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Abstract: We prove an existence result of entropy solution to the obstacle problem
associated with the equation of the type

−div(a(x, u,∇u)) + g(x, u,∇u) = f ∈ L
1(Ω)

in generalized Sobolev spaces, without assuming the sign condition in the nonlinearity
g via penalization methods.
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1 Introduction

The obstacle problem is, roughly speaking, about solving a partial differential equa-
tion with the additional constraint that the solution is required to stay above a given
function, the obstacle. This leads to a variational inequality. From a minimization point
of view, the problem is to find a minimizer with fixed boundary value in the set of
functions lying above the obstacle function. Such a set is convex and thus, a unique min-
imizer exists under reasonable assumptions. The balayage concept of potential theory
which is the potential theoretic viewpoint of the obstacle problem is finding the smallest
superharmonic function which lies above the obstacle.
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In this paper, we deal with the obstacle problem associated with the following quasi-
linear elliptic equations

− div(a(x, u,∇u)) + g(x, u,∇u) = f ∈ L1(Ω) (1)

with non-standard structural conditions which involve a variable growth exponent p(.).
We prove some existence result of entropy solution under the assumption that g has a
constant sign. A problem like (1) was studied by Azroul, Benboubker and Rhoudaf in [1],
where they proved the existence of entropy solutions by using a decomposition method
of the measure µ.

The study of partial differential equations and variational problems involving p(x)-
growth conditions has received specific attention in recent decades. This is a consequence
of the fact that such equations can be used to model phenomena which arise in math-
ematical physics. Electrorheological fluids and elastic mechanics are two examples of
physical fields which benefit from such kinds of studies. In that context, we refer to
Diening [7], Ruzicka [18], and the references therein.

Most materials can be modelled with sufficient accuracy using classical Lebesgue and
Sobolev spaces Lp and W 1,p, where p is a fixed constant, we recall some papers (and
references therein), in which this theory is developed: [1, 5, 6, 11]. For electrorheological
fluids, this is not adequate, but rather the exponent p should be able to vary. This
situation leads us to the study of variable exponent Lebesgue and Sobolev spaces, Lp(.)

and W 1,p(.) where p(.) is a real-valued function.
The variable exponent Lebesgue Spaces Lp(.), where p(.) is a real-valued function,

appeared in the literature for the first time in 1931 in the paper by W.Orlicz [16]. In the
1950s, this study was carried out by Nakano [14] who made the first systematic study of
spaces with a variable exponent. Later, Polish and Czechoslovak mathematicians inves-
tigated the modular function spaces (see e.g. [13] and [10]). Variable exponent Lebesgue
spaces on the real line have been independently developed by Russian researchers. In
that context, we refer to the work of Tsenov [19] and Zhikov ( [22, 23]). The interested
reader of the theory of Lebesgue and Sobolev spaces with a variable exponent can find
numerous further references in the monograph [8]. Recently, some papers have appeared
in the case of the obstacle problem with a variable exponent. See ( [15, 17]) for ex-
istence and uniqueness of an entropy solution, in the framework of Lewy-Stampacchia
inequalities.

A treatment of the obstacle problem (1) in the Lp-case can be found in [3] where the
main goal in this work is to obtain a solution with f ∈ L1(Ω) in the general settings of
Orlicz-Sobolev spaces. We are interested, in this paper, in the single obstacle problem
associated with equation (1), where the techniques used to study this problem are based
on the following approximate problems,

(Pǫ)

{

−div(a(x, uǫ,∇uǫ)) + gǫ(x, uǫ,∇uǫ) = fǫ in Ω,
uǫ = 0 on ∂Ω,

where gǫ(x, s, ξ) =
g(x, s, ξ)

1 + ǫ|g(x, s, ξ)|
and fǫ is a sequence of regular functions.

Nevertheless, this approximation can not enable to obtain the a priori estimates in our
case, this is due to the fact that uǫgǫ(x, uǫ,∇uǫ) has no sign. To overcome this difficulty,
one has introduced a doubling approximation, that is we penalized the problem (Pǫ) by

(Pσ
ǫ )

{

−div(a(x, uσǫ ,∇u
σ
ǫ )) + gσǫ (x, u

σ
ǫ ,∇u

σ
ǫ ) −

1

ǫ2
|T 1

ǫ
(uσ

−

ǫ )|p(x)−1 = fǫ in Ω,

uσǫ = 0 on ∂Ω,
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where gσǫ (x, s, ξ) = δσ(s)gǫ(x, s, ξ) and where δσ(s) is some increasing Lipschitz-function
(see Sections 4 and 5). Note also that the obstacle in the problem considered in this
paper seems to follow the sign of the nonlinearity g.

As application to the problem considered in this paper, we have the Stefan problem
which is a particular kind of boundary value problem for a partial differential equation
(PDE), adapted to the case in which a phase boundary can move with time. The classical
Stefan problem aims to describe the temperature distribution in a homogeneous medium
undergoing a phase change, for example ice passing to water.

Our simplest model is the following Lp(.)-problem,

−div (|∇u|p(x)−2∇u) + |u|r(x)|∇u|p(x) = f in Ω, u = 0 on ∂Ω,

generated by the p(x)-Laplacian operator.
The paper is organized as follows. In Section 2, we present the preliminaries about

Lebesgue and Sobolev spaces with variable exponent. In Section 3, we introduce the
assumptions and prove some fundamental lemmas. In Section 4, we prove the existence
of entropy solutions to the obstacle problem associated with (1) for the case of positive
nonlinearity g. Finally, in Section 5, we prove the existence of entropy solutions to the
obstacle problem associated with (1) for the case of negative nonlinearity g.

2 A Framework for Function Spaces

For each open bounded subset Ω of IRN (N ≥ 2), we denote

C+(Ω) = {p|p ∈ C(Ω), p(x) > 1 for any x ∈ Ω̄}.

For every p ∈ C+(Ω) we define: p+ = sup
x∈Ω

p(x) and p− = inf
x∈Ω

p(x).

We define the variable exponent Lebesgue space by:

Lp(x)(Ω) =

{

u|u is a measurable real-valued function,

∫

Ω

|u(x)|p(x) dx <∞

}

.

The Luxemburg norm on the space Lp(x)(Ω) is defined by

‖u‖p(x) = inf

{

λ > 0,

∫

Ω

∣

∣

∣

∣

u(x)

λ

∣

∣

∣

∣

p(x)

≤ 1

}

.

We denote by Lp′(x)(Ω) the conjugate space of Lp(x)(Ω) where 1
p(x) +

1
p′(x) = 1 (see [9],

[21]). For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), the Generalized Hölder inequality
∣

∣

∣

∣

∫

Ω

u v dx

∣

∣

∣

∣

≤
( 1

p−
+

1

p′−

)

‖u‖p(x) ‖v‖p′(x),

holds true.

