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Abstract: In this paper, we study the existence and uniqueness of extremal mild
solutions for finite delay differential equations of fractional order in Banach spaces
with the help of the monotone iterative technique based on lower and upper solutions.
This technique uses the iterative procedure starting from a pair of ordered lower and
upper solutions to obtain the extremal mild solutions. We also use the theory of
fractional calculus, semigroup theory and measures of noncompactness to obtain the
results. An example is presented to illustrate the main result.
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1 Introduction

In this paper, our aim is to study the existence of extremal mild solutions for the following
finite delay differential equations of fractional order in an ordered Banach space X of the
form:

{

cDαx(t) = Ax(t) + f(t, xt), t ∈ J = [0, b],
x0(ν) = φ(ν), ν ∈ [−a, 0], (1)

where state x(.) takes value in the Banach space X endowed with norm ‖.‖; cDα is the
Caputo fractional derivative of order α, 0 < α < 1; A : D(A) ⊂ X → X is a closed
linear densely defined operator; A is an infinitesimal generator of a strongly continuous
semigroup {T (t)}t≥0 on X . The function f : J × D → X is given nonlinear function,
here D = C([−a, 0], X). If x : [−a, b] → X is a continuous function, then xt denotes the
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function in D defined as xt(ν) = x(t + ν) for ν ∈ [−a, 0], here xt(.) represents the time
history of the state from the time t− a up to the present time t, and φ(.) ∈ D.

Fractional calculus is generalization of ordinary differential equations and integration
to arbitrary non integer orders. The subject is as old as differential calculus when it was
invented by Newton and Leibnitz in the seventieth century. It has proved a valuable tool
to describe many phenomena, arising in Engineering, Physics, Economics and Science.
Indeed, we can find numerous applications in electrochemistry, control, porous media,
electromagnetic, etc. (see [1–8]). Hence, in recent years, the researchers have paid more
attention to fractional differential equations. In [9–19], the authors have discussed the
existence of solutions of delay differential equations with or without fractional order.

This work is motivated by works [24, 26]. In this paper, we study the existence of
extremal mild solutions of delay system (1) by using the monotone iterative technique.
In the recent years, the monotonic iterative technique is also used to deal with fractional
differential equations (see, for instance, [20–26] and references therein). The monotone
iterative technique based on lower and upper solutions helps us to solve the differential
equation with various kinds of boundary conditions. This technique uses the iterative
procedure starting from a pair of ordered lower and upper solutions. The sequences of
iterations uniformly converge to the extremal mild solutions between the lower and upper
solutions. Further we prove the uniqueness of the solutions of the system. We also use
the theory of fractional calculus, semigroup theory and measures of noncompactness to
obtain the results. To the best of our knowledge, up to now, no work has been reported
on finite delay differential equations of fractional order by using the monotone iterative
technique.

The rest of paper is organized as follows. In the next Section we give some basic
definitions and notations. In Section 3, we study the existence of extremal mild solution
of delay system (1) and uniqueness of solutions of the system. Finally, in Section 4, we
present an example to illustrate our results.

2 Preliminaries

In this section, we introduce some basic definitions and notations which are used through-
out this paper. We denote by X a Banach space with the norm ‖.‖ and A : D(A) → X is
the infinitesimal generator of a strongly continuous semigroup {T (t), t ≥ 0}. This means
that there exists M ≥ 1 such that supt∈J ‖T (t)‖ ≤M .

Definition 2.1 (see [8]) The Riemann-Liouville fractional integral of order α > 0 for
a function f is given by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0,

where Γ is the gamma function, and f ∈ L1([0, b], X).

Definition 2.2 (see [8]) The fractional derivative of order 0 ≤ n− 1 < α < n in the
Caputo sense is defined as

cDαf(t) =
1

Γ(n− α)

∫ t

0

f (n)(s)

(t− s)α+1−n
ds, t > 0,

where f is an n-times continuous differentiable function and Γ is a gamma function.
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If f is an abstract function with values in a Banach space X , then integrals which appear
in Definitions 2.1 and 2.2 are taken in Bochner’s sense.

Let P = {y ∈ X : y ≥ θ} (θ is a zero element of X) be positive cone in X which
defines a partial ordering in X by x ≤ y if and only if y − x ∈ P . If x ≤ y and
x 6= y we write x < y. The cone P is said to be normal if there exists a positive
constant N such that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖ and P is said to be fully regular if
x1 ≤ x2 ≤ . . . ≤ xn ≤ . . . , supn ‖xn‖ < ∞ implies ‖xn − x‖ → 0 as n → ∞ for some
x ∈ X . Clearly full regularity of P implies the normality of P .

Since C([−a, b], X) is the Banach space of all continuous X-valued functions on inter-
val [−a, b] with norm ‖.‖C = supt∈[−a,b] ‖x(t)‖. Then C([−a, b], X) is an ordered Banach
space whose partial ordering ≤ reduced by positive cone PC = {x ∈ C([−a, b], X) | x(t) ≥
θ, t ∈ [−a, b]}. Similarly D is also an ordered Banach space with norm ‖.‖D =
supt∈[−a,0] ‖x(t)‖ and partial ordering ≤ reduced by PD = {x ∈ C([−a, 0], X) | x(t) ≥
θ, t ∈ [−a, 0]}. PC and PD are also normal cones with the same normal constant N . For
x, y ∈ C(I,X) with x ≤ y, denote the ordered interval [x, y] = {z ∈ C(I,X), x ≤ z ≤ y}
in C(I,X), and [x(t), y(t)] = {u ∈ X |x(t) ≤ u ≤ y(t)} (t ∈ I) in X , here I = [−a, b] or
I = [−a, 0].

