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Abstract: In this paper, we study the existence and multiplicity of periodic solutions
of the following second-order Hamiltonian systems

ẍ(t) + V
′(t, x(t)) = 0,

where t ∈ R, x ∈ R
N and V ∈ C1(R × R

N ,R). By using a symmetric mountain
pass theorem, we obtain a new criterion to guarantee that second-order Hamiltonian
systems has infinitely many periodic solutions. We generalize and improve recent
results from the literature. Some examples are also given to illustrate our main
theoretical results.
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1 Introduction

Consider the second-order Hamiltonian systems

ẍ(t) + V ′(t, x(t)) = 0, (HS)

where x = (x1, ..., xN ), V ∈ C1(R × R
N ,R) and V ′(t, x) = ∇xV (t, x). The existence

and multiplicity of periodic solutions for system (HS) have been studied in many papers
via critical point theory, see the classical monographs [8] and [10] and the recent papers
[5, 6, 12, 13, 15, 18]. In [10], Rabinowitz established the existence of periodic solutions for
(HS) under the well known Ambrosetti-Rabinowitz condition:
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(AR) there is a constant µ > 2 such that

0 < µV (t, x) ≤ V ′(t, x) . x

for all t ∈ [0, T ], T > 0, and x ∈ R
N\ {0} .

The potential V (t, x) in (HS) is of the following form:

V (t, x) = −
1

2
L(t)x . x + W (t, x),

where L ∈ C(R,RN2

) is a symmetric matrix valued function and W ∈ C1(R × R
N ,R)

and satisfy:

(W1) there exist constants α0 > 0 and d0 > 0 such that

|W ′(t, x)| ≤ d0 (|x|
α0 + 1) ∀ t ∈ [0, T ], x ∈ R

N ,

He and Wu [6] have obtained some results of the existence of nontrivial T−periodic
solutions for (HS). See also Fei [5].

Motivated by the ideas of [5–7, 10, 12, 14–18], in this paper we will further study the
existence of T−periodic solutions for (HS) under some general conditions.

Here and in the following x . y denotes the inner product of x, y ∈ R
N and |.| denotes

the associated norm.
Our main results are the two following theorems.

Theorem 1.1 Assume that V satisfies

(V1) V (t, x) = −K(t, x) + W (t, x), where K,W : R× R
N → R are C1-maps and are

T−periodic in its first variable with T > 0, and V (t, 0) = 0,

(V2) lim sup
|x|→0

V (t, x)

|x|
2 < 0 uniformly in t ∈ [0, T ],

(V3) there exist constants µ > 2, θ ∈ [2, µ), λ ∈ (1, 2] and b > 0 such that

K(t, x) ≥ b |x|
λ
, K ′(t, x) . x ≤ θK(t, x), ∀ (t, x) ∈ [0, T ]× R

N ,

(V4) there exist constants σ ∈ (1, λ) and C ∈ R such that

0 ≤ µW (t, x) ≤ W ′(t, x) . x+ C |x|
σ

for all t ∈ [0, T ] and x ∈ R
N ,

(V5) there exist α0(t) > 0 and constants α1 > θ, R > 0 such that

W (t, x) ≥ α0(t) |x|
α1 ∀(t, x) ∈ [0, T ]× R

N , |x| ≥ R.

Then the system (HS) has a nontrivial T−periodic solution.

Moreover, if V (t, x) is symmetric in x, i.e. V satisfies
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(V6) V (t,−x) = V (t, x), ∀(t, x) ∈ [0, T ]× R
N ;

then we obtain the following result by using the symmetric mountain pass theorem.

Theorem 1.2 Assume that V satisfies (V1) − (V6), then the system (HS) has an
unbounded sequence of T−periodic solutions and, in particular, infinite T−periodic solu-
tions.

Remark 1.1 There are functions K and W which satisfy the hypotheses of Theorem
1.1 and Theorem 2.2, but do not satisfy the corresponding results in [4–7, 10, 12, 14–18].

For example, define a function K ∈ C1(R× R
N ,R) as follows

K(t, x) =











|x|
5

4 exp(|x|
1

4 ) + |x|
2
, if |x| ≤ 1,

exp(1) |x|
3

2 + |x|2 , if |x| > 1.

An easy computation shows that K satisfies the condition (V3) but do not satisfy the
corresponding results in [4–7, 10, 12, 14–18]. Define a function W ∈ C1(R × R

N ,R) as
follows

W (t, x) = |x|
5

4 exp(|x|
1

4 ).

Then we have

W ′(t, x) . x =
5

4
|x|

5

4 exp(|x|
1

4 ) +
1

4
|x|

1

4 |x|
5

4 exp(|x|
1

4 )

= (
5

4
+

1

4
|x|

1

4 ) |x|
5

4 exp(|x|
1

4 ).

