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65080, Van – Turkey

Received: January 11, 2013; Revised: July 4, 2014

Abstract: In this paper, we consider a nonlinear differential equation of fourth order.
By the Lyapunov function approach, we discuss the convergence of the solutions of
the equation considered. Our findings generalize some well known results in the
literature.

Keywords: convergence of solutions; nonlinear fourth order equation; Routh-
Hurwitz interval; Lyapunov functions.

Mathematics Subject Classification (2010): 34D20, 34C11.

1 Introduction

As we know the qualitative theory refers to the investigation of the behaviors of solutions
of differential equations such as the stability, instability, boundedness,convergence of
solutions etc. without determining explicit formulas for the solutions.The relative works
can be summarized as follows:

In [1, 15, 16], the authors investigated the asymptotic behaviour of the solutions of
certain fourth-order differential equations. In [11, 13, 19–25], the authors considered the
stability, instability and boundedness properties of the solutions of some nonlinear third,
fourth and fifth-order differential equations (see, also, [10, 14]). In [7], Afuwape studied
the existence of a limiting regime in the sense of Demidovic for a certain fourth-order
nonlinear differential equations. These studies were done using the Lyapunov’s second
method. In [2,5,8,9], the authors created conditions for the existence of periodic, almost
periodic, exponential stability and dissipative solutions by using the frequency domain
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method. In [3, 4, 6, 12], the authors discussed the convergence of solutions. In [17],
Tejumola studied periodic solutions of boundary value problems for some fifth, fourth and
third order ordinary differential equations. In [18], Tiryaki and Tunc created Lyapunov
functions for certain fourth-order autonomous differential equations.

This paper is concerned with differential equations of the form

x(iv) + f1(x, x
′, x′′, x′′′) + f2(x, x

′, x′′) + f3(x, x
′) + f4(x) = p(t, x, x′, x′′, x′′′), (1)

where the functions f1, f2, f3, f4 and p are real valued and continuous in their respective
arguments such that the uniqueness theorem is valid, the solutions are continuously
dependent on the initial conditions. The function p(t, x, x′, x′′, x′′′) is assumed to have
the form

p(t, x, x′, x′′, x′′′) = q(t) + r(t, x, x′, x′′, x′′′)

with the functions q and r depending explicitly on the arguments displayed and being
continuous in their respective arguments. Furthermore, it is assumed that r(t, 0, 0, 0, 0) =
0 for all t.

Definition 1.1 Any two solutions x1(t), x2(t) of Eq.(1) are said to converge (to
each other) if x1 − x2 → 0, x′

1 − x′

2 → 0, x′′

1 − x′′

2 → 0, x′′′

1 − x′′′

2 → 0 as t → ∞.

Our results assert the existence of convergence of solutions with the functions f1, f2, f3
and f4 not necessarily differentiable. Here, the functions f4 are only required to satisfy
the increment ratio

f4(ξ + η)− f4(ξ)

η
∈ I0,

where I0 is closed sub-interval of the Routh -Hurwitz interval defined by

I0 =

[

∆0, K0

[

(ab− c) c

a2

]]

,

for some positive constants a, b, c, d,D,∆0, K0, and (ab− c) c− a2d > 0, ab− c > 0.

2 Main Results

Theorem 2.1 In addition to the basic assumptions imposed on the functions
f1, f2, f3 and f4, we assume that f1(x, y, z, 0) = f2(x, y, 0) = f3(x, 0) = f4(0) = 0 and
that:

(i) there are positive constants δ, δ0, γ, γ0, β and β0 such that

δ ≤
f1(x2, y2, z2, u2)− f1(x1, y1, z1, u1)

u2 − u1
≤ δ0, (u2 6= u1),

γ ≤
f2(x2, y2, z2)− f2(x1, y1, z1)

z2 − z1
≤ γ0, (z2 6= z1), (2)

β ≤
f3(x2, y2)− f3(x1, y1)

y2 − y1
≤ β0, (y2 6= y1) ,

(ii) for any ξ, η (η 6= 0), the increment ratios for f4 satisfy

f4(ξ + η)− f4(ξ)

