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Abstract: The stabilization of homogeneous bilinear systems constitutes the main
interest of this paper. A sliding mode control is suggested and a stability study
is held leading to sufficient conditions of global stabilization. The sliding surface
is determined through the resolution of the nonlinear constraints of stabilization.
Simulations on numerical examples are presented proving the effectiveness of the
proposed approach.
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1 Introduction

Bilinear systems constitute an important class of nonlinear systems. Since their in-
troduction in the early sixties, they have got great interest and have been used to model
processes in several fields; biologic, ecologic, economic, social ... [4, 16, 17]. As they are
partially linear in state and in input without being jointly linear in both, they constitute
a gateway between linear and nonlinear systems and that’s why they need special atten-
tion in their study. In the last decades, many researchers investigated the control design
and the stability analysis of this special category of systems [1, 9, 13, 15, 19, 20].

Many results in this field are yet demonstrated, since the stabilization by linear or
quadratic state feedback has been widely treated especially for non homogeneous bilinear
systems. However it was shown that there exists a large class of homogeneous bilinear
systems which can not be stabilized by a continuous feedback even in planar case [6]. In
fact for this type of systems the relative degree isn’t defined in zero and the linearized

∗ Corresponding author: mailto:zohra.kardous@enit.rnu.tn

c© 2014 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua303

mailto: zohra.kardous@enit.rnu.tn
http://e-ndst.kiev.ua


304 Z. KARDOUS AND N. BENHADJ BRAIEK

system is control independent. For such systems, R. Chabour and al. proposed, in the
case of second order dimension, zero degree homogeneous positive controls. For three
dimensional systems, Celikovsky investigated in [5] the global asymptotic stabilization
by constant feedback and the practical stabilization by a family of linear feedbacks for
a special class of single input homogeneous bilinear system (ẋ = Ax + uNx), where
A is a diagonal matrix with a negative trace and N is a skew-symmetric matrix. This
work was extended by O. Chabour for n dimensional systems where matrix A has not to
be diagonal and its trace has not to be negative, [7]. An integrated overview of bilinear
system research presented by Mohler and al. in [18] deals with the efficiency of the optimal
control and the variable structure control such as bang-bang control. Later, in [2] Amato
and al. suggested a procedure to design a stabilizing state feedback controller formulated
in a convex optimisation problem involving LMIs.

In this paper, we interest in the stabilization of homogenous bilinear systems of any
dimension. No restriction on the system’s structure are imposed. The sliding mode
approach is adopted to design a variable structure control. Stability study is investi-
gated leading to sufficient conditions of global stabilization formulated in computation-
ally resolvable nonlinear matrix constraints. Besides a simplified algorithm is provided
making use of the linear quadratic control approach. The resolution of the stabilization
constraints system enables to provide the matrix C characterising the sliding surface
(S = Cx). The proposed approach is successfully applied to homogeneous bilinear sys-
tems of different orders.

In the following section the control design procedure is detailed for homogeneous
bilinear systems leading to the definition of two control laws; the switching control needed
in the reaching phase toward the sliding surface, and the equivalent control required
while the system slides on the surface. In Section 4 an extended stabilization study is
carried out based on quadratic Lyapunov function. To formulate the global stabilization
conditions during the sliding mode in resolvable matrix constraints the ”vec” operator
and the tensor product are employed. Finally two numeric examples are considered in
Section 6 to underline the effectiveness of the proposed approach.

2 Homogeneous Bilinear Systems and Sliding Mode Control Design

Bilinear systems are generally represented by a state equation of the form:

ẋ = Ax(t) + Bu(t) +

m
∑

j=1

Njx(t)uj(t), (1)

where x ∈ X ⊂ ℜn is the state vector, u = [u1 . . . um]T ∈ U ⊂ ℜm is the control input,
A, B and Nj , j = 1 . . .m, are matrices of suitable dimensions.

When the matrix B is not null, this general form characterises non-homogeneous
bilinear systems, and if B is null, the represented system is said to be homogeneous.

As we are interested in this paper in this last class of systems, we will consider the
state space equations of the form:

ẋ = Ax(t) +

m
∑

j=1

Njx(t)uj(t). (2)

The sliding mode approach consists in bringing the system’s state up to a well defined
surface where it will slide toward the equilibrium point. Thus the sliding mode control is
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usually constituted by two parts, the switching control and the equivalent control. The
first is discontinuous and it is needed during the reaching phase until the system’s state
attend the sliding surface, and the second is continuous and aims to keep the state on
this surface while sliding.

