemma 2.1 in [5].

Lemma 3.1 For every u € 761”9(96)((2), there exists a unique measurable function

v:Q — RN such that VTj(u) = UX{|u|<k}> @-€. in K, for every k > 0.



228 E. AZROUL, M.B. BENBOUBKER AND S. OUARO

We will define the gradient of u as the function v, and we will denote it by v = Vu.
Lemma 3.2 [J] Let g € L"™®(Q) and g, € L"®)(Q) with lgnllLre (@) < C for
1 <r(x) < oo. If gn(x) — g(x) a.e. in Q, then g, — g in L") (Q).
Lemma 3.3 [/ Assume that (3)-(4) hold true, and let (un)nen be a sequence in
Wol’p(m)(Q) such that u, — u in Wol’p(m)(Q) and

/Q[a(ac, Un, Vg) — a(x, Up, V)|V (u, —u)dz — 0. (7)

Then, u, — u in Wol’p(z)(Q) for a subsequence.

Lemma 3.4 [2] Let F : R — IR be uniformly Lipschitzian with F(0) = 0 and
p € Cy(Q). Letu € Wol’p(m)(Q). Then F(u) € Wol’p(z)(ﬂ). Moreover, if the set D of
discontinuity points of F' is finite, then
;. 0u ,
O(F o u) F (u)axi a.e. in {xe: u(zr) ¢ D},

8:131- N

0 a.e. in {xeQ: u(zx) e D}

Remark that the previous lemma implies that the functions in VVO1 P (z)(Q) can be trun-
cated and as a consequence of this lemma we obtain the following result.

Lemma 3.5 [2] Let u € Wol’p(m)(Q). Then, Ty (u) € Wol’p(m)(ﬂ), with k > 0. More-
over, we have Ty(u) — u in Wol’p(z)(Q) as k — oc.

Definition 3.1 Let Y be a reflexive Banach space, a bounded operator B from Y to
its dual Y* is called pseudo-monotone if

Up —uin'yY

Buy, = x in Y* = x = Bu and (Buy, u,) = (X, u).
lim Sup(Bun, Un> < <Xa u>
n—oo
Definition 3.2 Let Y be a reflexive Banach space, a bounded operator B from Y to
its dual Y* is called pseudo-monotone if

U, = uiny
lim sup(Buy,, uy, —

n—00

It is clear that the Definition [3.1]is equivalent to the well known Definition

u) <0 } = liminf(Bu,,u, —v) > (Bu,u —v) for allv e Y.

4 Statement of the Case of a Positive Nonlinearity g

We first consider the convex set Ko = {u € Wol’p(z)(ﬂ); u>0ae. in Q}.

Theorem 4.1 Assume that @) — @) hold true and f € L'(Q). Then there exists at
least one solution (entropy solution) to the following unilateral problem,

we THPQ), u>0 ace. inQ, gla,u, Vu) € L1(Q)
(P) / a(x,u, Vu)VT(u —v) dx + / g(x,u, Vu) T (u — v) de < / fTe(u —v) dz,
Q Q Q
Yo e KoN L>®(Q), Vk>0.
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Proof of Theorem [4.1]

We consider the following approximated problem

—div(a(x, ue, Vue)) + ge(, e, Vue) = fe in £,
(PE){ . Vol uz :g on 0N (8)

9(z,s,8)
T+ elg(@,5,6)
functions which strongly converges to f in L'(Q) and || f|l1 < ||f]l1, for all € > 0.

Note that [g.(z, s,€)| < |g(a, 5,€)| < blls])(c(z) + [¢]®) and |g(z,s,€)| < L.
Nevertheless, it seems difficult to obtain a priori estimates, due to the fact that the
quantity ucge(x, ue, Vue) has no constant sign. In order to avoid this inconvenience, we
approach the sign function by an increasing Lipschitz function.

Set for o > 0,

where g.(z,5,£) = and f. = T1(f); then (f) . is a sequence of bounded

=, if s >0 >0,
5,(s) = 0, if |s] < o,
==g  ifs<—0<0.

Now, we set
gg(z, S,f) = 50‘(5)96(1"5 S,f). (9)

Remark that g7 (z, s,£) has the same sign as s.
Now, we are in a position to approximate our initial unilateral problem by the fol-
lowing penalized problem

ul € Wl’p(m)(Q)
(P?) (AuZ ju? —i—/gE (x,ul, Vu?)(u? x——/ T2 (u T P@ (4 — v) da
/ feu? —v)dz, Vo e WerW(Q).

