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Abstract: This paper deals with the approximate controllability of a functional dif-
ferential equation with deviated argument and finite delay. Sufficient condition for
approximate controllability is proved under the assumption that the linear control
system is approximately controllable; thereby removing the need to assume the in-
vertibility of a controllability operator which fails to exist in infinite dimensional space
if the generated semigroup is compact. Schauder fixed point theorem is used and the
C0 semigroup associated with mild solution has been replaced by the fundamental
solution.
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1 Introduction

In certain real world problems, delay depends not only on time but also on the unknown
quantity. The differential equations with deviated arguments are generalization of de-
lay differential equations in which the unknown quantity and its derivative appear in
different values of their arguments. Functional differential equations with deviated argu-
ment model various control problems arising in the field of engineering, physics and so
on. Many partial differential systems can be reduced to functional differential equations
with deviated arguments, see for instance [3, 8, 15, 16]. Aftereffect, hereditary systems,
equations with deviated arguments, etc. feature in several mathematical models. As a
matter of fact delay differential systems are still resistant to many classical controllers.

In recent years, controllability of infinite dimensional systems has been extensively
studied for various applications. The papers of Benchohra et al. [10] and Chang [19]
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discuss the exact controllability of functional systems with infinite delay. However, in
these papers the invertibility of a controllability operator is assumed. As a consequence
their approach fails in infinite dimensional spaces whenever the generated semigroup is
compact. Also it is practically difficult to verify their condition directly. This is one of
the motivations of our paper.

Controllability results are available in overwhelming majority of investigations for
abstract differential delay systems (see [4–6, 9–11, 18–20]); rather than for functional
differential equations with deviated arguments. It is interesting to note that approximate
controllability problem for nonlinear dynamical systems with deviated argument has not
been investigated thoroughly in literature. In an attempt to fill this gap we study the
approximate controllability of the following control system using fixed point approach
which removes the above restrictions.

However C.G. Gal [1] studied the existence and uniqueness of local and global solu-
tions for initial value problem with deviated argument

u′(t) = Au(t) + f(t, u(t), u[α(u(t), t)]), t ∈ R+, u(0) = u0.

Muslim and Bahuguna [12] studied a neutral differential equation with the same type
of deviated argument as studied by C.G. Gal [1]. Haloi, Pandey and Bahuguna [17]
studied a system with the same deviated argument. Fractional operators, analyticity
and compactness are mostly used to establish these results which impose more restriction
on the semigroup and the nonlinear part of the semilinear system. Thus, in this paper
the C0 semigroup associated with mild solution has been replaced by the fundamental
solution.

Several papers studied the approximate controllability of semilinear control systems,
see for instance [2, 7, 14] and references therein. Generally these papers proposed con-
ditions on the systems operators by assuming the corresponding linear system is ap-
proximately controllable. For instance, Naito [7] proved that a semilinear system is
approximately controllable under range condition on the control operator and uniform
boundedness of the nonlinear operator. Sukavanam [14] proved sufficient conditions for
approximate controllability where the nonlinear function satisfies growth conditions.

Motivated by results in [7] and [14] the purpose of this paper is to study the exis-
tence and uniqueness of mild solution and approximate controllability of a functional
differential equation with deviated argument and finite delay using Schuader fixed point
theorem. However we proceed by establishing a relation between the reachable set of
linear control problem and that of the semilinear delay control problem.

In this work we study the approximate controllability of the functional differential
equation with finite delay and deviated argument, which is illustrated as follows.

dx(t)

dt
= Ax(t) +A1xt +Bu(t) + f(t, xt, x(a(x(t), t))), t ∈ J = [0, τ ],

x(t) = φ(t),−h ≤ t ≤ 0,
(1)

where x(t) ∈ X and u(t) ∈ U , X and U being Hilbert spaces. Let Z = L2([0, τ ];X), Zh =
L2([−h, τ ];X), 0 < h < τ and Y = L2([0, τ ];U) be the corresponding function spaces.
A : D(A) ⊂ X → X is a closed linear operator which generates a strongly continuous
semigroup T (t). A1 is a bounded linear operator from C([−h, τ ];X) to L2([0, τ ], X).
B : Y → Z is a bounded linear operator. When x : [−h, τ ] → X is a continuous function
then xt(.) is denoted by xt(θ) = x(t + θ), θ ∈ [−h, 0] and φ ∈ C([−h, 0];X). xt ∈
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C([−h, 0], X) a Banach space of all continuous functions from [−h, 0] to X with norm

‖xt‖C := supθ∈[−h,0]‖xt(θ)‖X for t ∈ (0, τ ].