Proposition 1 (see [9, 21]) We denote ρ(u) =
∫

Ω |u|p(x) dx, ∀u ∈ Lp(x)(Ω). If

un, u ∈ Lp(x)(Ω) and p+ < +∞, then the following assertions hold:
(i) ‖u‖p(x) < 1 (resp,= 1, > 1) ⇔ ρ(u) < 1 (resp, = 1, > 1),
(ii) ‖u‖p(x) > 1 ⇒ ‖u‖

p−

p(x) ≤ ρ(u) ≤ ‖u‖
p+

p(x); ‖u‖p(x) < 1 ⇒ ‖u‖
p+

p(x) ≤ ρ(u) ≤ ‖u‖
p−

p(x),

(iii) ‖un‖p(x) → 0 ⇔ ρ(un) → 0; ‖un‖p(x) → ∞ ⇔ ρ(un) → ∞.
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We define the generalized Sobolev space by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) and |∇u| ∈ Lp(x)(Ω)}.

It is endowed with the following norm

‖u‖1,p(x) = ‖u‖p(x) + ‖∇u‖p(x) ∀u ∈W 1,p(x)(Ω).

We denote by W
1,p(x)
0 (Ω) the closure of C∞

0 (Ω) in W 1,p(x)(Ω) and p∗(x) =
Np(x)
N−p(x) for p(x) < N .

Proposition 2 (see [9]) (i) Assuming p− > 1, the spaces W 1,p(x)(Ω) and

W
1,p(x)
0 (Ω) are separable and reflexive Banach spaces.

(ii) If q ∈ C+(Ω̄) and q(x) < p∗(x) for any x ∈ Ω, then W 1,p(x)(Ω) →֒→֒ Lq(x)(Ω) is
compact and continuous.
(iii) There is a constant C > 0, such that

‖u‖p(x) ≤ C ‖∇u‖p(x) ∀u ∈W
1,p(x)
0 (Ω), if p ∈ C(Ω).

Therefore, ‖∇u‖p(·) and ‖u‖1,p(·) are equivalent norms in W
1,p(·)
0 (Ω).

3 Basic Assumptions and Some Fundamental Lemmas

Let p ∈ C+(Ω̄) such that 1 < p− ≤ p(x) ≤ p+ <∞ and denote Au = −div(a(x, u,∇u)),
where a : Ω× IR× IRN → IRN is a Carathéodory function satisfying the assumptions :

|a(x, s, ξ)| ≤ β[k(x) + |s|p(x)−1 + |ξ|p(x)−1], (2)

[a(x, s, ξ)− a(x, s, η)](ξ − η) > 0 for all ξ 6= η ∈ IRN , (3)

a(x, s, ξ)ξ ≥ α|ξ|p(x), (4)

for a.e. x ∈ Ω and for all (s, ξ) ∈ IR × IRN , where k(x) is a positive function lying in
Lp′(x)(Ω) and β, α > 0.

Furthermore, let g : Ω×IR×IRN → IR be a Carathéodory function having a constant
sign such that for a.e. x in Ω and for all s ∈ IR and ξ ∈ IRN ,

|g(x, s, ξ)| ≤ b(|s|)(c(x) + |ξ|p(x)), (5)

g(x, 0, ξ) = 0, (6)

where b : IR+ → IR+ is a continuous non-decreasing function and c(.) is a positive
function which belongs to L1(Ω).

We introduce the functional spaces needed later. For p ∈ C+(Ω̄), T
1,p(x)
0 (Ω) is defined

as the set of measurable functions u : Ω → IR such that the truncated functions Tk(u) ∈

W
1,p(x)
0 (Ω), where Tk(s) := max{−k,min{k, s}}, for s ∈ IR and k > 0.
We give the following lemma which is a generalization of Lemma 2.1 in [5] for gener-

alized Sobolev spaces. Note that its proof is a slight modification of Lemma 2.1 in [5].

Lemma 3.1 For every u ∈ T
1,p(x)
0 (Ω), there exists a unique measurable function

v : Ω → IRN such that ∇Tk(u) = vχ{|u|<k}, a.e. in Ω, for every k > 0.
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We will define the gradient of u as the function v, and we will denote it by v = ∇u.

Lemma 3.2 [4] Let g ∈ Lr(x)(Ω) and gn ∈ Lr(x)(Ω) with ‖gn‖Lr(x)(Ω) ≤ C for

1 < r(x) <∞. If gn(x) → g(x) a.e. in Ω, then gn ⇀ g in Lr(x)(Ω).

Lemma 3.3 [4] Assume that (2)-(4) hold true, and let (un)n∈N be a sequence in

W
1,p(x)
0 (Ω) such that un ⇀ u in W

1,p(x)
0 (Ω) and

∫

Ω

[a(x, un,∇un)− a(x, un,∇u)]∇(un − u)dx→ 0. (7)

Then, un → u in W
1,p(x)
0 (Ω) for a subsequence.

Lemma 3.4 [2] Let F : IR −→ IR be uniformly Lipschitzian with F (0) = 0 and

p ∈ C+(Ω). Let u ∈ W
1,p(x)
0 (Ω). Then F (u) ∈ W

1,p(x)
0 (Ω). Moreover, if the set D of

discontinuity points of F ′ is finite, then

∂(F ◦ u)

∂xi
=











F ′(u)
∂u

∂xi
a.e. in {x ∈ Ω : u(x) /∈ D},

0 a.e. in {x ∈ Ω : u(x) ∈ D}.

Remark that the previous lemma implies that the functions in W
1,p(x)
0 (Ω) can be trun-

cated and as a consequence of this lemma we obtain the following result.

Lemma 3.5 [2] Let u ∈ W
1,p(x)
0 (Ω). Then, Tk(u) ∈ W

1,p(x)
0 (Ω), with k > 0. More-

over, we have Tk(u) → u in W
1,p(x)
0 (Ω) as k → ∞.

Definition 3.1 Let Y be a reflexive Banach space, a bounded operator B from Y to
its dual Y ∗ is called pseudo-monotone if

un ⇀ u in Y
Bun ⇀ χ in Y ∗

lim sup
n→∞

〈Bun, un〉 ≤ 〈χ, u〉











=⇒ χ = Bu and 〈Bun, un〉 → 〈χ, u〉.

Definition 3.2 Let Y be a reflexive Banach space, a bounded operator B from Y to
its dual Y ∗ is called pseudo-monotone if

un ⇀ u in Y
lim sup
n→∞

〈Bun, un − u〉 ≤ 0

}

=⇒ lim inf〈Bun, un − v〉 ≥ 〈Bu, u− v〉 for all v ∈ Y.

It is clear that the Definition 3.1 is equivalent to the well known Definition 3.2.