(10)
We define the operators G7, R? : Wy P (Q) —s W=1#'@)(Q)) by,

1 o
(GZu,v) :/Qgg(x,u,Vu)v dz, (RZu,v) :—6—2/Q|T%(u )PE =1y de,

We also denote

(Au, v) :/a(x,u,Vu)VU dx.
Q

Thanks to the generalized Holder’s inequality, we have for all u,v € W1 P (I)(Q),

11
S _+_ g-TaU;VU /(x) |V x
(p o )lgg ( Mlp @) 10l pa)

‘ / g7 (x,u, Vu)v dz
Q

/

<G+ (1) " ) + D% )l "
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and
1 e 1,1 1 e
'6—2 (Tl )P da Se—Q(p—_+]7)lng(u PO @) [Vl ey
1,1 1 /1\"®! (12)
<z (E) |, e
T e
< CHUHl,p(I)'

We need the following lemma.

Lemma 4.1 The operator B = A+ G? + R? from Wol’p(l)(Q) into W= (#)(Q) s
pseudo-monotone. Moreover, B? is coercive, in the following sense:

(BZv,v)

— +oo if ||v||1,p(m) — +o00.
[vll1,p(x)

Proof of Lemma [4.7] Using the generalized Holder’s inequality and the growth
condition () we can show that A is bounded, and by () and (I2Z), B is bounded

in W) (Q). The coercivity follows from (@) and the fact that g (z,s,&)s > 0 and
1

—= [ [T (u™)[P@ =Ly dz > 0. Tt remains to show that BY is pseudo-monotone.
€ Q €

Let (ug)r>0 be a sequence in Wy (€) such that
up —u in Wol’p(m)(ﬂ),

Bouj, — x in WLP'@)(Q), (13)
lim sup(B7 uk, uk) < (x, u)-

k—o0

We will prove that x = BZu and (BZuy,ui) = (x,u) as k— 4oc.
Firstly, since Wol’p(m)(Q) s LP@)(Q), then

up — w in LP@(Q) for a subsequence denoted again (ug)r>o. (14)

As (ug)r>o is a bounded sequence in Wol’p(z)(Q), then by @), (a(x,ur, Vuk))gso is
bounded in (L ®)(Q))N. Therefore, there exists a function ¢ € (L2 @) (Q))Y such that

a(@,up, Vug) — ¢ in (L¥@@Q)N as k — . (15)

Similarly, it is easy to see that (g7 (z, ug, Vug))gso is bounded in LP'(*)(Q) with respect
to k, then there exists a function ¢ € L (*)(Q) such that

9% (x, uk, Vug) =7 in Lp/(z)(ﬂ) as k — oo (16)

1 /
and as (—= [T (ug)[P™~")iso is bounded in LP'®)(Q), then
6 €

1 — x)— 1 — xT)— : /1
—6—2|T%(uk)|p() 1—>—6—2|T%(u PE L in LP®)(Q) as k — oo. (17)
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It is clear that, for all v € Wol’p(x)(ﬂ), we have

(x,v) = lim (BZug,v) = lim [ a(z,ur, Vug)Vode + lim [ ¢7(x,ug, Vug)vde
k—o0 k—oo Jq k—oo Jq
1
+ lim —= [ [Ta(u;)P@ " o de

On one hand, by (I4) we have

/g?(z,uk,Vuk)uk dx%/i/)gudz as k — oo, (19)
Q Q

1 \ip(a)— 1 —\ ()=
—6—2/Q|T%(uk)|p() lukd$—>—€—2/ﬂ |71 (u P@ =y dx as k — oo. (20)

Consequently, by the hypotheses, we have

lim sup(B? (uk), uk) :Hmsup{/a(:n,uk,Vuk)Vuk dm—i—/g?(m,uk,Vuk)uk dx
Q

k—o0 k—o0 Q

1
~ [P s

€ Ja
1
S/@Vudm—i—/wgudx——Q/ 1Ty (u™)[P@) ey da.
Q Q & Ja

(21)
Therefore,
lim sup/ a(x, ug, Vug)Vuy de < / eVu dz. (22)
k—o00 Q Q
Thanks to ([B]), we have
/(a(:z:, Ug, Vug) — a(x, ug, Vu))(Vug — Vu) de > 0. (23)
Q