CL(J,X) = {u ∈ C(J,X) : ∃l > 0 such that ‖u(t)− u(s)‖ ≤ l|t− s|, ∀t, s ∈ J}.

Simple Lipschitz conditions are required to study the differential equation with devi-
ated argument in Section 3.

2 Preliminaries and Assumptions

Some basic definitions and lemmas are stated which are used in proving the existence and
uniqueness of the mild solution and approximate controllability of (1). In equation (1) if
we put f ≡ 0 the resulting equation without the delay term is called the corresponding
linear system (2)

dx(t)

dt
= Ax(t) +Bu(t), t ∈ [0, τ ],

x(0) = φ(0) ∈ [−h, 0]. (2)

Let us consider the linear delayed system

dx(t)

dt
= Ax(t) +A1xt, t ∈ [0, τ ],

x0 = φ ∈ [−h, 0].
(3)

Let xφ(t) be the unique solution of system (3). Define a map S : J → L(X) by

S(t)φ(0) =

{
xφ(t), t ≥ 0,
0, t < 0.

(4)

Then S(t) is called the fundamental solution of (3) satisfying

S(t) = T (t)φ(0) +

∫ t

0

T (t− s)A1S(s+ θ)ds, t > 0,

S(0) = I, S(t) = 0, −h ≤ t < 0.

(5)

It follows from [9] that S(t) is the unique solution of (3). It can be easily shown that

S(t) = K0 exp(K0||A1||τ) := M,

where ||T (t)|| = K0. Therefore the mild solution of semilinear control system (1) is
defined as

Definition 2.1 The function x : (−h, τ ] → X is said to be a mild solution of (1) if
x(.) ∈ CL(J,X), x(t) = φ(t) for t ∈ [−h, 0] and it satisfies the integral equation.

x(t) = S(t)φ(0) +

∫ t

0

S(t− s)Bu(s)ds+

∫ t

0

S(t− s)f(s, xs, x(a(x(s), s)))ds, t ∈ J, (6)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (3) (2014) 266–278 269

and the mild solution of the corresponding linear system with delay and control term (7)

dx(t)

dt
= Ax(t) +A1xt +Bu(t), t ∈ [0, τ ],

x0 = φ ∈ [−h, 0],
(7)

is defined as

x(t) =S(t)φ(0) +

∫ t

0

S(t− s)Bu(s)ds, t ∈ [0, τ ],

x(t) =φ(t),−h ≤ t < 0.

(8)

Definition 2.2 The set given by Kτ (f) = {x(T ) ∈ X : x ∈ Zh} is called reachable
set of the system (1). Kτ (0) is the reachable set of the corresponding linear control
system (7).

Definition 2.3 The system (1) is said to be approximately controllable if Kτ (f) is
dense in X. The corresponding linear system is approximately controllable if Kτ (0) is
dense in X .

Let us assume that:

(H1) The nonlinear function f : J ×X ×X → X satisfies Lipschitz condition,

‖f(t, x1, z1)− f(t, x2, z2)‖ ≤ P (‖x1 − x2‖+ ‖z1 − z2‖)

for all x1, x2, z1, z2 ∈ X, t ∈ (0, τ ] and ∃ a constant g > 0,
such that ‖f(s, 0, x(a(x(0), 0)))‖ ≤ g, ∀ s ∈ J .

(H2) Let a : X×R+ → R+ satisfy the Lipschitz condition |a(x1, s)−a(x2, s)| ≤ La‖x1−
x2‖ and a(., 0) = 0.

Lemma 2.1 The fundamental solution S(t) is bounded.