η
∈ I0,
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(iii) there is a continuous function φ(t) such that

|r(t, x2, y2, z2, u2)− r(t, x1, y1, z1, u1)| (3)

≤ φ(t) {|x2 − x1|+ |y2 − y1|+ |z2 − z1|+ |u2 − u1|}

holds for arbitrary t, x1, y1, z1, u1, x2, y2, z2, u2.
Then,there exists a constant D1 such that if

∫ t

0

φv(τ)dτ ≤ D1t (4)

for some v in the range 1 ≤ v ≤ 2, then all solutions of Eq.(1) converge.

Theorem 2.2 Let x1(t), x2(t) be any two solutions of Eq.(1). Suppose that all the
conditions of Theorem 2.1 hold. Then, for each fixed v in the range 1 ≤ v ≤ 2 , there
exist constants D2, D3, and D4 such that

S(t2) ≤ D2S(t1) exp

{

−D3 (t2 − t1) +D4

∫ t2

t1

φv(τ)dτ

}

for t2 ≥ t1, (5)

where

S(t) = [x2(t)− x1(t)]
2
+ [x′

2(t)− x′

1(t)]
2
+ [x′′

2 (t)− x′′

1(t)]
2
+ [x′′′

2 (t)− x′′′

1 (t)]
2
.

We have the following corollaries when x1(t) = 0 and t1 = 0.

Corollary 2.1 Suppose that p = 0 in Eq.(1) and assumptions (i) and (ii) of Theorem
2.1 hold for arbitrary η 6= 0. Then the trivial solution of Eq.(1) is exponentially stable.

Corollary 2.2 If p 6= 0 and assumptions (i) and (ii) of Theorem 2.1 hold for arbi-
trary η 6= 0 and ξ = 0, then there exists a constant D5 > 0 such that every solution x(t)
of Eq.(1) satisfies

|x(t)| ≤ D5, |x′(t)| ≤ D5, |x′′(t)| ≤ D5, |x′′′(t)| ≤ D5.

Proof of Theorem 2.2 Writing Eq.(1) as a system of first order equations, we
obtain

x′ = y,

y′ = z,

z′ = u, (6)

u′ = −f1(x, y, z, u)− f2(x, y, z)− f3(x, y)− f4(x) + r(t, x, y, z, u) + q(t).

Let (xi(t), yi(t), zi(t), ui(t)), (i = 1, 2), be two solutions of (1), such that

∆0 ≤
f4(x2)− f4(x1)

x2 − x1
≤ K0

[

(ab− c) c

a2

]

hold. For the proof of the convergence theorem, we define a function

2V = [β(1− ǫ)x+ γy + δz + u]
2
+ [(1− ǫ)D − 1] (δz + u)

2

+βδ [ǫ+ (1− ǫ)D − 1] y2 + γ (D − 1) z2 + ǫDu2 (7)

+β2ǫ (1− ǫ)x2 + 2γδ
[

(1 − ǫ)2D − 1
]

yz,
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where 0 < ǫ < 1
2 ,

γδ
β > (1 − ǫ), β, γ, δ are positive real numbers and D = 1 +

β(1−ǫ)[γδ−β(1−ǫ)]
γδ−βǫ with D > 1

(1−ǫ)2 always. Indeed, we can rearrange the terms in (7)

to obtain
2V = 2V1 + 2V2, (8)

where

2V1 = [β(1 − ǫ)x+ γy + δz + u]
2
+ [(1 − ǫ)D − 1] (δz + u)

2

+ǫDu2 + β2ǫ (1− ǫ)x2 + ǫβδy2,

2V2 = βδ [(1− ǫ)D − 1] y2 + 2γδ
[

(1 − ǫ)2D − 1
]

yz + γ (D − 1) z2.

We note that V1 is obviously positive definite. This follows from the condition above.
Also V2 can be regarded as quadratic form in y and z, and is always positive.