Then

/a(x,uk,Vuk)Vuk dx > f/ a(z, ug, Vu)Vu dx
Q Q

—|—/a(m,uk,Vuk)Vudx—i—/a(m,uk,Vu)Vuk dz.
Q Q

By (I5), we get

k—o0

1iminf/a(:z:,uk,Vuk)Vu;€ dmZ/goVudx
Q Q

which implies by using ([22])

lim [ a(z,uk, Vug)Vug de = / pVudz. (24)
Q

k—o0 O
By means of (1)), (I9), (20) and @24]), we obtain (B u, ux) — (x,u) as k — +oo.
On the other hand, by @4)) and the fact that a(z, ug, Vu) — a(x,u, Vu) in (LP @) (Q))N,
we can deduce that

lim (a(x, ug, Vug) — a(x, ug, Vu))(Vug — Vu) de =0
k——+o0 [e)
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and so, by virtue of Lemma B3] we find Vu,, — Vu a.e. in £, which concludes
a(x, ug, Vug) = a(z,u, Vu) in (LF@@Q)N,

92 (@, up, Vug,) = g2 (x,u, Vu) in LP'@(Q)
and

1 e 1 (e
ST P = = [ TP

Thus, x = BZu.

In view of Lemma ] there exists at least one solution u? € Wol’p(z)(Q) to the
problem (I0)), by using the classical theorem in [I2]. The continuation of the proof of
Theorem [4.1] is divided into several steps.

4.1 Study of the approximate problem with respect to ¢

4.1.1 A priori estimates

If we take v = uZ — Ty (u?) as a test function in (), we obtain

/ z,ul, Vul )V T (u )d:c+/ (z,u%, Vu? )T (u?) dz

/|T1 )PEIT (u dx_/fETk

So, as uZ = uZT —u?~, then

1 - z)— o 1 o— z)— o
— 5 T @)D T (u) = =5 To (u )P T (0 x ug <0y

6 = (25)
= | 1 (ud ") PO T (wd ) 2 0,

Using the fact that g7 (z,uZ, Vu?)T,(u?) > 0 and by (20) we get

/ a(x,u?, Vu? )VTi(u?) dz < k| fllLrq)- (26)
Q
So, by ) we get
VT [y 0 [ VIO dz < bl o )
Q
with .
o { Py ?f ||VTk(Ug)||p(I) <1
p— it VTR [ > 1.

Thanks to Poincaré inequality, we obtain
1
1T (u) 1 p@) < Ck7, (28)

where C' does not depend on e. Consequently (Tj(u?))eso is bounded in W1 jD(I)(Q)
uniformly on € and o.
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4.1.2 Convergence in measure of u?

We prove that u? converges to some function v in measure. To prove this, we show that
u? is a Cauchy sequence in measure. Let k be large enough. Combining the generalized
Holder’s inequality, Poincaré’s inequality and (28], one has

mmem>m>:/ |nwmws/uu@mm
{lug|>k} Q

- 29
< (4 ) meas(@) + D [T )
< Ci||T(ud)|1,p(y < C2k7;

which yields
C
meas({|u?| > k}) < klfl Ve > 0, Vk > 0. (30)
Y
Hence )
meas({|uZ| > k}) — 0 as k — oo ( since 1 — — > 0), (31)
Y
uniformly in € and o. Moreover, we have, for every § > 0,
meas ({|u? —u? | > 6}) < meas ({|uZ| > k}) + meas ({|u?,| > k}) (32)

+meas ({[Th(u) — Ti(ug,)| > 63).

Since (Tx(u%))eso is bounded in Wol’p(x)(Q), then there exists for o > 0 fixed, v] €
Wy (Q) such that
Tp(u?) — v  in W@ (Q)

and by the compact embedding, we have
Ti(u?) — vy in Lp(z)(Q) and a.e. in . (33)

Consequently, we can assume that (Tx(uZ))cso is a Cauchy sequence in measure in Q.
Let 7 > 0. Then by (30) and [B2)), there exists some k(n) > 0 such that meas({|u? —ug,| >
0}) < n for all n,m > ng(k(n),d). This proves that (uZ)cso is a Cauchy sequence in
measure and thus, converges almost everywhere to some measurable function u?.
Therefore, u? — u? a.e. in Q.

