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Abstract: In this paper, a method is proposed to design asymptotic observers for a
class of semilinear descriptor systems satisfying the complete detectability condition
on the corresponding linear part. The method is based on the properties of restricted
system equivalent, derived here from a given descriptor system by means of simple
matrix theory. Using restricted system equivalent form, coefficient matrices of the
proposed observer have been synthesized by linear matrix inequality (LMI) approach
based on the Lyapunov stability theory.
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1 Introduction

In the last three decades, considerable amount of research was focused on the analysis,
design, and numerical simulation techniques for descriptor systems, which arise in mod-
eling of many real and practical systems, e.g. electrical network analysis, power systems,
constrained mechanics, economic systems, chemical process control, see, [1–7] and the
references therein. Depending on the area, descriptor systems are termed by a variety of
names, viz. differential algebraic equations (DAEs), singular, implicit, generalized state
space, noncanonic, degenerate, semi-state and nonstandard systems. In this paper, we
consider the following semilinear system:

E∗ẋ = A∗x+B∗u+D∗f(Hx, u, t), (1a)

y = Cx, (1b)
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where x ∈ Rn, u ∈ Rm, y ∈ Rp, are the state vector, the input vector and the output
vector, respectively, E∗ ∈ Rn×n A∗ ∈ Rn×n, B∗ ∈ Rn×m, D∗ ∈ Rn×nd , H ∈ Rnh×n, and
C ∈ R

p×n are known constant matrices, rank(E∗) = r < n. Without loss of generality,
we assume that rank(B∗) = m, rank(D∗) = nd, rank(C) = p, and rank(H) = nh. If E is
nonsingular or E ≡ I, then the system is called normal system.

To design a controller, the knowledge about the states of the system is important. But
it is not always possible or necessary to measure all the state variables. In such cases, the
states can be estimated from the output of another dynamical system, which is called an
observer for the given system. An observer is a mathematical realization which uses the
input and output information of a given system and its output asymptotically approaches
to the true state values of the given system.

Observer design problem for normal linear systems has received a great attention in
the literature [8–11] and the techniques used for them have been extended successfully
to descriptor linear systems, see [6,7,12,13] and references therein. For normal nonlinear
systems, in general, literature concerned with the design of observers could broadly be
classified into two categories based on the solution approach. In the first approach, the
states are transformed in such a way that the given nonlinear system converts into a
system, where linear theory is applicable [14–17]. In another approach, the observers are
designed for nonlinear systems without any state transformation [18–21]. For a compar-
ison of these approaches, we refer to [22]. On the other hand literature on observers for
descriptor nonlinear systems is not so rich. However some researchers have extended the
approaches mentioned above to descriptor nonlinear systems [23–32].

In [23], authors extended linearization technique to design state observers for de-
scriptor nonlinear systems and illustrated its application to AC/DC converter model.
Boutayeb et al. [24] extended the results of [23] to the rectangular descriptor systems.
In [25], a method for observing the states of continuous quasilinear descriptor systems
is developed by casting the given system as an equivalent system of explicit differential
equations on a restricted manifold. In [26], authors considered a nonlinear observer for
a class of continuous nonlinear descriptor systems with unknown inputs and faults. In
last few years, due to availability of computationally fast and reliable algorithms for
solving convex optimization problems subjected to LMI constraints (like MATLAB LMI
tool box [33]), researchers developed LMI based approaches to design controllers and ob-
servers for normal [34,35] and descriptor systems [27–32]. Semilinear descriptor systems
with the Lipschitz nonlinearities and arbitrary unknown inputs with or without distur-
bances were considered in [26–32] and existence conditions were derived for full-order,
reduced-order, minimal-order, or H∞ observers in the form of LMIs.

In this paper, we develop a method for full-order state observer design for a class
of Lipschitz nonlinear descriptor systems. Contrary to the results available in [31, 32],
the observer presented in this paper has normal system form. The sufficient condition
for the stability of error dynamics is given in terms of an LMI. In square system case,
the proposed method is simple, easy to understand and implement compared to the
methods available in the literature. Numerical examples are provided in the last section
to illustrate our results.

2 Problem Description and Design Approach

Let us make the following conditions on the system (1):
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(H1) rank

[

E∗

C

]

= n,

(H2) nonlinear function f(Hx, u, t) satisfies the Lipschitz property in its first argument,
i.e. there exists a λ > 0 such that

‖f(Hx1, u, t)− f(Hx2, u, t)‖ ≤ λ‖H(x1 − x2)‖, (2)

(H3) rank

[

λE∗ −A∗

C

]

= n ∀ λ ∈ C̄+, where C represents the set of complex numbers.