Let us recall that a real 2× 2 matrix
(

a1 a2
a3 a4

)

is positive definite ⇔ a1 > 0, a4 > 0 and a1a4 − a2a3 > 0. Thus we can rearrange the
terms in V2 as

(y, z)

(

βδ [(1− ǫ)D − 1] γδ
[

(1− ǫ)2D − 1
]

γδ
[

(1− ǫ)2D − 1
]

γ (D − 1)

)(

y
z

)

.

Hence V is positive definite. We can therefore find a constant D6 > 0, such that

D6(x
2 + y2 + z2 + u2) ≤ V . (9)

Furthermore, by using the Schwartz inequality |y| |z| ≤ 1
2 (y

2 + z2), we obtain the
following estimate:

2 |V2| ≤ D∗(y2 + z2), D∗ = D∗(β, γ, δ,D, ǫ) > 0.

Thus there exists a constant D7 > 0 such that

V ≤ D7(x
2 + y2 + z2 + u2), (10)

Using inequalities (9) and (10), we obtain

D6(x
2 + y2 + z2 + u2) ≤ V ≤ D7(x

2 + y2 + z2 + u2). (11)

The following lemma can be easily verified for W ≡ V . ✷

Lemma 2.1 Let the function W (t) = W (x2 − x1, y2 − y1, z2 − z1, u2 − u1) be defined
by

2W = [β(1 − ǫ)(x2 − x1) + γ(y2 − y1) + δ(z2 − z1) + (u2 − u1)]
2

+ [(1− ǫ)D − 1] (δ(z2 − z1) + (u2 − u1))
2

+βδ [ǫ+ (1 − ǫ)D − 1] (y2 − y1)
2 + γ (D − 1) (z2 − z1)

2

+ǫD(u2 − u1)
2 + β2ǫ (1− ǫ) (x2 − x1)

2

+2γδ
[

(1 − ǫ)2D − 1
]

(y2 − y1)(z2 − z1),
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where 0 < ǫ < 1
2 ,

γδ
β > (1 − ǫ), β, γ, δ are positive real numbers and D = 1 +

β(1−ǫ)[γδ−β(1−ǫ)]
γδ−βǫ with D > 1

(1−ǫ)2 always.

i) W (0, 0, 0, 0) = 0.

ii) There exist finite positive constants D6, D7 such that

W ≥ D6

{

(x2 − x1)
2
+ (y2 − y1)

2
+ (z2 − z1)

2
+ (u2 − u1)

2
}

,

W ≤ D7

{

(x2 − x1)
2
+ (y2 − y1)

2
+ (z2 − z1)

2
+ (u2 − u1)

2
}

. (12)

The solutions (xi, yi, zi, ui), (i = 1, 2) satisfy the system (6). Then S(t) as defined
in (6) becomes

S(t) = [x2(t)− x1(t)]
2
+ [y2(t)− y1(t)]

2
+ [z2(t)− z1(t)]

2
+ [u2(t)− u1(t)]

2
.

Next we prove a result on the derivative of W (t) with respect to t.

Lemma 2.2 Assume that conditions (i) and (ii) of Theorem 2.1 hold. Then there
exist positive constants D8 and D9 such that

dW

dt
≤ −2D8S +D9S

1

2 |θ| , (13)

where θ = r (t, x2, y2, z2, u2)− r (t, x1, y1, z1, u1).

Proof of Lemma 2.2 Using the system (6), a direct computation of dW
dt gives after

simplification
.

W =
dW

dt
= −W1 +W2, (14)

where

W1 = β(1− ǫ)F4(x2 − x1)
2 + γ [F3 − β (1− ǫ)] (y2 − y1)

2

+ (1− ǫ)Dδ [F2 − γ (1− ǫ)] (z2 − z1)
2
+D [F1 − δ (1− ǫ)] (u2 − u1)

2

+ {β(1 − ǫ) [F3 − β] + γF4} (x2 − x1) (y2 − y1)

+ {β(1 − ǫ) [F2 − γ] + (1− ǫ)DδF4} (x2 − x1) (z2 − z1)