Furthermore,

Ti(ug) = Tu(w?) in Wy " (Q)
and (34)
Tp(u?) = T(u?) in LP®)(Q) and ae. in Q.

4.1.3 Positivity of u”

o

7) as a test function in (I0), we obtain

Taking v = uZ — T1(u

/ a(x,ul, Vul )\VT1(u?) dx + / 92 (x,uZ , Vul ) T1 (u?) de—
Q Q

€ €

1
5 [ PO Ty @) do = [ 1Ty 07 da
€ Jo Q
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Since / a(@,u?, Vul)VT1(u?) dz > 0 and g¢ (z, u?, Vu?)T1 (u?) = 0, we get
0 z

€

1 — x)— o 1
5 [P (-1 ) do < o
€ Q € €
Thus,

/Q T ()P da < el 1o,

Now, denote by A = {x € Q such that |71 (ugf) | = %} As € is used to tend to 0, we
can take it in (0,1) to get

1"~ A\ 1o(a
meas(a) (1) < [ TP < e

which implies that (by letting € go to 0)
meas(A) = 0.
Hence, since uZ — u“ a.e. in © and the fact that meas(A) = 0, we conclude that
s (uf) P@) 5 jue P@) ae. in Q.
We use again the Fatou’s Lemma to obtain

[0 de < timipt [ [P do < limipt el e = 0

which yields
u® > 0.
4.1.4 Almost everywhere convergence of the gradient

For the sake of simplicity we will write (e, h) for any quantity such that

lim limn(e, h) = 0.

h—+o0o0 e—0

Finally, by 7 (€) we will denote a quantity that depends on € and h and is such that
li =
lim 7 (¢) = 0,

for any fixed value of h.
Let h > 2k > 0, we shall use in () the test function

v = ug = nep(wd)
wh? = Tzk( ug — Th(u?) + Ti(u?) — Ti(u”)) (35)
wh o = Tgk( g — Th(u"))

Let op(t) = te M’ A = (2(—?)2, it’s obvious to check that (see [6], Lemma 1)

) o)) =

, 1
t) — -, Vte R. 36
o) — “ o) = 5, Vee (36)
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It follows that

7). or(wl)) + / 62 (17, T Yo () dir—
Q
/ Ty (7)1 gy (w7) dr = / fepnlwh®) da,
Q

which is equivalent to saying that

[ atout U Vel ) ot [ 67, Vu)pn(ul) do

Q

1 - x)— o
—a ) 1T PO oy (w7 da (37)
:/fewk(w?ﬁ) dz.

Q

Note that, Vw™? = 0 on the set {|u?| > s = 4k + h}, therefore, we get by [B1)

[ ate 1), VI @)l ) do+ [ g7l Vi)l ) da
Q

= [ T ()P pp(wi) de
Q

According to (B4]), we have @, (wh7) — i (W) weakly-* in L°°(2) as € — 0, and then

/ Feon(w!™) dz — / o) da
Q Q

Finally, by using Lebesgue’s theorem, we can deduce that
/ for(@"?)de — 0 as h — +o0.
Q

Therefore,
| oty do = e, (39)

Note that ¢ (w/?) and u? has the same sign in the set {z € Q, [u?| > k}, then we
have

92 (@, u, Vud)prp(w>?) 2 0 and  — —ITI( PO o (wi) 2 0.

€ -

From (B1), we deduce that

/ 0, To(u? ), VTa(u? ) Vil gl () dr + / 0 (2, u?, Vul Yor(w!7) da
Ql {lug|<k}

% [ TP = T exp\ ) do

< (e h)
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Since u? > 0, then the third term on the left-hand side of the above inequality is positive,
thus,

[ ale L)) VIVl b do+ [ g(aug Vag)pn(wl) da
Q {lug|<k}
< (e, h).
(40)
Splitting the first integral on the left-hand side of @), where |u?| < k and |u?| > k, we
can write

S~

al, T(u), VT (u?)) Vel gl () d

€ €
Q

- /{ o<k} a(z, To(u? ), VT, (u)) [V Tk (ug) = Vi (u”)] @} (W) da (41)