C̄+ = {s|s ∈ C, Re(s) ≥ 0} is the closed right half complex plane.

The problem is to design the matrices N , L, M , and D of compatible dimensions
such that the following normal system becomes a full-order state observer (i.e., x̂ → x

as t → ∞) for system (1)

ż = Nz +Bu+ Ly +Df(Hx̂, u, t), (3a)

x̂ = z +My. (3b)

Our approach is as follows.
First, using the algorithm, which we have designed in the Appendix of this paper, a

nonsingular matrix R ∈ R
n×n is constructed such that the system (1) is restricted system

equivalent to the following descriptor system:

Eẋ = Ax+Bu+Df(Hx, u, t) (4a)

y = Cx, (4b)

where E = RE∗, A = RA∗, B = RB∗, and D = RD∗. It is easy to verify that if the
system (1) satisfies (H1), then the system (4) satisfies the following property:

rank

[

I − E

C

]

= p. (5)

It should be noted that this matrix R is not unique. The proof of the existence of such
matrix R can be found in [36].

Second, solution of a system does not change by multiplying a nonsingular matrix,
observer for the system (4) works for the system (1). From equations (3) and (4) the
error

e = x− x̂

= x− z −MCx

= (I −MC)x− z

= Ex− z (6)

gives the dynamics

ė = Eẋ− ż

= Ax+Bu+Df(Hx, u, t)

−(Nz +Bu + LCx+Df(Hx̂, u, t))

= (A− LC)x−N(Ex− e) +D∆f

= Ne+ (A− LC −NE)x+D∆f

= Ne+ (A− LC −N +NMC)x+D∆f,

= Ne+D∆f (7)
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where ∆f = f(Hx, u, t)−f(Hx̂, u, t). Moreover, in the construction of equations (6) and
(7), we have assumed the existence of matrices M , K, N , and L of compatible orders
such that

I −MC = E, (8)

N = A−KC, (9)

K = L−NM. (10)

Finally, the problem of designing the state observer (3) boils down to determining
the matrices M , K, N , and L such that the equations (8)–(10) are satisfied with the
stability of error dynamics (7).

3 Main Result

Theorem 3.1 Suppose the assumptions (H1) and (H2) hold for the system (1).
Then system (3) is observer for the system (1) if the following LMI has a solution for
any P > 0

[

PA+ATP − K̃C − CT K̃T + λ2HTH PD

DTP −I

]

< 0, (11)

where K̃ = PK.

Proof. Equation (5) implies that there exists a matrix M such that (8) is satisfied.
Now, we show the existence of matrix K such that matrix N (in equation (9)) and the
error dynamics (7) are stable if the LMI (11) has a solution for P > 0. Considering a
Lyapunov function V = eTPe, and using (7) and (9) we have

V̇ = ėTPe+ eTP ė

= (Ne +D∆f)TPe+ eTP (Ne+D∆f)

= eT (NTP + PN)e+∆fTDTPe+ eTPD∆f

≤ eT (NTP + PN)e+∆fTDTPe+ eTPD∆f

+λ2eTHTHe−∆fT∆f

=
[

eT ∆fT
]

[

NTP + PN + λ2HTH PD

DTP −I

] [

e

∆f

]

=
[

eT ∆fT
]

[

NTP + PN + λ2HTH PD

DTP −I

] [

e

∆f

]

.

According to the stability theory, the error dynamics (7) is stable if
[

NTP + PN + λ2HTH PD

DTP −I

]

< 0

⇒

[

(A−KC)TP + P (A−KC) + λ2HTH PD

DTP −I

]

< 0

⇒

[

PA+ATP − K̃C − CT K̃T + λ2HTH PD

DTP −I

]

< 0.

Hence by a solution of LMI (11), we can find a matrix K, and hence matrix N , such that
the error dynamics (7) is stable. Finally using the equation (10), we can find the matrix
L.
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Remark 3.1 If the LMI (11) is solvable then it is clear that

PA+ATP − K̃C − CT K̃T + λ2HTH < 0.

That implies
PA+ATP − K̃C − CT K̃T < 0,

which is equivalent to the detectability of matrix pair (A,C). It can be proved easily
that under assumption (H1), condition (H3) is equivalent to the detectability of matrix
pair (A,C). Hence the condition (H3) is a necessary condition for the solvability of LMI
(11).