+ {β(1 − ǫ) [F1 − δ] +DF4} (x2 − x1) (u2 − u1)

+ {γ [F2 − γ] + (1− ǫ)Dδ [F3 − β]} (y2 − y1) (z2 − z1)

+ {γ [F1 − δ] +D [F3 − β] + γδ +Dβ − β(1 − ǫ)

−γδ (1− ǫ)
2
D
}

(y2 − y1) (u2 − u1)

+ {D [F2 − γ] + (1− ǫ)Dδ [F1 − δ]} (z2 − z1) (u2 − u1) ,

W2 = θ(t) {β(1 − ǫ)(x2 − x1) + γ(y2 − y1) + (1− ǫ)Dδ(z2 − z1)

+D (u2 − u1)} , (15)



318 E. KORKMAZ AND C. TUNC

F1 =
f1(x2, y2, z2, u2)− f1(x1, y1, z1, u1)

u2 − u1
, (u2 6= u1),

F2 =
f2(x2, y2, z2)− f2(x1, y1, z1)

z2 − z1
, (z2 6= z1),

F3 =
f3(x2, y2)− f3(x1, y1)

y2 − y1
, (y2 6= y1),

F4 =
f4(x2)− f4(x1)

x2 − x1
, (x2 6= x1),

and λi, µi, τi, σi are strictly positive constants such that

7
∑

i=1

λi = 1,

8
∑

i=1

µi = 1,

7
∑

i=1

τi = 1,

8
∑

i=1

σi = 1.

Then W1 can be rearranged as

W1 = W11 +W12 +W13 +W14 +W15 +W16 +W17 +W18 +W19 (16)

+W20 +W21 +W22 +W23 +W24,

where

W11 = λ1β(1 − ǫ)F4(x2 − x1)
2 + {γ [F3 − β] + µ1γβǫ} (y2 − y1)

2

+ {(1− ǫ)Dδ [F2 − γ] + τ1 (1− ǫ)Dδγǫ} (z2 − z1)
2

+ {D [F1 − δ] + σ1Dδǫ} (u2 − u1)
2 ,

W12 = λ2β(1− ǫ)F4(x2 − x1)
2 + β(1− ǫ) [F3 − β] (x2 − x1) (y2 − y1) + µ2γβǫ (y2 − y1)

2
,

W13 = λ3β(1 − ǫ)F4(x2 − x1)
2 + γF4 (x2 − x1) (y2 − y1) + µ3γβǫ (y2 − y1)

2
,

W14 = λ4β(1 − ǫ)F4(x2 − x1)
2 + β(1 − ǫ) [F2 − γ] (x2 − x1) (z2 − z1)

+τ2 (1− ǫ)Dδγǫ (z2 − z1)
2
,

W15 = λ5β(1− ǫ)F4(x2 − x1)
2 + (1− ǫ)DδF4 (x2 − x1) (z2 − z1)

+τ3 (1− ǫ)Dδγǫ (z2 − z1)
2 ,

W16 = λ6β(1− ǫ)F4(x2 −x1)
2 +β(1− ǫ) [F1 − δ] (x2 − x1) (u2 − u1)+σ2Dδǫ (u2 − u1)

2
,

W17 = λ7β(1 − ǫ)F4(x2 − x1)
2 +DF4 (x2 − x1) (u2 − u1) + σ3Dδǫ (u2 − u1)

2
,

W18 = µ4γβǫ (y2 − y1)
2
+ γ [F2 − γ] (y2 − y1) (z2 − z1) + τ4 (1− ǫ)Dδγǫ (z2 − z1)

2
,

W19 = µ5γβǫ (y2 − y1)
2
+ (1− ǫ)Dδ [F3 − β] (y2 − y1) (z2 − z1)

+τ5 (1− ǫ)Dδγǫ (z2 − z1)
2 ,

W20 = µ6γβǫ (y2 − y1)
2
+ γ [F1 − δ] (y2 − y1) (u2 − u1) + σ4Dδǫ (u2 − u1)