4 Statement of the Case of a Positive Nonlinearity g

We first consider the convex set K0 =
{

u ∈W
1,p(x)
0 (Ω);u ≥ 0 a.e. in Ω

}

.

Theorem 4.1 Assume that (2)− (6) hold true and f ∈ L1(Ω). Then there exists at
least one solution (entropy solution) to the following unilateral problem,

(P)















u ∈ T
1,p(x)
0 (Ω), u ≥ 0 a.e. in Ω, g(x, u,∇u) ∈ L1(Ω)

∫

Ω

a(x, u,∇u)∇Tk(u − v) dx+

∫

Ω

g(x, u,∇u)Tk(u − v) dx ≤

∫

Ω

fTk(u − v) dx,

∀v ∈ K0 ∩ L
∞(Ω), ∀k > 0.
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Proof of Theorem 4.1

We consider the following approximated problem

(Pǫ)

{

−div(a(x, uǫ,∇uǫ)) + gǫ(x, uǫ,∇uǫ) = fǫ in Ω,
uǫ = 0 on ∂Ω,

(8)

where gǫ(x, s, ξ) =
g(x, s, ξ)

1 + ǫ|g(x, s, ξ)|
and fǫ = T 1

ǫ
(f); then (fǫ)ǫ>0 is a sequence of bounded

functions which strongly converges to f in L1(Ω) and ‖fǫ‖1 ≤ ‖f‖1, for all ǫ > 0.

Note that |gǫ(x, s, ξ)| ≤ |g(x, s, ξ)| ≤ b(|s|)(c(x) + |ξ|p(x)) and |gǫ(x, s, ξ)| ≤
1
ǫ
.

Nevertheless, it seems difficult to obtain a priori estimates, due to the fact that the
quantity uǫgǫ(x, uǫ,∇uǫ) has no constant sign. In order to avoid this inconvenience, we
approach the sign function by an increasing Lipschitz function.

Set for σ > 0,

δσ(s) =







s−σ
s
, if s ≥ σ > 0,

0, if |s| ≤ σ,
−s−σ

s
, if s < −σ < 0.

Now, we set

gσǫ (x, s, ξ) = δσ(s)gǫ(x, s, ξ). (9)

Remark that gσǫ (x, s, ξ) has the same sign as s.

Now, we are in a position to approximate our initial unilateral problem by the fol-
lowing penalized problem

(Pσ
ǫ )























uσǫ ∈W
1,p(x)
0 (Ω)

〈Auσǫ , u
σ
ǫ − v〉+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )(u

σ
ǫ − v) dx−

1

ǫ2

∫

Ω

|T 1
ǫ
(uσ

−

ǫ )|p(x)−1(uσǫ − v) dx

=

∫

Ω

fǫ(u
σ
ǫ − v) dx, ∀v ∈W

1,p(x)
0 (Ω).

(10)

We define the operators Gσ
ǫ , R

σ
ǫ :W

1,p(x)
0 (Ω) −→W−1,p′(x)(Ω) by,

〈Gσ
ǫ u, v〉 =

∫

Ω

gσǫ (x, u,∇u)v dx, 〈R
σ
ǫ u, v〉 = −

1

ǫ2

∫

Ω

|T 1
ǫ
(u−)|p(x)−1v dx.

We also denote

〈Au, v〉 =

∫

Ω

a(x, u,∇u)∇v dx.

Thanks to the generalized Hölder’s inequality, we have for all u, v ∈W
1,p(x)
0 (Ω),

∣

∣

∣

∣

∫

Ω

gσǫ (x, u,∇u)v dx

∣

∣

∣

∣

≤
( 1

p−
+

1

p′−

)

‖gσǫ (x, u,∇u)‖p′(x)‖v‖p(x)

≤
( 1

p−
+

1

p′−

)

((

1 +
1

ǫ

)

p′+

p′
−

(meas(Ω) + 1)
1

p′
−

)

‖v‖p(x)

≤ C‖v‖1,p(x)

(11)



230 E. AZROUL, M.B. BENBOUBKER AND S. OUARO

and

∣

∣

∣

∣

−
1

ǫ2

∫

Ω

|T 1
ǫ
(u−)|p(x)−1v dx

∣

∣

∣

∣

≤
1

ǫ2
( 1

p−
+

1

p′−

)

‖T 1
ǫ
(u−)p(x)−1‖p′(x)‖v‖p(x)

≤
1

ǫ2
( 1

p−
+

1

p′−

)

∥

∥

∥

∥

(

1

ǫ

)p(x)−1∥
∥

∥

∥

p′(x)

‖v‖p(x)

≤ C‖v‖1,p(x).

(12)

We need the following lemma.

Lemma 4.1 The operator Bσ
ǫ = A+Gσ

ǫ +Rσ
ǫ from W

1,p(x)
0 (Ω) into W−1,p′(x)(Ω) is

pseudo-monotone. Moreover, Bσ
ǫ is coercive, in the following sense:

〈Bσ
ǫ v, v〉

‖v‖1,p(x)
→ +∞ if ‖v‖1,p(x) → +∞.

Proof of Lemma 4.1 Using the generalized Hölder’s inequality and the growth
condition (2) we can show that A is bounded, and by (11) and (12), Bσ

ǫ is bounded

in W
1,p(x)
0 (Ω). The coercivity follows from (4) and the fact that gσǫ (x, s, ξ)s ≥ 0 and

−
1

ǫ2

∫

Ω

|T 1
ǫ
(u−)|p(x)−1u dx ≥ 0. It remains to show that Bσ

ǫ is pseudo-monotone.

Let (uk)k>0 be a sequence in W
1,p(x)
0 (Ω) such that











uk ⇀ u in W
1,p(x)
0 (Ω),

Bσ
ǫ uk ⇀ χ in W−1,p′(x)(Ω),

lim sup
k→∞

〈Bσ
ǫ uk, uk〉 ≤ 〈χ, u〉.

(13)

We will prove that χ = Bσ
ǫ u and 〈Bσ

ǫ uk, uk〉 → 〈χ, u〉 as k → +∞.