4 Numerical Examples

Example 4.1 Consider the descriptor system (1) described by the following matri-
ces. (This example is taken from [28] with zero disturbance vector.)

E∗ =





0 1 0
0 0 1
0 0 0



 , A∗ =





1 0 0
0 1 0
1 0 1



 , B∗ =
[

1 1 1
]T

,

C =
[

1 0 0
]

, D∗ =
[

1 1 1
]T

, H =
[

0 1 0
]

,

u(t) = sin(2t). The nonlinearity function f(x, u, t) = sin(x2(t)). Since rank

[

E∗

C

]

= 3

and rank

[

I − E∗

C

]

6= 1, using the algorithm given in the Appendix, we calculate

R =





0 0 1
1 0 0
0 1 0



 .

Then

E =





0 0 0
0 1 0
0 0 1



 , A =





1 0 1
1 0 0
0 1 0



 , B =
[

1 1 1
]

, D =
[

1 1 1
]T

.

Now, we can check that rank

[

I − E

C

]

= 1 and M =
[

1 0 0
]T

.

By using MATLAB LMI tool box we solve (11) and find

K =
[

4.4252 4.3573 4.5410
]T

.

Thus

N =





−3.4252 0 1.0000
−3.3573 0 0
−4.5410 1.0000 0





and
L =

[

1 1 0
]T

.
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If we take

x(0) =
[

−2.8415 1 2
]T

,

z(0) =
[

2 3 5
]T

,

then the truth and estimated states are plotted in Figure 1. The graph of the error vector
is shown in Figure 2, which clearly shows the efficiency of the proposed observer.
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Figure 1: Plot of the true and estimated values of the states in Example 4.1.

Example 4.2 Consider the descriptor system (1) described by the following matri-
ces:

E∗ =





0 0 0
0 1 0
0 0 1



 , A∗ =





1 2 0
0 −2 0
1 0 −3



 , B∗ =
[

0 1 2
]T

, C =

[

1 0 0
0 1 0

]

,
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Figure 2: Estimation performance in Example 4.1.

D∗ =
[

1 2 1
]T

, H =
[

0 0 1
]

,

u(t) = t2. The nonlinearity function f(x, u, t) = cos(x3(t)). Since rank

[

I − E∗

C

]

= 2,

R = I3 and M =





1 0
0 0
0 0



 . By using MATLAB LMI tool box we solve (11) and find

K =





−172.2387 132.1813
−386.6106 180.5962
−193.7974 103.5193



 .

Thus,

N =





173.2387 −130.1813 0
386.6106 −182.5962 0
194.7974 −103.5193 −3.0000





and

L =





1.0000 132.1813
0 180.5962

1.0000 103.5193



 .

If we take
x(0) =

[

−1.5839 1 2
]T

,

z(0) =
[

10 12 15
]T

,

then the truth and estimated states are plotted in Figure 3. The graphs of the errors are
plotted in Figure 4, which clearly shows that error vector converges to zero.

5 Conclusions

A method has been developed to design the state observers for a class of semilinear
descriptor systems. This class is characterized by two properties: (i) the linear part
of each member system is completely detectable, and (ii) the nonlinear part satisfies
the Lipschitz property. The sufficient condition for the stability of error dynamics is
given in terms of an LMI. A new restricted equivalent system which follows the same
state representation as the given descriptor system, has been made with the help of an
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Figure 3: Plot of the true and estimated values of the states in Example 4.2
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Figure 4: Estimation performance in Example 4.2
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invertible matrix R. The advantage of using this equivalent system is the fact that the
detectability of its corresponding normal system is equivalent to the detectability of the
given descriptor system, and this fact gave necessary condition for the solution of the
proposed LMI (see Remark 3.1). The extension of this work to rectangular semilinear
and nonlinear descriptor system is under construction.
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Appendix

Algorithm to find the matrix R:

1. Determine
p := rank of matrix C,
n :=order of matrix E∗.

2. Check

(i) If rank

[

I − E∗

C

]

= p. Take R = In and stop.

(ii) If rank

[

E∗

C

]

= n, then go to steps 3-8.

3. Carry out the singular value decomposition (SVD) of matrix C = U1

[

D1 0
]

V T
1 .

4. Calculate P = V1

[

D−1

1 UT
1 0

0 In−p

]

.

5. Calculate Ẽ = E∗P

[

0
In−p

]

.

6. Carry out the SVD of matrix Ẽ = U2

[

D2

0

]

V2.

7. Calculate R0 =

[

0 Ip
V T
2 D−1

2 0

]

UT
2 .

8. Calculate R = PR0.
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