So, W does not satisfy (W1).
Moreover, for any constant µ > 2, we have

µW (t, x)−W ′(t, x) . x = (µ−
5

4
−

1

4
|x|

1

4 ) |x|
5

4 exp(|x|
1

4 )

which yields that

0 < µW (t, x)−W ′(t, x) . x ≤ (µ−
5

4
) |x|

5

4 exp(4µ− 5)

for all (t, x) ∈ R×R
N and 0 < |x| < (4µ− 5)4, i.e. the condition (AR) does not hold for

every t ∈ R and x ∈ R
N\ {0} and

µW (t, x)−W ′(t, x).x ≤ 0, ∀ (t, x) ∈ R× R
N , |x| > (4µ− 5)4;

then (V4) holds.

Corollary 1.1 Assume that V satisfies (V1), (V3)− (V5) and

(V′
2) W (t, x) = o(|x|

2
) as |x| → 0 uniformly in t ∈ [0, T ].

Then the system (HS) has a nontrivial T−periodic solution.
Moreover, if V satisfies (V6) then the system (HS) has an unbounded sequence of

T−periodic solutions.
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2 Proof of the Main Results

Let

H1
T =

{

x : [0, T ] → R
N , x is absolutely continuous, x(0) = x(T ), and

ẋ ∈ L2([0, T ],RN)
}

Then H1
T is a Hilbert space with the norm defined by

‖x‖ =

(

∫ T

0

(|x(t)|2 + |ẋ(t)|2)dt

)
1

2

for x ∈ H1
T . Consider the functional φ : H1

T → R defined by

φ(x) =

∫ T

0

(

1

2
|ẋ(t)|2 +K(t, x(t))−W (t, x(t))

)

dt . (1)

It is well known that φ ∈ C1(H1
T ,R) and for all x, y ∈ H1

T

φ′(x)y =

∫ T

0

(ẋ(t).ẏ(t) +K ′(t, x(t)).y(t) −W ′(t, x(t)).y(t)) dt . (2)

It is well known that the T−periodic solution of system (HS) corresponds to the critical
points of φ in H1

T . We will obtain the critical point of φ by using the mountain pass theo-
rem and the symmetric mountain pass theorem. We say that φ satisfies the Palais-Smale
condition if every bounded sequence {uk} in the space H such that limk→∞ φ′(uk) = 0
contains a convergent subsequence. Therefore we state these theorems.

Theorem 2.1 [10] Let H be a real Banach space and φ ∈ C1(H,R) satisfying the
Palais-Smale condition. If φ satisfies the following conditions:

(i) φ(0) = 0,

(ii) there exist constants ρ, α > 0 such that φ/∂Bρ(0) ≥ α,

(iii) there exists e ∈ H\Bρ(0) such that φ(e) ≤ 0.

Then φ possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

φ(g(s)),

where Bρ(0) is the open ball in H centered in 0, with radius ρ, ∂Bρ(0) its boundary and

Γ = {g ∈ C([0, 1], H) : g(0) = 0, g(1) = e} .

Theorem 2.2 [10] Let H be a real Banach space, φ is even and φ ∈ C1(H,R)
satisfyies the Palais-Smale condition. If φ satisfies (i) and (ii) of Theorem 2.1 and the
following condition:

(iii’) For each finite dimensional subspace E ⊂ H, there is r = r(E) such that φ(x) ≤ 0
for x ∈ E\Br(0) where Br(0) is an open ball in H centered in 0, with radius r.
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Then φ possesses an unbounded sequence of critical values.

In the following, we denote Ci (i = 1, 2, 3...) for different positive constants.

Lemma 2.1 [7] For all x ∈ H1
T

‖x‖∞ ≤ C∞ ‖x‖ . (3)

where ‖x‖∞ = max
0≤t≤T

|x(t)|.

2.1 Proof of Theorem 1.1

Let γT : H1
T → [0,+∞) be given by

γT (x) =

(

∫ T

0

(|ẋ(t)|
2
+ 2K(t, x(t)))dt

)
1

2

. (4)

By (1) and (4) we have

φ(x) =
1

2
γ2
T (x)−

∫ T

0

W (t, x(t))dt . (5)

Moreover, using (V3) and (2) we obtain

φ′(x)x ≤

∫ T

0

(

|ẋ(t)|2 + θK(t, x(t))
)

dt−

∫ T

0

W ′(t, x(t)).x(t)dt. (6)

It is clear that φ(0) = 0. Firstly, we will show that φ satisfies the Palais-Smale condition.
Let (yj) ⊂ H1

T be a sequence such that (φ(yj))j∈N is bounded and φ′(yj) → 0 as j → +∞.

Then, there exists C0 such that

φ(yj) ≤ C0, ‖φ′(yj)‖H1

T
∗ ≤ C0, (7)

for every j ∈ N. Without loss of generality, we can assume that ‖yj‖ 6= 0. Then from
(3), (4) and (V3), we obtain for j ∈ N

γ2
T (yj) =

∫ T

0

(

|ẏj(t)|
2
+ 2K(t, yj(t))

)

dt

≥

∫ T

0

(

|ẏj(t)|
2
+ 2b |yj(t)|

λ
)

dt

≥
∫ T

0 |ẏj(t)|
2
dt+ 2b (C∞ ‖yj‖)

λ−2 ∫ T

0 |yj(t)|
2
dt

≥ min
{

1, 2b(C∞ ‖yj‖)
λ−2
}

‖yj‖
2

= min
{

‖yj‖
2
, 2bCλ−2

∞ ‖yj‖
λ
}

.