Firstly, since W
1,p(x)
0 (Ω) →֒→֒ Lp(x)(Ω), then

uk → u in Lp(x)(Ω) for a subsequence denoted again (uk)k>0. (14)

As (uk)k>0 is a bounded sequence in W
1,p(x)
0 (Ω), then by (2), (a(x, uk,∇uk))k>0 is

bounded in (Lp′(x)(Ω))N . Therefore, there exists a function ϕ ∈ (Lp′(x)(Ω))N such that

a(x, uk,∇uk)⇀ ϕ in (Lp′(x)(Ω))N as k → ∞. (15)

Similarly, it is easy to see that (gσǫ (x, uk,∇uk))k>0 is bounded in Lp′(x)(Ω) with respect
to k, then there exists a function ψσ

ǫ ∈ Lp′(x)(Ω) such that

gσǫ (x, uk,∇uk)⇀ ψσ
ǫ in Lp′(x)(Ω) as k → ∞ (16)

and as (−
1

ǫ2
|T 1

ǫ
(uk)|

p(x)−1)k>0 is bounded in Lp′(x)(Ω), then

−
1

ǫ2
|T 1

ǫ
(u−k )|

p(x)−1 → −
1

ǫ2
|T 1

ǫ
(u−)|p(x)−1 in Lp′(x)(Ω) as k → ∞. (17)
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It is clear that, for all v ∈W
1,p(x)
0 (Ω), we have

〈χ, v〉 = lim
k→∞

〈Bσ
ǫ uk, v〉 = lim

k→∞

∫

Ω

a(x, uk,∇uk)∇vdx + lim
k→∞

∫

Ω

gσǫ (x, uk,∇uk)vdx

+ lim
k→∞

−
1

ǫ2

∫

Ω

|T 1
ǫ
(u−k )|

p(x)−1v dx

=

∫

Ω

ϕ∇v dx+

∫

Ω

ψσ
ǫ v dx−

1

ǫ2

∫

Ω

|T 1
ǫ
(u−)|p(x)−1v dx.

(18)
On one hand, by (14) we have

∫

Ω

gσǫ (x, uk,∇uk)uk dx→

∫

Ω

ψσ
ǫ u dx as k → ∞, (19)

−
1

ǫ2

∫

Ω

|T 1
ǫ
(u−k )|

p(x)−1uk dx→ −
1

ǫ2

∫

Ω

|T 1
ǫ
(u−)|p(x)−1u dx as k → ∞. (20)

Consequently, by the hypotheses, we have

lim sup
k→∞

〈Bσ
ǫ (uk), uk〉 = lim sup

k→∞

{
∫

Ω

a(x, uk,∇uk)∇uk dx+

∫

Ω

gσǫ (x, uk,∇uk)uk dx

−
1

ǫ2

∫

Ω

|T 1
ǫ
(u−k )|

p(x)−1uk dx

}

≤

∫

Ω

ϕ∇u dx+

∫

Ω

ψσ
ǫ u dx−

1

ǫ2

∫

Ω

|T 1
ǫ
(u−)|p(x)−1u dx.

(21)
Therefore,

lim sup
k→∞

∫

Ω

a(x, uk,∇uk)∇uk dx ≤

∫

Ω

ϕ∇u dx. (22)

Thanks to (3), we have
∫

Ω

(a(x, uk,∇uk)− a(x, uk,∇u))(∇uk −∇u) dx ≥ 0. (23)

Then
∫

Ω

a(x, uk,∇uk)∇uk dx ≥ −

∫

Ω

a(x, uk,∇u)∇u dx

+

∫

Ω

a(x, uk,∇uk)∇u dx +

∫

Ω

a(x, uk,∇u)∇uk dx.

By (15), we get

lim inf
k→∞

∫

Ω

a(x, uk,∇uk)∇uk dx ≥

∫

Ω

ϕ∇u dx

which implies by using (22)

lim
k→∞

∫

Ω

a(x, uk,∇uk)∇uk dx =

∫

Ω

ϕ∇u dx. (24)

By means of (18), (19), (20) and (24), we obtain 〈Bσ
ǫ uk, uk〉 → 〈χ, u〉 as k → +∞.

On the other hand, by (24) and the fact that a(x, uk,∇u) → a(x, u,∇u) in (Lp′(x)(Ω))N ,
we can deduce that

lim
k→+∞

∫

Ω

(a(x, uk,∇uk)− a(x, uk,∇u))(∇uk −∇u) dx = 0
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and so, by virtue of Lemma 3.3 we find ∇un → ∇u a.e. in Ω, which concludes

a(x, uk,∇uk)⇀ a(x, u,∇u) in (Lp′(x)(Ω))N ,

gσǫ (x, uk,∇uk)⇀ gσǫ (x, u,∇u) in Lp′(x)(Ω)

and

−
1

ǫ2
|T 1

ǫ
(u−k )|

p(x)−1 ⇀ −
1

ǫ2

∫

Ω

|T 1
ǫ
(u−)|p(x)−1.

Thus, χ = Bσ
ǫ u.

In view of Lemma 4.1, there exists at least one solution uσǫ ∈ W
1,p(x)
0 (Ω) to the

problem (10), by using the classical theorem in [12]. The continuation of the proof of
Theorem 4.1 is divided into several steps.

4.1 Study of the approximate problem with respect to ǫ

4.1.1 A priori estimates

If we take v = uσǫ − Tk(u
σ
ǫ ) as a test function in (10), we obtain

∫

Ω

a(x, uσǫ ,∇u
σ
ǫ )∇Tk(u

σ
ǫ ) dx+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )Tk(u

σ
ǫ ) dx

−
1

ǫ2

∫

Ω

|T 1
ǫ
(uσ−ǫ )|p(x)−1Tk(u

σ
ǫ ) dx =

∫

Ω

fǫTk(u
σ
ǫ ) dx.

So, as uσǫ = uσ+ǫ − uσ−ǫ , then

−
1

ǫ2
|T 1

ǫ
(uσ−ǫ )|p(x)−1Tk(u

σ
ǫ ) = −

1

ǫ2
|T 1

ǫ
(uσ−ǫ )|p(x)−1Tk(u

σ
ǫ )χ{uσ

ǫ ≤0}

=
1

ǫ2
|T 1

ǫ
(uσ−ǫ )|p(x)−1Tk(u

σ−
ǫ ) ≥ 0.

(25)

Using the fact that gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )Tk(u

σ
ǫ ) ≥ 0 and by (25) we get

∫

Ω

a(x, uσǫ ,∇u
σ
ǫ )∇Tk(u

σ
ǫ ) dx ≤ k‖f‖L1(Ω). (26)

So, by (4) we get

α‖∇Tk(u
σ
ǫ )‖

γ

p(x) ≤ α

∫

Ω

|∇Tk(u
σ
ǫ )|

p(x) dx ≤ k‖f‖L1(Ω) (27)

with

γ =

{

p+ if ‖∇Tk(u
σ
ǫ )‖p(x) ≤ 1,

p− if ‖∇Tk(u
σ
ǫ )‖p(x) > 1.