+ a(z, Ts(ug), VTis(ud)) Ve o) (we ) da.
{lug >k}

The first term on the right-hand side of the last inequality can be written as

/{ en) a(z, Ty(u?), VTs(ul))[VTi(u) — VT (u®)])@) (W) da

(42)
= | a(w, Te(u), VTi(u?))[VTi (uf) = VT (u”)] g (w]7) d.
Q
For the second term on the right-hand side of (#I), we can write according to (@),
[ e 1), L) Vel ) de
{lug| >k} (43)
> —¢'(2k) la(z, Ts(ud), VT (u)[[ VT (u?)] da.
{lug|>k}
Since |a(z, Ty(u?), VTs(u?)| is bounded in (L¥'(*)(Q))N | if necessary we have
la(z, Ts(u?), VIs(ul)| = lp,e in (LP @ ()N as e — 0, for a subsequence.
Due to VTk(UU)X{|ug|>k} — VT (UU)X{‘UU|>]€} in Lp(m) (Q) as € — 0, we obtain
@) [ o ), VL)V T %) do
{luZ|>k}
fcp'(Qk)/ I, o|VTi(u®)| dr =0 as e — 0.
{lur|>k}
Therefore,
- @'(Qk)/ la(z, Ts(ug), VTs(ud))IIV Tk (u”)] dz = nn(e). (44)
{lug|>k}
Combining {I)) and ([@4]), we deduce that
[ ale L), VL) Vil o 1) do
¢ (45)

> /Q o, T(u2), V(w2 ) [V (u2) — VTe(u® )iy (! dt + 1 (e).
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It follows
/Qa(.’L‘,Ts(U(g),VTs(ug))vwéL,G(pl(wéL,a) dx
Z/[ (z, Tk, (u?), VT, (u?)) — a(z, Tk (u?), VI (u))]

< [V (u?) — VT (u”) ]y (w!7) de
+ / a(e, To(u), VTk(u®)[VTi(u?) — VTi(u® )] (@) daz + 7 (e).

Concerning the second term of the right-hand side of [@8) we can write
| e Tu), VI NPT 02) = V(g ) da
— [ ol T @), VT VT (Th(uf) — T (%)) (47)
f; (o, Tolw?), VT () VT ()} (1) dr

By the continuity of Nemytskii’s operator (cf. [9], [20]), we have

a(@, T (ug), VT (u?)y (T (u) — Ti(u”)) — ale, Ti(u”), VTi(u”)) ¢}, (0)

/

k
and a(z, Ti(u?), VT (u?)) — a(z, Ti(u?), VIi(u)) strongly in (P @ (Q))N, while
VT (u?) — VTk( 7) weakly in (LP@(Q)N and VT (u?)p), (W) — VTi(u)g,(0)
strongly in (LP@)(Q))V
Then, the first and the second term of the right-hand side on ([@7) tend respectively to

/Qa(x,Tk(u”), VT (u”)) VT (u”)p)(0) dz as € — 0

and

- |l @), VT ) VT (0 ) o s € = 0
therefore, !
[ e L), VI T ) - VIt ) do =l (@9
Combining ([@8) and @S) yields
[ e 7.0, V) Vel (1) o

> [ ol Tuw?). VI E)) = ale. Tu(u). VT3 ()
X [VTk(ug) = VTi(u”)] g} (w?) do + (e, h).
Going back to the second term of the left hand side of (@), we have

(49)

‘/ a\<k} 7 (2, ul, Vu?)op (W) da
>/ @lpn(ut)| do + ”/Q o, Te(u), VT (00 ) VT 0 ()

a(z, Tio(ug), VT (ud))VTi(u? ) pr(w7)| de.
(50)
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The last term of the last side of this inequality reads as

oy Q[a(x,Tkw;'),VTk(u:’) al Te(u), V()]
(VT (u2) — V(0o (7)) da
9 [ e ). VI @) VT () - VI nl o OV
) [ o ), VI ) VT ) )]
Reasoning as above, it is easy to see that
oy | e D), VIV @) = VTl )] do = )
and
/ 7), VTi(u?) VTt r ()] da = (e, h).
Therefore,
] [ sl Vet da
b (52)
< 23 [ fa(e Tu(u), VI D) = ae. Tu(u?), VT (0"))
X [VTi(u?) — VT (w®)lor(w!)| dz + (e, h).
Combining ({Q), (BI) and (B2), we obtain
[ ot ). VI ) = ale. Tu(u), VT30
b (53)

X [VTi(u?) = VTi(u”)](@} (W) —
< (e, h),

| (we)]) de

which implies by using (B6) that

/Q[ a(a, T (ug), VT (ul)) = alz, T (u?), VI (u?))] [V T (ul) = VT (u”)] dz < nle, h).