2
,

W21 = µ7γβǫ (y2 − y1)
2
+D [F3 − β] (y2 − y1) (u2 − u1) + σ5Dδǫ (u2 − u1)

2
,
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W22 = µ8γβǫ (y2 − y1)
2
+
{

γδ +Dβ − β(1 − ǫ)− γδ (1− ǫ)
2
D
}

(y2 − y1) (u2 − u1)

+σ6Dδǫ (u2 − u1)
2
,

W23 = τ6 (1− ǫ)Dδγǫ (z2 − z1)
2
+D [F2 − γ] (z2 − z1) (u2 − u1) + σ7Dδǫ (u2 − u1)

2
,

W24 = τ7 (1− ǫ)Dδγǫ (z2 − z1)
2
+ (1− ǫ)Dδ [F1 − δ] (z2 − z1) (u2 − u1)

+σ8Dδǫ (u2 − u1)
2
.

It is clear thatW11 ≥ 0. Since eachW12,W13, ...,W23,W24 are quadratic forms in their
respective variables, then from the fact that any quadratic of the form Ap2 +Bpq+Cq2

is non negative if 4AC −B2 ≥ 0, it follows that

W12 ≥ 0 if [F3 − β]
2
≤ 16λ3µ3λ2µ2(ǫβ)

2,

W13 ≥ 0 if F4 ≤
4λ3µ3ǫβ

2 (1− ǫ)

γ
,

W14 ≥ 0 if [F2 − γ]
2
≤ 16λ4λ5τ2τ3 (γǫ)

2
,

W15 ≥ 0 if F4 ≤
4λ5τ3ǫβγ

Dδ
,

W16 ≥ 0 if [F1 − δ]
2
≤ 16λ6λ7σ2σ3 (δǫ)

2
,

W17 ≥ 0 if F4 ≤
4λ7σ3β (1− ǫ) δǫ

D
,

W18 ≥ 0 if [F2 − γ]
2
≤ 4µ4τ4βDδǫ2 (1− ǫ) ,

W19 ≥ 0 if [F3 − β]2 ≤
4µ5τ5β (γǫ)2

(1− ǫ)Dδ
,

W20 ≥ 0 if [F1 − δ]
2
≤

4µ6σ4βǫ
2Dδ

γ
,

W21 ≥ 0 if [F3 − β]
2
≤

4µ7σ5βǫ
2γδ

D
,

W22 ≥ 0 if 4µ8γβǫσ6Dδǫ ≥
{

γδ +Dβ − β(1− ǫ)− γδ (1− ǫ)
2
D
}2

,

W23 ≥ 0 if [F2 − γ]
2
≤ 4τ6σ7γ (1− ǫ) (δǫ)

2
,

W24 ≥ 0 if [F1 − δ]
2
≤

4τ7σ8γǫ
2

(1− ǫ)
.

That is,

[F1 − δ]
2
≤ min

{

4τ7σ8γǫ
2

(1− ǫ)
,
4µ6σ4βǫ

2Dδ

γ
, 16λ6λ7σ2σ3 (δǫ)

2

}

,

[F2 − γ]2 ≤ min
{

16λ4λ5τ2τ3 (γǫ)
2 , 4µ4τ4βDδǫ2 (1− ǫ) , 4τ6σ7γ (1− ǫ) (δǫ)2

}

,
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[F3 − β]
2
≤ min

{

16λ3µ3λ2µ2(ǫβ)
2,

4µ5τ5β (γǫ)2

(1− ǫ)Dδ
,
4µ7σ5βǫ

2γδ

D

}

,

F4 ≤ min

{

4λ3µ3ǫβ
2 (1− ǫ)

γ
,
4λ5τ3ǫβγ

Dδ
,
4λ7σ3β (1− ǫ) δǫ

D

}

,

Because of W12 ≥ 0, W13 ≥ 0, ...,W24 ≥ 0, we obtain W1 ≥ W11. Then we find a
constant D8 such that

W1 ≥ W11 ≥ 2D8S(t), (17)

where

2D8 = min {β(1 − ǫ)∆0, γβǫ, (1− ǫ)Dδγǫ,Dδǫ} .