Thanks to Poincaré inequality, we obtain

‖Tk(u
σ
ǫ )‖1,p(x) ≤ Ck

1
γ , (28)

where C does not depend on ǫ. Consequently (Tk(u
σ
ǫ ))ǫ>0 is bounded in W

1,p(x)
0 (Ω)

uniformly on ǫ and σ.
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4.1.2 Convergence in measure of uσǫ

We prove that uσǫ converges to some function uσ in measure. To prove this, we show that
uσǫ is a Cauchy sequence in measure. Let k be large enough. Combining the generalized
Hölder’s inequality, Poincaré’s inequality and (28), one has

k meas({|uσǫ | > k}) =

∫

{|uσ
ǫ |>k}

|Tk(u
σ
ǫ )| dx ≤

∫

Ω

|Tk(u
σ
ǫ )| dx

≤
(

1
p−

+ 1
p′

−

)

(meas(Ω) + 1)
1

p′
− ‖Tk(u

σ
ǫ )‖p(x)

≤ C1‖Tk(u
σ
ǫ )‖1,p(x) ≤ C2k

1
γ ;

(29)

which yields

meas({|uσǫ | > k}) ≤
C2

k1−
1
γ

∀ǫ > 0, ∀k > 0. (30)

Hence

meas({|uσǫ | > k}) → 0 as k → ∞ ( since 1−
1

γ
> 0), (31)

uniformly in ǫ and σ. Moreover, we have, for every δ > 0,

meas ({|uσn − uσm| > δ}) ≤ meas ({|uσn| > k}) + meas ({|uσm| > k})
+meas ({|Tk(u

σ
n)− Tk(u

σ
m)| > δ}).

(32)

Since (Tk(u
σ
ǫ ))ǫ>0 is bounded in W

1,p(x)
0 (Ω), then there exists for σ > 0 fixed, vσk ∈

W
1,p(x)
0 (Ω) such that

Tk(u
σ
ǫ )⇀ vσk in W

1,p(x)
0 (Ω)

and by the compact embedding, we have

Tk(u
σ
ǫ ) → vσk in Lp(x)(Ω) and a.e. in Ω. (33)

Consequently, we can assume that (Tk(u
σ
ǫ ))ǫ>0 is a Cauchy sequence in measure in Ω.

Let η > 0. Then by (30) and (32), there exists some k(η) > 0 such that meas({|uσn−u
σ
m| >

δ}) < η for all n,m ≥ n0(k(η), δ). This proves that (uσǫ )ǫ>0 is a Cauchy sequence in
measure and thus, converges almost everywhere to some measurable function uσ.
Therefore, uσǫ → uσ a.e. in Ω.

Furthermore,

Tk(u
σ
ǫ )⇀ Tk(u

σ) in W
1,p(x)
0 (Ω)

and

Tk(u
σ
ǫ ) → Tk(u

σ) in Lp(x)(Ω) and a.e. in Ω.

(34)

4.1.3 Positivity of uσ

Taking v = uσǫ − T 1
ǫ
(uσǫ ) as a test function in (10), we obtain

∫

Ω

a(x, uσǫ ,∇u
σ
ǫ )∇T 1

ǫ
(uσǫ ) dx+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )T 1

ǫ
(uσǫ ) dx−

1

ǫ2

∫

Ω

|T 1
ǫ
(uσ−ǫ )|p(x)−1T 1

ǫ
(uσǫ ) dx =

∫

Ω

fǫT 1
ǫ
(uσǫ ) dx.
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Since

∫

Ω

a(x, uσǫ ,∇u
σ
ǫ )∇T 1

ǫ
(uσǫ ) dx ≥ 0 and gσǫ (x, u

σ
ǫ ,∇u

σ
ǫ )T 1

ǫ
(uσǫ ) ≥ 0, we get

−
1

ǫ2

∫

Ω

|T 1
ǫ
(uσ−ǫ )|p(x)−1

(

−T 1
ǫ
(uσ

−

ǫ )
)

dx ≤
1

ǫ
‖f‖L1(Ω).

Thus,
∫

Ω

|T 1
ǫ
(uσ−ǫ )|p(x) dx ≤ ǫ‖f‖L1(Ω).

Now, denote by A =
{

x ∈ Ω such that |T 1
ǫ

(

uσ
−

ǫ

)

| = 1
ǫ

}

. As ǫ is used to tend to 0, we

can take it in (0, 1) to get

meas(A)

(

1

ǫ

)p−

≤

∫

A

|T 1
ǫ
(uσ−ǫ )|p(x) ≤ ǫ‖f‖L1(Ω);

which implies that (by letting ǫ go to 0)

meas(A) = 0.

Hence, since uσǫ → uσ a.e. in Ω and the fact that meas(A) = 0, we conclude that

|T 1
ǫ

(

uσ
−

ǫ

)

|p(x) → |uσ
−

|p(x) a.e. in Ω.

We use again the Fatou’s Lemma to obtain
∫

Ω

|uσ
−

| dx ≤ lim inf
ǫ→0

∫

Ω

|T 1
ǫ
(uσ−ǫ )|p(x) dx ≤ lim inf

ǫ→0
ǫ‖f‖L1(Ω) = 0;

which yields
uσ ≥ 0.

4.1.4 Almost everywhere convergence of the gradient

For the sake of simplicity we will write η(ǫ, h) for any quantity such that

lim
h→+∞

lim
ǫ→0

η(ǫ, h) = 0.

Finally, by ηh(ǫ) we will denote a quantity that depends on ǫ and h and is such that

lim
ǫ→0

ηh(ǫ) = 0,

for any fixed value of h.
Let h > 2k > 0, we shall use in (10) the test function







vh,σǫ = uσǫ − ηϕk(ω
h,σ
ǫ )

ωh,σ
ǫ = T2k

(

uσǫ − Th(u
σ
ǫ ) + Tk(u

σ
ǫ )− Tk(u

σ)
)

ωh,σ = T2k(u
σ − Th(u

σ)).
(35)

Let ϕk(t) = teλt
2

, λ = ( b(k)2α )2, it’s obvious to check that (see [6], Lemma 1)

ϕ′
k(t)−

b(k)

α
|ϕk(t)| ≥

1

2
, ∀t ∈ IR. (36)
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It follows that

〈A(uσǫ ), ϕk(ω
h,σ
ǫ )〉+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) dx−

1

ǫ2

∫

Ω

|T 1
ǫ
(uσ−ǫ )|p(x)−1ϕk(ω

h,σ
ǫ ) dx =

∫

Ω

fǫϕk(ω
h,σ
ǫ ) dx,

which is equivalent to saying that

∫

Ω

a(x, uσǫ ,∇u
σ
ǫ )∇ω

h,σ
ǫ ϕ′

k(ω
h,σ
ǫ ) dx+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) dx

−
1

ǫ2

∫

Ω

|T 1
ǫ
(uσ−ǫ )|p(x)−1 ϕk(ω

h,σ
ǫ ) dx

=

∫

Ω

fǫϕk(ω
h,σ
ǫ ) dx.

(37)

Note that, ∇ωh,σ
ǫ = 0 on the set {|uσǫ | > s = 4k + h}, therefore, we get by (37)

∫

Ω

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′

k(ω
h,σ
ǫ ) dx+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) dx

−
1

ǫ2

∫

Ω

|T 1
ǫ
(uσ−ǫ )|p(x)−1 ϕk(ω

h,σ
ǫ ) dx

=

∫

Ω

fǫϕk(ω
h,σ
ǫ ) dx.