(8)

By (4), (6) and (V4) we have

−
θ

µ
γ2
T (yj) ≤

2

µ
‖φ′(yj)‖ ‖yj‖ −

2

µ

∫ T

0

W ′(t, yj(t)) . yj(t) dt. (9)
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By Sobolev’s embedding theorem, (5), (7), (9) and (V4) we obtain

(

µ− θ

µ

)

γ2
T (yj) ≤ 2φ(yj)+

2

µ
‖φ′(yj)‖ ‖yj‖+

2

µ

∫ T

0

C |yj(t)|
σ
dt

≤ 2C0 + C1 ‖yj‖+ C2 ‖yj‖
σ
. (10)

Combining (8) with (2.1), we obtain

min
{

‖yj‖
2
, 2bCλ−2

∞ ‖yj‖
λ
}

≤
µ

µ− θ
(C0 + C1 ‖yj‖+ C2 ‖yj‖

σ). (11)

It follows from (11) that ‖yj‖ is bounded in H1
T . In a similar way as in Proposition 4.3

in [8], we can prove that (yj) has a convergent subsequence in H1
T . Hence, φ satisfies the

Palais-Smale condition. Now, let us show that φ satisfies assumption (ii) of Theorem
2.1. By (V2), there exist constants α0, ρ0 > 0 such that

V (t, x) ≤ −α0 |x|
2

(12)

for all |x| ≤ ρ0 and t ∈ [0, T ]. Choose ρ = ρ0

C∞

and let S =
{

x ∈ H1
T , ‖x‖ = ρ

}

. By 3,
we have ‖x‖∞ ≤ ρ0, for all x ∈ S, which together with (12) implies

φ(x) = 1
2

∫ T

0
|ẋ(t)|2 dt−

∫ T

0
V (t, x(t)) dt

≥ 1
2

∫ T

0
|ẋ(t)|2 dt+ α0

∫ T

0
|x(t)|2 dt

≥ min
{

1
2 , α0

}

ρ2 := α.

for every x ∈ S.

It remains to prove that φ satisfies assumption (iii) of Theorem 2.1. By (V3) we have

K(t, x) ≤ C3 |x|
θ + C4 ∀ (t, x) ∈ [0, T ]× R

N , (13)

where C3 = sup
t∈[0,T ],|x|=1

K(t, x) and C4 = sup
t∈[0,T ],|x|≤1

K(t, x). By (1) and (13) we have,

for every s ∈ R\ {0} and x ∈ H1
T \ {0},

φ(sx) ≤
s2

2

∫ T

0

|ẋ(t)|
2
dt+ C3s

θ

∫ T

0

|x(t)|
θ
dt+ C5 −

∫ T

0

W (t, sx(t)) dt. (14)

Take some Q ∈ H1
T such that ‖Q‖ = 1. Then there exists a subset Ω of positive measure

of [0, T ] such that Q(t) 6= 0 for t ∈ Ω. Take s > 1 such that s |Q(t)| ≥ R for t ∈ Ω. Then
by (V4), (V5) and (14)

φ(sQ) ≤ C6s
θ − sα1

∫

Ω

α0(t) |Q(t)|
α1 dt. (15)

Since α0(t) > 0 and α1 > θ, (15) implies that φ(sQ) < 0 for some s > 1 such that
s |Q(t)| ≥ R for t ∈ Ω and s ‖Q‖ > ρ. By Theorem 1.1, φ possesses a critical value
c ≥ α > 0 given by

c = inf
g∈Γ

max
s∈[0,1]

φ(g(s)),

where
Γ = {g ∈ C([0, 1], H) : g(0) = 0, g(1) = e} .

Hence, there is x ∈ H1
T such that φ(x) = c, φ′(x) = 0. The proof of Theorem 1.1 is

complete.
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2.2 Proof of Theorem 1.2

(V6) implies that φ is even. By Theorem 2.1 and the proof of Theorem 1.1, it suffices to
prove that φ satisfies (iii′) of Theorem 2.2.

Let E ⊂ H1
T be a finite dimensional subspace. From the proof of Theorem 1.1 we

know that for any Q ∈ E ⊂ H1
T such that ‖Q‖ = 1, there is sQ > 1 such that φ(sQ) < 0,

for every |s| ≥ sQ > 1. Since E ⊂ H1
T is a finite dimensional subspace, we can choose

r = r(E) > 0 such that
φ(x) < 0, ∀ x ∈ E\ Br(0).

Hence, by Theorem 2.1, φ possesses an unbounded sequence of critical values (cn)n∈N

with cn → +∞. The proof of Theorem 1.2 is complete.

2.3 Proof of Corollary 1.1.

It follows from (V3) and (V ′
2 )

lim sup
|x|→0

V (t, x)

|x|
2 ≤ lim sup

|x|→0

(

W (t, x)

|x|
2 − b |x|

λ−2

)

< 0

uniformly in t ∈ [0, T ], which implies the conditions (V2). An easy application of Theorem
2.1 and Theorem 2.2 will show that Corollary 1.1 holds.
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