2.1 Reaching condition and switching control

Let define the sliding surface with C ∈ ℜp×n:

S(t) = Cx(t) = 0. (3)

The reaching mode to the sliding surface is guaranteed if 1

d

dt
(STS) = 2xTCTCẋ < 0. (4)

When substituting ẋ by its expression (2) one gets:

2xTCTC(Ax +
m
∑

i=1

Nixui) < 0. (5)

So the controls ui (i = 1...m) must be designed such that to satisfy the inequality above.
We consider a switching control law defined by:

uis =







−α
xTNT

i CTCx|xTCTCAx|
‖xTCTCNix‖2 , if S 6= 0 and xTCTCNix 6= 0,

0, else.

(6)

Let  L be the set of the indices i such that xTCTCNix 6= 0,∀x 6= 0, and let l be the number
of its elements, then when substituting ui by uis , the left hand term of the inequality (5)
will be reduced to:

xTCTCAx− αl|xTCTCAx| (7)

which is negative for all α > 1 and l ≥ 1.

2.2 Sliding mode and equivalent control

In order to keep the system’s state on the surface S during the sliding mode, the following
condition must be fulfilled:

Ṡ = 0 when S = 0, (8)

Ṡ = CAx +
m
∑

i=1

CNixui. (9)

Let Ψ be the set of the indices i such that CNix 6= 0, ∀x 6= 0, and let s be the number
of its elements, so we can write

Ṡ =

s
∑

i=1

[
1

s
CAx + CNixui]. (10)

1 In the following we will omit the time symbol ′(t)′ of dynamic variables for the aim of simplification
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Thus Ṡ = 0 if we have ui = uieqv for all i = 1, . . . ,m, where

uieqv =







− 1
s

(CNix)
TCAx

(CNix)T (CNix)
, if S = 0 and CNix 6= 0, ∀x 6= 0,

0, else.

(11)

The homogeneous bilinear system (2) can then be efficiently controlled by the sliding
mode control defined by:

u = [u1 . . . um]T (12)

where for all i = 1, . . . ,m

ui = uis + uieqv , (13)

The switching control uis and the equivalent control uieqv are those defined by (6) and
(11).

3 Stability Analysis

As the considered bilinear system is controlled by the sliding mode control, its behav-
ior depends on two phases: the reaching mode and the sliding mode. The stability of the
controlled system is guarantied unless the reaching condition is fulfilled and the system
remains stable on the sliding surface. The first condition is already verified ( d

dt
(STS) < 0

when S 6= 0), so we must prove the stability during the sliding mode.
On the sliding surface the function S(x) = Cx(t) = 0 where C is a matrix of dimension

p× n. One can write C = [C1 C2] where C1 ∈ ℜp×p and C2 ∈ ℜp×(n−p) then we have:
Cx = C1x1 + C2x2 = 0 with x1 ∈ ℜp and x2 ∈ ℜn−p.

Suppose that 1 C1 = Ip , so we obtain a relationship between x1 and x2:

x1 = −C2x2. (14)

Thanks to the above relationship, the convergence of the system’s state to the zero
equilibrium point can be demonstrated by the convergence of its second part x2. Then
we can eliminate x1 from the system and the control formulations. For this consider the
following notations:

A =

[

A11 A12

A21 A22

]

, Ni =

[

Ni11 Ni12

Ni21 Ni22

]

, ∀i = 1 . . .m, with A11,Ni11 ∈ ℜp×p,

A12, Ni12 ∈ ℜp×(n−p), A21, Ni21 ∈ ℜ(n−p)×p, A22 and Ni22 ∈ ℜ(n−p)×(n−p). So the
equation (2) can be detailed as follows:

[

ẋ1

ẋ2

]

=

[

Ai11x1 + Ai12x2

Ai21x1 + Ai22x2

]

+

m
∑

j=1

(

[

Nij11x1 + Nij12x2

Nij21x1 + Nij22x2

]

)uij . (15)

Replacing x1 by its expression in (14), the derivative of x2 can be expressed by:

ẋ2 = (A22 −A21C2)x2 +

m
∑

i=1

(Ni22 −Ni21C2)x2ui. (16)

1 Ip denotes the identity matrix of dimension p
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The control ui on the sliding surface is equal to the equivalent control uieqv and it can
also be expressed as function of x2:

ui = uieqv = −
1

s

(CNix)TCAx

(CNix)T (CNix)
, ∀i = 1, . . . , s. (17)

It is easy to obtain:

CNix(t) = Gix2(t), CAx(t) = Hx2(t),

where

Gi = C2(Ni22 −Ni21C2) + Ni12 −Ni11C2,

H = C2(A22 −A21C2) + A12 −A11C2,

so

ui = uieqv = −
1

s

xT
2 G

T
i Hx2

xT
2 G

T
i Gix2

. (18)

Consider the Lyapunov function V (x2) = xT
2 Px2 where P is a positive definite sym-

metric matrix, we have to prove that V̇ (x2) < 0 for all x ∈ X ⊂ ℜn.