According to (34), we have ϕk(ω
h,σ
ǫ )⇀ ϕk(ω

h,σ) weakly-* in L∞(Ω) as ǫ→ 0, and then

∫

Ω

fǫϕk(ω
h,σ
ǫ ) dx→

∫

Ω

fϕk(ω
h,σ) dx.

Finally, by using Lebesgue’s theorem, we can deduce that

∫

Ω

fϕk(ω
h,σ) dx→ 0 as h→ +∞.

Therefore,
∫

Ω

fϕk(ω
h,σ
ǫ ) dx = η(ǫ, h). (38)

Note that ϕk(ω
h,σ
ǫ ) and uσǫ has the same sign in the set {x ∈ Ω, |uσǫ | > k}, then we

have

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) ≥ 0 and −

1

ǫ2
|T 1

ǫ
(uσ−ǫ )|p(x)−1ϕk(ω

h,σ
ǫ ) ≥ 0.

From (37), we deduce that

∫

Ω

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′

k(ω
h,σ
ǫ ) dx +

∫

{|uσ
ǫ |<k}

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) dx

−
1

ǫ2

∫

Ω

|T 1
ǫ
(uσ−ǫ )|p(x)−1 (uσǫ − Tk(u

σ)) exp(λ(ωh,σ
ǫ ))2 dx

≤ η(ǫ, h).
(39)
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Since uσ ≥ 0, then the third term on the left-hand side of the above inequality is positive,
thus,

∫

Ω

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′

k(ω
h,σ
ǫ ) dx +

∫

{|uσ
ǫ |<k}

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) dx

≤ η(ǫ, h).
(40)

Splitting the first integral on the left-hand side of (40), where |uσǫ | ≤ k and |uσǫ | > k, we
can write

∫

Ω

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′

k(ω
h,σ
ǫ ) dx

=

∫

{|uσ
ǫ |≤k}

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))[∇Tk(u

σ
ǫ )−∇Tk(u

σ)]ϕ′
k(ω

h,σ
ǫ ) dx

+

∫

{|uσ
ǫ |>k}

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′

k(ω
h,σ
ǫ ) dx.

(41)

The first term on the right-hand side of the last inequality can be written as
∫

{|uσ
ǫ |≤k}

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))[∇Tk(u

σ
ǫ )−∇Tk(u

σ)]ϕ′
k(ω

h,σ
ǫ ) dx

=

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))[∇Tk(u

σ
ǫ )−∇Tk(u

σ)]ϕ′
k(ω

h,σ
ǫ ) dx.

(42)

For the second term on the right-hand side of (41), we can write according to (4),
∫

{|uσ
ǫ |>k}

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′

k(ω
h,σ
ǫ ) dx

≥ −ϕ′(2k)

∫

{|uσ
ǫ |>k}

|a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))||∇Tk(u

σ)| dx.
(43)

Since |a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ )| is bounded in (Lp′(x)(Ω))N , if necessary we have

|a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ )| ⇀ lM,σ in (Lp′(x)(Ω))N as ǫ→ 0, for a subsequence.

Due to ∇Tk(u
σ)χ{|uσ

ǫ |>k} → ∇Tk(u
σ)χ{|uσ |>k} in Lp(x)(Ω) as ǫ→ 0, we obtain

−ϕ′(2k)

∫

{|uσ
ǫ |>k}

|a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))||∇Tk(u

σ)| dx→

−ϕ′(2k)

∫

{|uσ|>k}

lM,σ|∇Tk(u
σ)| dx = 0 as ǫ→ 0.

Therefore,

− ϕ′(2k)

∫

{|uσ
ǫ |>k}

|a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))||∇Tk(u

σ)| dx = ηh(ǫ). (44)

Combining (41) and (44), we deduce that
∫

Ω

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′(ωh,σ

ǫ ) dx

≥

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))[∇Tk(u

σ
ǫ )−∇Tk(u

σ)]ϕ′
k(ω

h,σ
ǫ ) dx+ ηh(ǫ).

(45)
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It follows
∫

Ω

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′(ωh,σ

ǫ ) dx

≥

∫

Ω

[a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))− a(x, Tk(u

σ
ǫ ),∇Tk(u

σ))]

×[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]ϕ′
k(ω

h,σ
ǫ ) dx

+

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]ϕ′
k(ω

h,σ
ǫ ) dx+ ηh(ǫ).

(46)

Concerning the second term of the right-hand side of (46) we can write
∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]ϕ′
k(ω

h,σ
ǫ ) dx

=

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))∇Tk(u
σ
ǫ )ϕ

′
k(Tk(u

σ
ǫ )− Tk(u

σ)) dx

−

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))∇Tk(u
σ)ϕ′

k(ω
h,σ
ǫ ) dx.

(47)

By the continuity of Nemytskii’s operator (cf. [9], [20]), we have

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))ϕ′
k(Tk(u

σ
ǫ )− Tk(u

σ)) → a(x, Tk(u
σ),∇Tk(u

σ))ϕ′
k(0)

and a(x, Tk(u
σ
ǫ ),∇Tk(u

σ)) → a(x, Tk(u
σ),∇Tk(u

σ)) strongly in (Lp′(x)(Ω))N , while
∇Tk(u

σ
ǫ ) ⇀ ∇Tk(u

σ) weakly in (Lp(x)(Ω))N and ∇Tk(u
σ
ǫ )ϕ

′
k(ω

h,σ
ǫ ) → ∇Tk(u

σ)ϕ′
k(0)

strongly in (Lp(x)(Ω))N .
Then, the first and the second term of the right-hand side on (47) tend respectively to

∫

Ω

a(x, Tk(u
σ),∇Tk(u

σ))∇Tk(u
σ)ϕ′

k(0) dx as ǫ→ 0

and

−

∫

Ω

a(x, Tk(u
σ),∇Tk(u

σ))∇Tk(u
σ)ϕ′

k(ω
h,σ) dx as ǫ→ 0;

therefore,
∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]ϕ′
k(ω

h,σ
ǫ ) dx = ηh(ǫ). (48)

Combining (46) and (48) yields
∫

Ω

a(x, Ts(u
σ
ǫ ),∇Ts(u

σ
ǫ ))∇ω

h,σ
ǫ ϕ′(ωh,σ

ǫ ) dx

≥

∫

Ω

[a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))− a(x, Tk(u

σ
ǫ ),∇Tk(u

σ))]

×[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]ϕ′
k(ω

h,σ
ǫ ) dx + η(ǫ, h).