Proof. Since

||S(t)|| ≤K0 +K0||A1||

∫ t

0

||S(s+ θ)||ds

≤K0 + k0||A1||

∫ t+θ

0

||S(σ)||dσ

≤K0 + ||A1||K0

∫ t

−h

||S(σ)||dσ

≤K0 +K0||A1||

∫ t+h

0

||S(σ)||dσ

||S(t)|| ≤K0 expK0||A1||(t+ h) ≤ K0(1 + d) expK(τ + h) = M

max{||S(t)|| : t ∈ [0, τ ]} = M,

(9)

the fundamental solution is bounded.
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Lemma 2.2 If the C0−semigroup T (t) is compact then the fundamental solution S(t)
is compact.

Proof. Let us define the sequence of operators Sn(t) on [−h, τ ]. From the compact-
ness of T (t) and boundedness of ||A1|| we conclude that Sn is compact. Let ||A1|| = K1.

To prove Sn(t) → S(t) in L(X) we first show that {Sn(t)} is a Cauchy sequence in L(X).
Let us define

S1(t) = T (t), t ∈ [0, τ ],

= 0, t ∈ [−h, 0],

Sn+1(t) = T (t) +

∫ t

0

T (t− s)Sn(s+ θ)ds, t ∈ (0, τ ], θ ∈ [−h, 0],

= 0, t ∈ [−h, 0],

(10)

for n = 1, 2, ...

Therefore,

||S2(t)− S1(t)|| ≤

∫ t

0

||T (t− s)||||A1||||S(s+ θ)||ds ≤ K0K1Mt,

||Sn+1(t)− Sn(t)|| ≤
1

n!
Kn

0 K
n
1M1τ

n → 0 as n → 0.

(11)

Thus {Sn(t)} is a Cauchy sequence. As L(X) is the Banach space of all bounded linear
operators on X, ∃ an operator S(t) ∈ L(X) such that Sn(t) → S(t) uniformly on [0, τ ]
and hence S(t) is compact ∀t ∈ [0, τ ]. It is easy to check that S(t) is unique.

2.1 Existence and uniqueness of mild solution

The equation (6) is verified to be the unique mild solution of the semilinear delay control
system (1).

Theorem 2.1 The system (1) has a unique mild solution in CL(J,X) for each control
u ∈ L2([0, T ];U) if assumptions (H1) and (H2) are satisfied.

Proof. Define the space CL0
([−h, τ ], X) = {x ∈ C([−h, τ ], X) : x ∈ CL([0, τ ], X)}.

Fix 0 < t1 < T such that

PMt1(l + 2lLa)R < M‖φ‖+MMBT ‖u‖+MTg + 1.

Define the mapping Φ : CL0
([−h, t1], X) → CL0

([−h, t1], X) as

(Φx)(t) = S(t)φ(0) +

∫ t

0

S(t− s)[Bu(s) + f(s, xs, x(a(x(s), s)))]ds, t ∈ (0, t1],

= φ(θ), θ ∈ [−h, 0]. (12)

Let us consider the space BR = {x(.) ∈ CL0
([−h, t1], X) : ‖x‖C([−h,t1],X) ≤ R, x(0) =

φ(0)} endowed with the norm of uniform convergence. For any x ∈ BR and 0 ≤ t ≤ t1,

‖xt‖C = sup−h≤θ≤0‖xt(θ)‖X ≤ sup−h≤ζ≤t1‖x(ζ)‖X ≤ R.
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Then

‖(Φx)(t)‖ ≤ M‖φ(0)‖+MMBT ‖u‖

+

∫ t

0

M [‖f(s, xs, x(a(x(s), s))) − f(s, 0, x(a(x(0), 0)))‖

+ ‖f(s, 0, x(a(x(0), 0)))‖]ds

≤ M‖φ‖+MMBT ‖u‖

+

∫ t

0

M [P (‖x(s+ θ)− 0‖+ lLa‖x(s)− x(0)‖) + g]ds

≤ M‖φ(0)‖+MMBt1‖u‖

+

∫ t1

−h

MP (‖x(σ)‖d(σ) +

∫ t1

0

[MlLa‖x(s)− x(0)‖ + g]ds

≤ M‖φ(0)‖+MMBt1‖u‖+M(t1 + h)P‖x‖+ 2Mt1PlLa‖x‖+ gt1

≤ M‖φ(0)‖+MMBt1‖u‖+M(t1 + h)PR+ 2Mt1PlLaR+ gt1.