V̇ (x2) = xT
2 P ẋ2 + ẋT

2 Px2. (19)

Let
A = A22 −A21C2. (20)

Ni = Ni22 −Ni21C2, ∀i = 1 . . .m. (21)

Then the derivative of the Lyapunov function becomes:

V̇ (x2) = xT
2 P [A −

1

s

s
∑

i=1

xT
2 G

T
i Hx2

xT
2 G

T
i Gix2

Ni]x2 + xT
2 [A −

1

s

s
∑

i=1

xT
2 G

T
i Hx2

xT
2 G

T
i Gix2

Ni]
TPx2. (22)

Noting that V̇ (x2) can be rearranged in the following form

V̇ (x2) = xT
2 (PA + A

TP )x2 −
1

s

s
∑

i=1

xT
2 G

T
i Hx2

xT
2 G

T
i Gix2

xT
2 (PNi + N

T
i P )x2 (23)

and since the term xT
2 G

T
i Gix2 is usually positive, then we can deduce that V̇ (x2) < 0 if

for all i = 1, . . . , s we verify:
{

xT
2 (PA + ATP )x2 < 0,

xT
2 G

T
i Hx2x

T
2 (PNi + NT

i P )x2 ≥ 0,
∀ x2 6= 0. (24)

The first inequality is equivalent to the definite negativity of the matrix (PA+ATP )
while the second necessitates additional developments. This latter represents a product
of two scalars:

(xT
2 Vix2)(xT

2 Wix2), (25)

where
{

Vi = GT
i H,

Wi = PNi + NT
i P.

(26)
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Using the relation between the ’vec’ operator and the tensor product (⊗) [3]:

vec(AXB) = (BT ⊗A)vec(X), (27)

where A, X and B are any matrices of coherent dimensions, the expression (26) can be
reformulated as follows:

xT
2 Vix2x

T
2 Wix2 = vec(xT

2 Vix2x
T
2 Wix2) = (x

[2]
2 )T (WT

i ⊗ Vi)(x
[2]
2 ). (28)

This expression is strictly positive for all x2 6= 0 if the matrix WT
i ⊗ Vi is positive

definite. However, since the vector x
[2]
2 has redundant terms, it might exist a solution

to this problem even with non-positive definite matrix. Therefore, it is possible to relax

this condition by eliminating the redundancy in the vector x
[2]
2 . For that a transition

matrix T can be introduced, [3],such that:

x
[2]
2 = T x̃

[2]
2 . (29)

Hence the expression(28) becomes:

xT
2 Vix2x

T
2 Wix2 = (x̃

[2]
2 )TT T (WT

i ⊗ Vi)T x̃
[2]
2 . (30)

Finally we can confirm that the derivative of the Lyapunov function (23) is negative
definite if we have:

{

PA + ATP < 0,
T T (WT

i ⊗ Vi)T ≥ 0, ∀i = 1 . . . s.
(31)

The above results are then summarized in the following theorem.

Theorem 3.1 The homogeneous bilinear system (2) is stabilizable by the sliding mode

control (12), (13), (6), (11) for all real α > 1 if there exist a positive definite symmetric

matrix P and a matrix C2 verifying the conditions (31), with all defined notations re-

spected.

The conditions (31) constitute nonlinear matrix inequalities system which can be
solved via a multi-objective optimization function such as ’fgoalattain’ or ’fmincon’ of
the Matlab optimization toolbox. The resolution of this problem will provide the matrix
C2 and the positive definite symmetric matrix P if there exist any.

One way to get round this nonlinear optimization problem is to search C2 that sta-
bilizes the pair (A22, A21), for example by the linear quadratic regulator function ’lqr’
(which ensures the negativity of the first inequality), while verifying the positivity of the
second inequality of the system (31).

Consider the linear system

ż(t) = A22z(t) + A21u(t). (32)

If the pair (A22, A21) is stabilizable then we can calculate C2 as the optimal gain
matrix such that the state-feedback law u = −C2z minimizes the quadratic cost function:

J(u) =

∫ ∞

0

(zTQz + uTRu)dt, (33)
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while verifying the Riccati equation:

PA22 + AT
22P − PA21R

−1A21)TP + Q = 0, (34)

where Q and R are matrices satisfying:







R > 0,
Q ≥ 0,
Q and A22 have no unobservable mode on the imaginary axis.