(49)

Going back to the second term of the left hand side of (40), we have
∣

∣

∣

∣

∫

{|uσ
ǫ |<k}

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) dx

∣

∣

∣

∣

≤ b(k)

∫

Ω

c(x)|ϕk(ω
h,σ
ǫ )| dx+

b(k)

α

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))∇Tk(u

σ
ǫ )|ϕk(ω

h,σ
ǫ )| dx

≤ η(ǫ, h) +
b(k)

α

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))∇Tk(u

σ
ǫ )|ϕk(ω

h,σ
ǫ )| dx.

(50)
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The last term of the last side of this inequality reads as

b(k)

α

∫

Ω

[a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))− a(x, Tk(u

σ
ǫ ),∇Tk(u

σ))]

[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]|ϕk(ω
h,σ
ǫ )| dx

+
b(k)

α

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]|ϕk(ω
h,σ
ǫ )| dx

+
b(k)

α

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))∇Tk(u

σ)|ϕk(ω
h,σ
ǫ )| dx.

(51)

Reasoning as above, it is easy to see that

b(k)

α

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ))[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]|ϕk(ω
h,σ
ǫ )| dx = ηh(ǫ)

and
b(k)

α

∫

Ω

a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))∇Tk(u

σ)|ϕk(ω
h,σ
ǫ )| dx = η(ǫ, h).

Therefore,

∣

∣

∣

∣

∫

{|uσ
ǫ |<k}

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )ϕk(ω

h,σ
ǫ ) dx

∣

∣

∣

∣

≤
b(k)

α

∫

Ω

[a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))− a(x, Tk(u

σ
ǫ ),∇Tk(u

σ))]

×[∇Tk(u
σ
ǫ )−∇Tk(u

σ)]|ϕk(ω
h,σ
ǫ )| dx+ η(ǫ, h).

(52)

Combining (40), (51) and (52), we obtain

∫

Ω

[a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))− a(x, Tk(u

σ
ǫ ),∇Tk(u

σ))]

×[∇Tk(u
σ
ǫ )−∇Tk(u

σ)](ϕ′
k(ω

h,σ
ǫ )−

b(k)

α
|ϕk(ω

h,σ
ǫ )|) dx

≤ η(ǫ, h),

(53)

which implies by using (36) that

∫

Ω

[a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))− a(x, Tk(u

σ
ǫ ),∇Tk(u

σ))][∇Tk(u
σ
ǫ )−∇Tk(u

σ)] dx ≤ η(ǫ, h).

(54)
Letting ǫ tend to 0 and h tend to infinity, we deduce that

∫

Ω

[a(x, Tk(u
σ
ǫ ),∇Tk(u

σ
ǫ ))− a(x, Tk(u

σ
ǫ ),∇Tk(u

σ))][∇Tk(u
σ
ǫ )−∇Tk(u

σ)] dx→ 0.

By Lemma 3.3, we get from convergence above

Tk(u
σ
ǫ ) → Tk(u

σ) in W
1,p(x)
0 (Ω). (55)

Thus,

∇uσǫ → ∇uσ a.e. in Ω. (56)
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4.1.5 Equi-integrability of the nonlinearity gσǫ

In order to pass to the limit in the approximated equation, we now show that

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ ) → gσ(x, uσ,∇uσ) in L1(Ω). (57)

In particular, it is enough to prove the equi-integrability of the sequence
{|gσǫ (x, u

σ
ǫ ,∇u

σ
ǫ )|}. To this purpose, we take uσǫ −T1(u

σ
ǫ −Th(u

σ
ǫ )) ≥ 0 as a test function

in (10), to obtain
∫

{|uσ
ǫ |≥h+1}

|gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )| dx ≤

∫

{|uσ
ǫ |>h}

|fn| dx.

Let η > 0 be fixed. Then, there exists h(η) ≥ 1 such that
∫

{|uσ
ǫ |≥h(η)}

|gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )| dx <

η

2
. (58)

For any measurable subset E ⊂ Ω, we have
∫

E

|gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )| dx ≤

∫

E

b(l(ε))
(

c(x) + |∇Th(η)(u
σ
ǫ )|

p(x)
)

dx

+

∫

{|uσ
ǫ |≥h(η)}

|gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )| dx.

(59)

In view of (55), there exists β(η) > 0 such that
∫

E

b(h(η))
(

c(x) + |∇Th(η)(u
σ
ǫ )|

p(x)
)

dx ≤
η

2
for all E such that meas(E) < β(η). (60)

Finally, by combining (58) and (60), one easily has
∫

E

|gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )| dx ≤ η for all E such that meas(E) < β(η).

Then, we deduce that gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ ) is uniformly equi-integrable in Ω.

4.1.6 Passing to the limit with respect to ǫ

Let v ∈ K0 ∩ L
∞(Ω), we take uσǫ − Tk(u

σ
ǫ − v) as a test function in (10) to obtain

∫

Ω

a(x, uσǫ ,∇u
σ
ǫ )∇Tk(u

σ
ǫ − v) dx+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )Tk(u

σ
ǫ − v) dx ≤

∫

Ω

fǫTk(u
σ
ǫ − v) dx.

(61)
We deduce that
∫

{|uσ
ǫ −v|≤k}

a(x, uσǫ ,∇u
σ
ǫ )∇(uσǫ−v)dx+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )Tk(u

σ
ǫ−v)dx ≤

∫

Ω

fǫTk(u
σ
ǫ−v)dx,

(62)
which is equivalent to saying that

∫

{|uσ
ǫ −v|≤k}

a(x, uσǫ ,∇u
σ
ǫ )∇u

σ
ǫ dx−

∫

{|uσ
ǫ −v|≤k}

a(x, uσǫ ,∇u
σ
ǫ )∇v dx

+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )Tk(u

σ
ǫ − v) dx

≤

∫

Ω

fǫTk(u
σ
ǫ − v) dx.

(63)
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By Fatou’s lemma and the fact that

a(x, Tk+‖v‖∞
(uσǫ ),∇Tk+‖v‖∞

(uσǫ ))⇀ a(x, Tk+‖v‖∞
(uσ),∇Tk+‖v‖∞

(uσ)) in (Lp′(x)(Ω))N ,

we get
∫

{|uσ−v|≤k}

a(x, uσ,∇uσ)∇uσ dx−

∫

{|uσ−v|≤k}

a(x, Tk+‖v‖∞
(uσ),∇Tk+‖v‖∞

(uσ))∇v dx

+

∫

Ω

gσ(x, uσ,∇uσ)Tk(u
σ − v) dx

≤

∫

Ω

fTk(u
σ − v) dx.