Let

M‖φ‖+MMBt1‖u‖+M(t1 + h)PR+ 2Mt1PlLaR+ gt1 < R.

Then

M‖φ‖+MMBt1‖u‖+ gt1 < R(1−M(t1 + h)P − 2Mt1PlLa).

RHS is positive if

t1(PM + 2MPlLa) < M(t1 + h)P + 2Mt1PlLa < 1,

t1 <
1

(PM + 2MPlLa)
. (13)

Hence Φ maps BR into itself when t1 satisfies (13). Next it is shown that Φ is a contrac-
tion. Let x1, x2 ∈ BR

‖(Φx1)(t)− (Φx2)(t)‖ ≤

∫ t

0

M‖f(s, (x1)s, x1(a(x1(s), s)))

− f(s, (x1)s, x1(a(x2(s), s))) − f(s, (x2)s, x2(a(x2(s), s)))

+ f(s, (x1)s, x1(a(x2(s), s)))‖ds

≤ tMP [‖x1(a(x1(s), s))− x1(a(x2(s), s))‖

+ (‖(x2)s − (x1)s‖

+ ‖x2(a(x2(s), s)− x1(a(x2(s), s)))‖)]

≤ tMP [l|a(x1(s), s)− a(x2(s), s)|

+ ‖x2(s+ θ)− x1(s+ θ)‖ + (‖x2 − x1‖C([−h,t1];X))]

≤ tM(lPLa‖x1(s)− x2(s)‖C([−h,t1],X)

+ P‖x2(t1)− x1(t1)‖ + P‖x2 − x1‖C([−h,t1],X))

≤ Mt(lPLa + 2P )‖x2 − x1‖C([−h,t1],X). (14)

So, ‖Φx1−Φx2‖C([−h,t1],X) ≤ Mt(lPLa+2P )‖x1−x2‖C([−h,t1],X). Thus Φ is a contraction
mapping. Therefore, Φ has a fixed point in BR. Hence (6) is the mild solution on [−h, t1].
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Similarly it can be shown that (6) is the mild solution on the interval [t1, t2], t1 < t2
Repeating the above process we get that

‖Φnx1 − Φnx2‖C([−h,t1],X) ≤
Mtn

n!
(lPLa + 2P )‖x1 − x2‖C([−h,t1];X).

Thus (6) is the mild solution on the maximal existence interval [−h, t∗], t∗ < τ.

Now it is shown that x is well defined in [−h, τ ].

‖x(t)‖ ≤ M‖φ‖+M

∫ t

0

[MB‖u(s)‖+ P‖xs − 0‖

+ P |x(a(x(s), s) − x(a(x(0), 0)‖ + g]ds

≤ M‖φ‖+MMBτ‖u(s)‖

+ M

∫ t

0

P [‖xs‖+ lLa‖x(s)− x(0)‖+ g]

≤ M‖φ‖+MMBτ‖u(s)‖

+ MτP (‖x(0)‖+ g) +M

∫ t

0

l‖x(s)‖ds. (15)

By Gronwall’s inequality ‖x(t)‖ ≤ ‖xt‖C ≤ [M‖φ‖ + MMBτ‖u(s)‖ + MTP (‖x(0)‖ +
g)] exp(MτP ). So ‖x(t)‖ is bounded on [−h, t∗]. Thus x is well defined on [−h, T ]. To
prove the uniqueness of solution let x1 and x2 be any two mild solutions of (6) such that
for t ∈ [−h, 0], x1(t) = x2(t) = φ. For t ∈ [0, t∗)

‖x1(t)− x2(t)‖ ≤ M

∫ t

0

‖f(s, (x1)s, x1(a(x1(s), s)))

− f(s, (x2)s, x2(a(x1(s), s)))‖ds + f(s, (x2)s, x2(a(x1(s), s)))

− f(s, (x2)s, x2(a(x2(s), s)))‖

≤ M

∫ t

0

P{‖(x1)s − (x2)s‖+ ‖x1(s)− x2(s)‖

+ lLa‖x1(s)− x2(s)‖}ds

≤ M

∫ t

−h

P‖x1(η) − x2(η)‖dη +M

∫ t

0

P‖x1(s)− x2(s)‖ds

+ M

∫ t

0

PlLa‖x1(s)− x2(s)‖ds

≤ M

∫ 0

−h

P‖x1(η) − x2(η)‖dη +M

∫ t

0

P (2 + lLa)‖x1(s)− x2(s)‖ds.