(54)
Letting € tend to 0 and h tend to infinity, we deduce that

/Q[ (@, Tk (ud), VI (u?)) = a(z, Ti(ud), VI (u?)][VTi(w]) = VIi(u”)] dz — 0.
By Lemma B3] we get from convergence above
Ty (u?) = Ti(u®) in W™ (Q). (55)

Thus,
Vu? — Vu? a.e. in Q. (56)
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4.1.5 Equi-integrability of the nonlinearity g7
In order to pass to the limit in the approximated equation, we now show that
9¢ (w,ug, Vug) = g7 (z,u?, Vu’) in L(9). (57)

In particular, it is enough to prove the equi-integrability of the sequence
{lg¢ (x,uZ, Vu?)|}. To this purpose, we take uZ — T1(uZ — T (uZ)) > 0 as a test function
in (I0), to obtaln

/ 192 (&, u?, V)| dr < / \fal .
{lug|>h+1} {lug|>h}

Let n > 0 be fixed. Then, there exists h(n) > 1 such that

/ |92 (z,uZ , Vu?)| dx < ﬂ. (58)
{Jug|>h(n)} 2

For any measurable subset E C €2, we have

[ laz .z vun)do < [ b (e + VT () da

+/ |92 (z,u?, Vu?)| dz.
{luZ|>h(n)}

In view of (Bh)), there exists B(n) > 0 such that

/E b(h(n))(c(x) + VT (u;‘)|P<I>) dr <2 for all E such that meas(E) < B(n). (60)

[\

Finally, by combining (58) and (G0), one easily has
/ |6 (x,u? , Vu?)|dx <n for all E such that meas(E) < 8(n).
E
Then, we deduce that g7 (z,u?, Vu?) is uniformly equi-integrable in .

4.1.6 Passing to the limit with respect to €

Let v € Ko N L™®(Q), we take uZ — Ty (uZ — v) as a test function in () to obtain

.Aa@u Vu)VﬂﬂLf@dz+/

7 (z,ul, Vul )T (u —v dz</f6Tku —v)dz.
Q

(61)
We deduce that

/ ol Vug) V(0 )+ g7 (w02, VU Tulug —v)de < [ £T3u—0)do,
{lug —v|<k} Q Q

(62)
which is equivalent to saying that

/ a(z,u?, Vul )\Vu?l de — / a(z,u?, Vul)Vu dz
{|ug —v|<k}

{ug —v|<k}

+/§ (x,u?, Vul )Ty (u? —v) dz (63)

< feTk -
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By Fatou’s lemma and the fact that

a(@, Ty o] (U2)s Vst ol (1)) = a(@, Tip oo (W), Vg oo () in (L7 @(Q))N,

we get
/ alaa” Vo)V do — (&, Tt (47), Vi o (u7)) V0 d
{lur—v|<k} {lu7—v|<k}
+/ 97 (x,u”, Vu® )Ty (v’ —v) dz
< | fTi(u® —v)dx.
Q
(64)
Consequently,

/ a(z,u’, Vu?) VT (u® —v) dz + / 9° (z,u’, Vu® )T (u’ —v) dz
0 0 (65)
< / fTi(u® — o) dx, Vv € Ko N L*(Q) and Vk > 0.
Q

4.2 Study of the problem with respect to o
4.2.1 Estimates with respect to o

We are going to give some estimates on the sequence (u”),~¢ identical to (27)). For that,
we take v = Ts(u? — Ti(u?)) in ([B8) and we let s — oo; then, by the same argument as
in section 4.1 we can prove that

o[ VT (u)l 5y < oz/Q VT3 (u”) P do < k| fllpi(o) for all k> 1. (66)