The gain matrix C2 is then deduced by the expression:

C2 = R−1AT
21P. (35)

When choosing R = In,the Riccati equation and the matrix gain become:

PA22 + AT
22P = PA21A

T
21P −Q,

C2 = AT
21P.

So the constraint (P (A22−A21C2)+(A22−A21C2)TP < 0) will be satisfied for whatever
Q ≥ 0. Then it will be easy to find a C2 fulfilling the constraints (31) by adjusting the
matrix parameter Q.

4 Simulation Examples

4.1 Second order bilinear system

In the case of second order homogeneous bilinear systems the state subvector x2 is scalar
and so does C2, so all the matrices involved in the inequality system (31) are also scalar
terms. Hence this latter leads to the following conditions of global stability:

{

P (A22 −A21C2) < 0,
GiHiP (Ni22 −Ni21C2) ≥ 0,

∀i = 1, ..., s, (36)

where P is a positive scalar.
Since Gi and H do not depend on P , the problem can be reduced to the search for

only one unknown variable which is C2 such that:

{

A22 −A21C2 < 0,
GiHi(Ni22 −Ni21C2) ≥ 0,

∀i = 1, ..., s. (37)

Consider the second order homogeneous bilinear system defined by (2) where m = 2
and

A =

(

13 -12
10 -10

)

, N1 =

(

0.7 0.1
0.1 0.7

)

, N2 =

(

-2 0
0 -1

)

.

In free run mode, the systems’ states are divergent. The sliding mode control law is
designed according to the expressions (12), (13), (6), (11). The sliding surface is defined
by S = Cx = 0 with C = [1 C2].

To search C2 that guarantees the stability of the controlled system, we solve the
matrix inequalities system (36) and we obtain P = 0.1449 and C2 = 2.3 .
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Figure 1: Second order system responses with sliding mode control, X(0) = [3 2]T and α =
1.01.

When implementing the proposed control law with the sliding surface C = [1 2.3]
for α = 1.01 and the initial conditions x(0) = [3 2]T , we obtain the simulation results
presented in Figure 1. We note that the states converge to zero before 3s and with low
control levels (between -8 and +4).

Even when trying to enlarge the initial conditions values or the uncertainties domains,
the designed control ensure the convergence of the system’s states, as shown in Figure 2.
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Figure 2: Second order system responses with large initial values X(0) = [30 20]T and α = 1.01.

4.2 Third order bilinear system

Consider the third order bilinear system defined by (2), where m = 1 and

A =





-2 3 1
1 -7 1
2 1 0.5



, N =





2 0 0
0 2 0
0 0 2



.

The resolution of the stabilization constraints system (31) gives the symmetric pos-

itive definite matrix P and the vector C2 defined by: P =

(

0.0777 0.0661
0.0661 0.6308

)

,

C2 = [0.2100 1.3278].
Simulations of the so controlled system are presented in Figures 3 and 4 respectively

for small and large initial conditions, with α = 2.5. We notice that the states converge
to zero within two seconds at least. The control amplitude doesn’t exceed four units.
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Figure 3: Third order system responses with sliding mode control, X(0) = [3 5 2]T and α = 2.5.

0 5 10
0

5

10

15

20

25

30
x1

0 5 10
0

10

20

30

40

50
x2

0 5 10
0

5

10

15

20
x3

0 5 10
−4

−3

−2

−1

0
u

Figure 4: Third order system responses with large initial values X(0) = [30 50 20]T and
α = 2.5.

5 Conclusions

A sliding mode control approach is proposed for homogeneous bilinear systems. The
control design strategy detailed in this paper enabled to provide an efficient sliding mode
control constituted by two components: a switching control law basically built so as to
ensure the system stability during the reaching phase, and an equivalent control law
deduced from the condition of keeping the system’s state quietly on the sliding surface
once reached. The meticulous study held on the system’s closed loop stability during
this sliding phase allowed to provide sufficient conditions of global stabilization formu-
lated in a set of linear and nonlinear matrix inequalities. The sliding surface can be
automatically defined through the resolution of the stability constraints problem. Ana-
lytical and numerical cleverness have permitted to facilitate the resolution of so complex
optimisation problem. In fact, for the second order systems, simplified form of the sta-
bilization constraints is retrieved showing that the problem can be reduced to the search
for only one unknown variable. On the other hand, for higher order systems the linear
quadratic based algorithm suggested enables to obtain feasible solutions to the nonlinear
constrained problem if there exist ones.
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