Since uniqueness of the mild solution is proved on [−h, 0], we get

‖x1(t)− x2(t)‖ ≤ MP (2 + lLa)

∫ t

0

‖x1(s)− x2(s)‖ds.

Hence by Gronwall’s inequality x1(t) = x2(t) for all t ∈ [−h, τ ].

3 Main Result

Define a linear operator L from Z to CL([0, τ ], X) by Lx =
∫ τ

0 S(t− s)x(s)ds, t ∈ [0, τ ].

Let Kx(t) =
∫ t

0 S(t− s)x(s)ds, t ∈ [0, τ ].
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Z can be decomposed uniquely as Z = N0(L)⊕N⊥
0 (L) where N0(L) is the null space of

the operator L and N0(L) is its orthogonal space.

Let us assume

(H3) ∀ p ∈ Z, ∃ a function q ∈ R(B) such that Lp = Lq.

The approximate controllability of the corresponding linear system (2) follows from
the hypothesis (H3). Then it is to be proved that the linear system (7) with finite
delay is approximately controllable. Next by assuming that the linear system with delay
(7) is approximately controllable, the system (1) is to be proved to be approximately
controllable using Schauder fixed point theorem. Define the operator F : CL0

([0, τ ], X) →
L2([0, τ ], X) as

F (x)(t) = f(t, xt, x(a(x(t), t))); 0 < t ≤ τ.

From hypotheses (H1), (H2) we conclude that F is a continuous map. From hypothesis
(H3) it follows that for any p ∈ Z, there exists a q ∈ R(B) such that L(p − q) = 0.
Therefore p − q = n ∈ N0(L) which implies that Z = N0(L) ⊕ R(B). Therefore, it
implies the existence of a linear and continuous mapping Q from N⊥

0 (L) into R(B)
which is defined as Qu∗ = v where v is the unique minimum norm element v ∈ (u∗ +
N0(L))

⋂
R(B), i.e. ‖Qu∗‖ = ‖v‖ = min{‖v‖ : v ∈ {(u∗ + N0(L))

⋂
R(B)}. By (H3),

∀v ∈ {u∗+N⊥
0 } ∩R(B) is not empty and ∀z ∈ Z has a unique decomposition z = n+ q.

Hence the operator Q is well defined. Moreover, ‖Q‖ = c for some constant c.

Let us consider the subspace M0 of CL0
([0, τ ], X) which is defined as

M0 =

{
m ∈ CL0

([0, τ ], X) : m(t) = Kn(t), n ∈ N0(L); 0 ≤ t ≤ τ,

m(t) = 0, −h ≤ t ≤ 0;
(16)

Let

fx : M0 → M0

defined by

fx =

{
Kn, 0 < t ≤ τ ;
0, −h ≤ t ≤ 0;

(17)

where n is given by the unique decomposition of F (x +m)(t) = n(t) + q(t), n ∈ N0(L)
and q ∈ R(B).

The following assumption is made

(A1) R(A1) ⊂ R(B).

Theorem 3.1 The operator fx has a fixed point in M0 if M(1 + c)Pτ < 1.

Proof. Since S(t) is compact, K is compact and fx is compact. Let z ∈ Z then
z = q + n, n ∈ N0(L), q ∈ R(B). Also ‖n‖Z ≤ (1 + c)‖z‖Z for some constant c. Let

Br = {v ∈ M0 : ||v|| ≤ r}.
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Let m ∈ Br and ‖f(0, 0, (x+m)(a(m(s), 0)‖ ≤ lf . Suppose on the other hand

r < ‖fx(m)‖ =‖Kn‖ ≤

∫ t

0

‖S(t− s)n(s)‖ds

≤

∫ t

0

M(1 + c)‖F (x+m)‖Zds

≤

∫ t

0

M(1 + c)[‖f(s, (x+m)s, (x+m)(a((x +m)(s), s)))‖

−‖f(0, 0, (x+m)(a(m(s), 0))))‖ + ‖f(0, 0, (x+m)(a(m(s), 0))))‖]