(64)
Consequently,

∫

Ω

a(x, uσ,∇uσ)∇Tk(u
σ − v) dx+

∫

Ω

gσ(x, uσ,∇uσ)Tk(u
σ − v) dx

≤

∫

Ω

fTk(u
σ − v) dx, ∀v ∈ K0 ∩ L

∞(Ω) and ∀k > 0.
(65)

4.2 Study of the problem with respect to σ

4.2.1 Estimates with respect to σ

We are going to give some estimates on the sequence (uσ)σ>0 identical to (27). For that,
we take v = Ts(u

σ − Tk(u
σ)) in (65) and we let s → ∞; then, by the same argument as

in section 4.1 we can prove that

α‖∇Tk(u
σ)‖γ

p(x) ≤ α

∫

Ω

|∇Tk(u
σ)|p(x) dx ≤ k‖f‖L1(Ω) for all k > 1. (66)

Thus, as in section 4.1.2, there exists u such that Tk(u) ∈ W
1,p(x)
0 (Ω) and

{

Tk(u
σ)⇀ Tk(u) in W

1,p(x)
0 (Ω),

Tk(u
σ) → Tk(u) in Lp(x)(Ω) and a.e. in Ω.

(67)

So, uσ ≥ 0 a.e. in Ω and we have also u ≥ 0 a.e. in Ω.

4.2.2 Strong convergence of truncation with respect to σ

Here, in (65) we shall use the test function






v = Ts(u
σ − ϕk(ω

h,σ)),
ωh,σ = T2k

(

uσ − Th(u
σ) + Tk(u

σ)− Tk(u)
)

,
ωh = T2k(u− Th(u)),

(68)

where h > 2k > 0. It follows that for all l > 0,
∫

Ω

a(x, uσ,∇uσ)∇Tl(u
σ − Ts(u

σ − ϕk(ω
h,σ))) dx

+

∫

Ω

gσ(x, uσ,∇uσ)Tl(u
σ − Ts(u

σ − ϕk(ω
h,σ))) dx

≤

∫

Ω

fTl(u
σ − Ts(u

σ − ϕk(ω
h,σ))) dx.
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Therefore,
∫

{|uσ−ϕk(ωh,σ)|≤s}

a(x, uσ,∇uσ)∇Tl(ϕk(ω
h,σ)) dx

+

∫

Ω

gσ(x, uσ,∇uσ)Tl(u
σ − Ts(u

σ − ϕk(ω
h,σ))) dx

≤

∫

Ω

fTl(u
σ − Ts(u

σ − ϕk(ω
h,σ))) dx.

Letting s→ ∞ and choosing l large enough (l ≥ |ϕk(2k)|), we deduce that
∫

Ω

a(x, uσ,∇uσ)∇ϕk(ω
h,σ)dx +

∫

Ω

gσ(x, uσ,∇uσ)ϕk(ω
h,σ)dx ≤

∫

Ω

fϕk(ω
h,σ)dx.

(69)
Then, by using the same techniques as in section 4.1.4 we can deduce that

Tk(u
σ) → Tk(u) in W

1,p(x)
0 (Ω) and ∇uσ → ∇u a.e. in Ω. (70)

4.2.3 Equi-integrability of the nonlinearity g with respect to σ

Moreover, since g is a Carathéodory function, it is easy to see that

g(x, uσ,∇uσ) → g(x, u,∇u) a.e. in Ω as σ → 0.

Then, by assumption (6) (note that this hypothesis is only used here), it is clear that
gσ(x, uσ,∇uσ) = δσg(x, u

σ,∇uσ) → g(x, u,∇u) a.e. in {x ∈ Ω, u(x) ≥ 0}.
Similarly, we claim that gσ(x, uσ,∇uσ) → g(x, u,∇u) in L1(Ω).

Indeed, taking uσ − T1(u
σ − Tl(u

σ)) ≥ 0 as test function in (65), we obtain
∫

{|uσ|≥l+1}

|gσ(x, uσ,∇uσ)| dx ≤

∫

{|uσ |>l}

|f | dx.

Let β > 0 be fixed. Then, there exists l(β) ≥ 1 such that
∫

{|uσ |≥l(β)}

|gσ(x, uσ,∇uσ)| dx <
β

2
. (71)

For any measurable subset E ⊂ Ω, we have
∫

E

|gσ(x, uσ,∇uσ)| dx ≤

∫

E

b(l(β))
(

c(x) + |∇Tl(β)(u
σ)|p(x)

)

dx

+

∫

{|uσ|≥l(β)}

|gσ(x, uσ,∇uσ)| dx.
(72)

In view of (70), there exists α(β) > 0 such that
∫

E

b(l(β))
(

c(x) + |∇Tl(β)(u
σ)|p(x)

)

dx ≤
β

2
for all E such that meas(E) < α(β). (73)

Finally, by combining (71) and (73), one easily has
∫

E

|gσ(x, uσ,∇uσ)| dx ≤ β for all E such that meas(E) ≤ α(β).

Therefore, we deduce that gσ(x, uσ,∇uσ) is uniformly equi-integrable in Ω. So, as in
section 4.1.6, we can pass to the limit in σ and conclude. This achieves the proof of
Theorem 4.1.
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5 Case when the Nonlinearity g is Negative

We consider the convex set K0 = {u ∈W
1,p(x)
0 (Ω);u ≤ 0 a.e. in Ω}.

Theorem 5.1 Assume that (2) − (6) hold true and that f ∈ L1(Ω). Then, there
exists at least one solution (entropy solution) to the following unilateral problem,

(P)















u ∈ T
1,p(x)
0 (Ω), u ≤ 0 a.e. in Ω, g(x, u,∇u) ∈ L1(Ω)

∫

Ω

a(x, u,∇u)∇Tk(u − v) dx+

∫

Ω

g(x, u,∇u)Tk(u − v) dx ≤

∫

Ω

fTk(u − v) dx,

∀v ∈ K0 ∩ L
∞(Ω), ∀k > 0.

Proof. The same proof as for Theorem 4.1 can be applied with the following changes:
i) We approach the sign function by an increasing Lipschitz function.
ii) The Lipschitz function δσ(s) is replaced by:

δσ(s) =







−s+σ
s

, if s ≥ σ > 0,
0, if |s| ≤ σ,

s+σ
s
, if s < −σ < 0.

iii) The approximated problem becomes:

(P
σ

ǫ )























uσǫ ∈W
1,p(x)
0 (Ω)

〈Auσǫ , u
σ
ǫ − v〉+

∫

Ω

gσǫ (x, u
σ
ǫ ,∇u

σ
ǫ )(u

σ
ǫ − v) dx+

1

ǫ2

∫

Ω

|T 1
ǫ
(uσ

+

ǫ )|p(x)−1(uσǫ − v) dx

=

∫

Ω

fǫ(u
σ
ǫ − v) dx, ∀v ∈ W

1,p(x)
0 (Ω).

(74)

iv) The set K0 is replaced by K0 = {u ∈W
1,p(x)
0 (Ω);u ≤ 0 a.e. in Ω}.
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