Thus, as in section [LT.2] there exists u such that Ty (u) € Wol’p(z)(Q) and

Tp(u®) — Ti(u) in W™ (Q), (67)
Ti(u®) = Tp(u) in LP@(Q) and a.e. in Q.
So, u? > 0 a.e. in Q and we have also u > 0 a.e. in ().
4.2.2 Strong convergence of truncation with respect to o
Here, in ([G3]) we shall use the test function
v o= Ts(u’ — op(wh)),
who = Top (UU — Th(u“) + Tk(ua) — T (u)), (68)
W= Top(u — Th(u)),

where h > 2k > 0. It follows that for all [ > 0,
[ aleu”, Vu )T~ 07~ (") do
Q
n / 67 (0%, VU )Ty (u® — To(u® — o1 (™)) da

[y

< /Q T — Tu(u” — i) de.
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Therefore,
/ a(z,u”, Vu)VTi(pr(w")) do
{|’U‘°'*4Pk( ho)|<s}
(x,u’, Vu?)Ti(u® — Ts(u® — v (w hg))) dx

/sz 7~ Ty(u” — prp(w™?))) da.

Letting s — oo and choosing [ large enough (I > |pr(2k)|), we deduce that

/a(:z:,u",Vu”)Vgok(wh"’)dx—l—/g"(m,u",Vu")gok(wh"’)de f(pk(wh’”)dx.
Q Q Q

Then, by using the same techniques as in section ET.4 we can deduce that

Ty (u”) — Tr(u) in WoP™(Q) and Vu® — Vu a.e. in Q. (70)

4.2.3 Equi-integrability of the nonlinearity g with respect to o
Moreover, since g is a Carathéodory function, it is easy to see that
g(z,u’, Vu?) = g(z,u,Vu) ae. in Q as o — 0.

Then, by assumption (@) (note that this hypothesis is only used here), it is clear that
9% (z,u”,Vu?) = d,g9(x,u’,Vu’) = g(z,u, Vu) a.e. in {z € Q,u(z) > 0}.

Similarly, we claim that g7 (z,u”, Vu®) = g(x,u, Vu) in L'(Q).
Indeed, taking u” — Ty (u” — T;(u”)) > 0 as test function in (G2, we obtain

/ |g”(m,u”,Vu")|dx§/ |f] dx.
{luo|=1+1} {lu|>1}

Let 8 > 0 be fixed. Then, there exists [(8) > 1 such that

/ |97 (x,u?, Vu?)| dx < é (71)
{Jur |1>1(8)} 2

For any measurable subset E C {2, we have

[E 197 (@, u?, Vu?)| dz < /E b(U(B)) (c(x) + [V Ti(s)(u®)|"™) dax

Jr/ |97 (z,u”, Vu)| da.
{lu|>1(8)}

In view of (70), there exists a(f3) > 0 such that

/E b(1(B)) (c(x) + [VTis) (u?)[P™)) do < g for all F such that meas(F) < «(8). (73)

(72)

Finally, by combining (7)) and (73]), one easily has
/ lg° (x,u®, Vu?)|dx < B  for all E such that meas(E) < a(f).
E

Therefore, we deduce that ¢°(z,u”, Vu?) is uniformly equi-integrable in €. So, as in
section LT.6] we can pass to the limit in ¢ and conclude. This achieves the proof of
Theorem [£.1]
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Case when the Nonlinearity g is Negative

We consider the convex set Ko = {u € Wol’p(x)(ﬂ); u <0 ae. in Q}.

Theorem 5.1 Assume that @) — @) hold true and that f € LY(Q). Then, there

exists at least one solution (entropy solution) to the following unilateral problem,

(P)

we TPNQ), u<0 ace. inQ, gla,u, Vu) € L1Q)
a(z,u, Vu)VTi(u — v) dx + / g(x, u, Vu) T (u — v) de < / fTi(u —v) de,
Q Q Q
Yo e KgNL>(Q), Vk>0.

Proof. The same proof as for Theorem [Tl can be applied with the following changes:

i) We approach the sign function by an increasing Lipschitz function.
i) The Lipschitz function d,(s) is replaced by:

%"'U ifs>0o>0,

do(s) = 0, if |s| < o,
sto ifs<—0o<0.

s )

iii) The approximated problem becomes:

—o

(Pe

ue € WP ()
) <Aug,ugfv>+/ (x,u?, Vu?)(u der—/ |T1 |p(x) Hu? —w) dx

/fe dz, Vo e Wit ().

iv) The set K is replaced by Ko = {u € Wol’p(x)(ﬂ); u <0 a.e. in Q}.
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