≤M(1 + c)

∫ t

0

P [‖(x+m)(s+ θ)− 0‖

+‖(x+m)(a((x +m)(s), s))− (x+m)(a((m)(s), 0))‖ + lf ]ds

≤M(1 + c)

∫ t

0

P [‖x‖+ ‖m‖+ l|a((x+m)(s), s)− a(m(s), 0)|+ lf ]ds

≤M(1 + c)

∫ t

0

P [‖x‖+ r + lLa‖(x+m)(s)−m(s)‖+ lf ]ds

≤M(1 + c)

∫ t

0

P [‖x‖+ r + lLa‖x‖+ lf ]ds

≤M(1 + c)P (‖x‖T + rτ + lLa‖x‖T + lfT ).

(18)

Dividing by r and taking limit as r tends to ∞ we get a contradiction. So fx maps
Br into itself. Therefore, by Schauder fixed point theorem it has a fixed point.

Theorem 3.2 Suppose the linear control system (2)

dx(t)

dt
= Ax(t) +Bu(t),

x(0) = φ(0), (19)

is approximately controllable then the linear delay control system (7)

dx(t)

dt
= Ax(t) +A1xt +Bu(t),

x(t) = φ(t), −h ≤ t ≤ 0,

is controllable if assumptions (A1) hold.

Proof. Consider

y′(t) = Ay(t) +Bu(t), t ∈ [0, τ ],

y(t) = φ(t), t ∈ [−h, 0].
(20)

The mild solution of equation (20) is as follows

y(t) = T (t)φ(0) +

∫ t

0

T (t− s)Bu(s)ds, t > 0,

y(t) = φ(t), t ∈ [−h, 0].

(21)
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Since R(A1) ⊂ R(B), ∀ ǫ > 0, ∃ w ∈ U such that

‖A1ys −Bw‖Z ≤ ǫ.

Let x(t) be a solution of linear delay control system corresponding to control (u − w)
satisfying

x(t) = T (t)φ(0) +

∫ t

0

T (t− s){B(u− w) +A1xs}ds, t > 0,

x(t) = φ(t), t ∈ [−h, 0].

(22)

If t ∈ [−h, 0], then
x0(t)− y0(t) = 0

and if t ∈ (0, τ ] then we get

x(t)− y(t) =

∫ t

0

T (t− s)[−Bw(s) +A1xs]

=

∫ t

0

T (t− s)[−Bw(s) +A1ys]ds

+

∫ t

0

T (t− s)[A1xs −A1ys]ds.

(23)

Take the norm on both sides

‖x(t)− y(t)‖ ≤ K0

∫ t

0

‖Bw(s)−A1xs‖ds

+K0

∫ t

0

‖A1xs −A1ys‖ds

≤ K0τ‖Bw(s) −A1xs‖Z +K0

∫ t

0

K1‖xs − ys‖ds

≤ K0ǫτ +K0

∫ t

0

K1‖xs − ys‖ds

≤ K0ǫτ +K0

∫ t

−h

K1‖x(η)− y(η)‖dη,

(24)

where ‖A1‖ ≤ K1, since A1 is bounded linear operator from CL0
([−h, τ ], X) to

L2([0, τ ], X) and Ã : L2([0, τ ], X) → C0([0, τ ], X) defined by Ã(x) =
∫ t

0
T (t − s)A1xsds

This implies

||x(t) − y(t)|| ≤ K0ǫτ +K0K1

∫ t

−h

‖x(η) − y(η)‖dη. (25)

Using Gronwall’s inequality

||x(t)− y(t)|| ≤ K0ǫτ exp(K0K1{τ + h}).

Since RHS depends on ǫ, it can be made as small as possible. This implies that the
reachable set of linear delay control system is dense in the reachable set of the linear
control system (2) which in turn is dense in X as (7) is apprroximately controllable.
Hence the linear delay control system is controllable.
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Theorem 3.3 The semilinear control system (1) is approximately controllable if the
linear delay control system (7)

dx(t)

dt
= Ax(t) +A1xt +Bu(t),

x(t) = φ(t), −h ≤ t ≤ 0,

is approximately controllable.