Similarly, we can find from the value of W2, a constant D9 > 0 small enough such
that

W2 ≤ D9S
1

2 |θ| , (18)

where D9 = max {β(1− ǫ), γ, (1− ǫ)Dδ,D} .
Writing (17) and (18) in (14), we get

dW

dt
≤ −2D8S +D9S

1

2 |θ| .

Let v be any constant in the range 1 ≤ v ≤ 2 and 2µ = 2− v, so that 0 ≤ µ ≤ 1/2.
One can arrange the estimate in (13) as

dW

dt
+D8S ≤ −D8S +D9S

1/2 |θ| = D10S
µW ∗,

where

W ∗ =
(

|θ| −D11S
1/2

)

S1/2−µ, (19)

with D11 = D8D
−1
10 . We consider the following two cases:

a) |θ| < D11S
1/2, b) |θ| ≥ D11S

1/2.

If |θ| < D11S
1/2, then W ∗ < 0. On the other hand, if |θ| ≥ D11S

1/2 , then the
definition of W∗ in (19) gives at least

W ∗ ≤ S1/2−µ |θ| ,

and also S1/2 ≤ |θ| /D11. The foregoing inequality leads to

S1/2(1−2µ) ≤

[

|θ|

D11

](1−2µ)

,

so that

S1/2(1−2µ) |θ| ≤

[

|θ|

D11

](1−2µ)

|θ| .

The above estimate implies

W ∗ ≤ D12 |θ|
2(1−µ)

,
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where D12 = D
(2µ−1)
11 . Hence, it is clear that

dW

dt
+D8S ≤ D10D12S

µ |θ|2(1−µ) ≤ D13S
µφ2(1−µ)S(1−µ),

where D13 = S1−µD10D12 which follows from

|θ| = |r (t, x2, y2, z2, u2)− r (t, x1, y1, z1, u1)|

≤ φ (t) {|x2 − x1|+ |y2 − y1|+ |z2 − z1|+ |u2 − u1|} .

Using the estimate v = 2 (1− µ), we obtain

dW

dt
≤ −D8S +D13φ

vS.

By the inequality (12), we find

dW

dt
+ (D14 −D15φ

v (t))W ≤ 0 (20)

for some positive constants D14 and D15. Integrating (20) from t1 to t2 (t2 ≥ t1), we
have

W (t2) ≤ W (t1) exp

{

−D14 (t2 − t1) +D15

∫ t2

t1

φv(τ)dτ

}

.

Again, using Lemma 2.1, we obtain (5) with D2 = D7D
−1
6 , D3 = D14, andD4 = D15.

This completes the proof of Theorem 2.2. ✷

Proof of Theorem 2.1 Choose D1 = D3D
−1
4 in (4). From the estimate (5), if

∫ t2

t1

φv(τ)dτ ≤ D3D
−1
4 (t2 − t1) ,

then the exponential index remains negative for all t2−t1 ≥ 0. Then, as t = t2−t1 → ∞,
we have S (t) → 0, and this gives

x2 − x1 → 0, y2 − y1 → 0, z2 − z1 → 0, u2 − u1 → 0

as t → ∞. This completes the proof of Theorem 2.1. ✷
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322 E. KORKMAZ AND C. TUNC

[5] Afuwape, A. U. On some properties of solutions for certain fourth-order nonlinear differen-
tial equations. Analysis. 5 (2) (1985) 175–183.

[6] Afuwape, A. U. Convergence of the solutions for the equation x(4) + ax′′′ + bx′′ + g (x′) +
h (x) = p (t, x, x′, x′′, x′′′). Internat. J. Math. Math. Sci. 11 (4) (1988) 727–733.

[7] Afuwape, A. U. On the existence of a limiting regime in the sense of Demidovic for a certain
fourth-order nonlinear differential equation. J. Math. Anal. Appl. 129 (2) (1988) 389–393.

[8] Afuwape, A. U. Uniform dissipativity of some fourth-order nonlinear differential equations.
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