Proof. Let x(.) be the mild solution of the linear delay control system (7) given by

x(t) = S(t)φ(0) +KBu(t), t ∈ (0, τ ],

x(t) = φ(t), t ∈ [−h, 0].

We prove
y(t) = x(t) +m0(t)

to be mild solution of semilinear problem (1). Since

KFh(x +m0)(t) = Kn(t) +Kq(t),

operating K on both sides at m = m0, fixed point of fx,

KFh(x +m0)(t) = Kn(t) +Kq(t)

= m0(t) +Kq(t). (26)

Add x(.) to both sides and using y(t) = x(t) +m0(t), we have

x(t) +KFh(x+m0)(t) = x(t) +m0(t) +Kq(t),

x(t) +KFh(y)(t) = y(t) +Kq(t),

⇒ y(t) = x(t) +KFh(y)(t)−Kq(t),

⇒ y(t) = S(t)φ(0) +K(Bu− q)(t) +KFh(y)(t). (27)

This is the mild solution of semilinear problem with control (Bu − q). By following the
same proof in [13] we get the following conclusion that since q ∈ R(B), there exists a
v ∈ U such that ‖Bv − q‖ < ǫ for any given ǫ > 0. Let xv be a solution of the given
semilinear delay control system (1.1) corresponding to the control v. Then as shown
by [7] we have ||y(τ) − xv(τ)|| = ||x(τ) − xv(τ)|| ≤ ǫ. This implies that x(τ) ∈ Kτ (f).
Then it follows that Kτ (0) ⊂ Kτ (f). Thus (1) is approximately controllable, since the
corresponding linear system (7) is approximately controllable.

4 Example

Let us consider the heat control system with finite delay

∂y(t, x)

∂t
=

∂2y(t, x)

∂x2
+ y(t+ θ, x) +Bu(t, x) + f(t, x(t+ θ), x(a(x(s), s)))ds

0 < t < T, −h < θ < 0, 0 < x < π,

y(t, 0) = y(t, π) = 0, 0 ≤ t ≤ T,

y(t, x) = ξ(x), −h ≤ t ≤ 0, 0 ≤ x ≤ π. (28)
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Let X = L2(0, π) and A = − d2

dx2 . Define

D(A) = {y ∈ X : y,
dy

dx
are absolutely continuous,

d2y

dx2
∈ X and y(0) = y(π) = 0}.

For y ∈ D(A) , y =
∑∞

n=1 < y, φn > φn and Ay = −
∑∞

n=1 n
2 < y, n > φn.

where φn(x) = 2
π

1

2 sinnx, 0 ≤ x ≤ π, n = 1, 2, 3... is the eigenfunction corresponding
to the eigenvalue λn = −n2 of the operator A. φn is an orthonormal base. A will
generate a compact semigroup T (t) such that T (t)y =

∑∞

n=1 e
−n2t < y, φn > φn, n =

1, 2, ... ∀ y ∈ X. Let the infinite dimensional control space be defined as U = {u : u =∑∞

n=2 unφn,
∑∞

n=2 u
2
n < ∞} with norm ‖u‖U = (

∑∞

n=2 u
2
n)

1

2 . Thus U is a Hilbert space.

Let B̃ : U → X : B̃u = 2u2φ1 +
∑∞

n=2 unφn for u =
∑∞

n=2 unφn ∈ U. The bounded

linear operator B : L2(0, T : U) → L2(0, T ;X) is defined by (Bu)(t) = B̃u(t). Then
this problem (28) can be reformulated into an abstract semilinear differential equation
with deviated argument and finite delay by substituting I = A1. If the hypotheses
(H1) − (H3) and assumption (A1) are satisfied then it can be shown that this system
(28) is approximately controllable.

5 Conclusion

Thus, we prove the existence and uniqueness and approximate controllability of the
functional differential equation (1) with deviated argument and finite delay by using
Schuader fixed point theorem and fundamental solution instead of C0 semigroup.
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