Let Cα([−a, b], X) = {u ∈ C([−a, b], X) : cDαu exists on [0, b], cDαu|[0,b] ∈
C([0, b], X) and u(t) ∈ D(A) for t ≥ 0}. An abstract function u ∈ Cα([−a, b], X) is
called a solution of (1) if u(t) satisfies equation (1).

Definition 2.3 (see [26]) The function y ∈ Cα([−a, b], X) is called a lower solution
of the problem (1) if it satisfies the following inequalities

{

cDαy(t) ≤ Ay(t) + f(t, yt), t ∈ I = [0, b],
y0(ν) ≤ φ(ν), ν ∈ [−a, 0]. (2)

If all inequalities of (2) are reversed, we call y(·) an upper solution of the problem (1).

Lemma 2.1 If h satisfies a uniform Hölder condition, with exponent β ∈ (0, 1], then
the unique solution of the linear initial value problem

{

cDαx(t) = Ax(t) + h(t), t ∈ J,

x(0) = x0 ∈ X,
(3)

is given by

x(t) = U(t)x0 +

∫ t

0

(t− s)α−1V (t− s)h(s))ds, t ∈ J, (4)

where

U(t) =

∫ ∞

0

ψα(ϑ)T (t
αϑ)dϑ, V (t) = α

∫ ∞

0

ϑψα(ϑ)T (t
αϑ)dϑ, (5)

ψα(ϑ) =
1

α
ϑ−1−1/αρα(ϑ

−1/α).

Note that ψα(ϑ) satisfies the condition of a probability density function defined on
(0,∞), that is ψα(ϑ) ≥ 0,

∫∞
0
ψα(ϑ)dϑ = 1 and

∫∞
0
ϑψα(ϑ) = 1

Γ(1+α) . Also the term

ρα(ϑ) is defined as

ρα(ϑ) =
1

π

∞
∑

n=1

(−1)n−1ϑ−nα−1Γ(nα+ 1)

n!
sin(nπα), ϑ ∈ (0,∞).
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Definition 2.4 A function x(.) ∈ C([−a, b], X) is said to be a mild solution of the
system (1) if x(t) = φ(t) on [−a, 0] and the following integral equation is satisfied:

x(t) = U(t)φ(0) +

∫ t

0

(t− s)α−1V (t− s)f(s, xs)ds, t ∈ J, (6)

where U(t) and V (t) are defined by (5).

Lemma 2.2 The following properties are valid:

(i) for fixed t ≥ 0 and any x ∈ X, we have

‖U(t)x‖ ≤M‖x‖, ‖V (t)x‖ ≤ αM

Γ(1 + α)
‖x‖ =

M

Γ(α)
‖x‖.

(ii) The operators are U(t) and V (t) are strongly continuous for all t ≥ 0.

(iii) If S(t)(t > 0) is a compact semigroup in X, then U(t) and V (t) are norm-
continuous in X for t > 0.

(iv) If S(t)(t > 0) is a compact semigroup in X, then U(t) and V (t) are compact
operators in X for t > 0.

Definition 2.5 A C0-semigroup {T (t)}t≥0 is called a positive semigroup, if T (t)x ≥
θ for all x ≥ θ and t ≥ 0.

Now we recall the definition of Kuratowski’s measure of noncompactness, which is
used in the next section to study the existence of extremal mild solutions for finite delay
differential equation of fractional order.

Definition 2.6 (see [27,28]) LetX be a Banach space and B(X) be family of bounded
subset of X . Then µ : B(X) → R

+, defined by

µ(S) = inf{δ > 0 : S admits a finite cover by sets of diameter ≤ δ },

where S ∈ B(X), is called the Kuratowski measure of noncompactness.
Clearly 0 ≤ µ(S) <∞.

We need to use the following basic properties of the µ measure.

Lemma 2.3 (see [27, 28]) Let S, S1 and S2 be bounded sets of a Banach space X.
Then:

(i) µ(S) = 0 if and only if S is relatively compact set in X;

(ii) µ(S1) ≤ µ(S2) if S1 ⊂ S2;

(iii) µ(S1 + S2) ≤ µ(S1) + µ(S2);

(iv) µ(λS) ≤ |λ|µ(S) for any λ ∈ R.

Lemma 2.4 (see [27,28]) IfW ⊂ C([a, b], X) is bounded and equicontinuous on [a, b],
then µ(W (t)) is continuous for t ∈ [a, b] and

µ(W ) = sup{µ(W (t)), t ∈ [a, b]}, where W (t) = {x(t) : x ∈W} ⊆ X.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 14 (4) (2014) 371–382 375

Remark 2.1 (see [27,28]) If B is a bounded set in C([a, b], X), then B(t) is bounded
in X , and µ(B(t)) ≤ µ(B).

Lemma 2.5 (see [27, 28]) Let B = {un} ⊂ C(I,X)(n = 1, 2, . . .) be a bounded and
countable set. Then µ(B(t)) is Lebesgue integrable on I, and

µ

({
∫

I

un(t)dt | n = 1, 2, . . .

})

≤ 2

∫

I

µ(B(t))dt, here I = [a, b]. (7)

3 Main Result

In this section, we prove the existence of extremal mild solutions of the problem (1) and
then prove the uniqueness in the next theorem.

Theorem 3.1 Let X be an ordered Banach space, whose positive cone P is normal
with normal constant N and T (t)(t ≥ 0) be a positive operator. Also assume that the
Cauchy delay problem (1) has a lower solution x(0) ∈ C([−a, b], X) and an upper solution
y(0) ∈ C([−a, b], X) with x(0) ≤ y(0). The system (1) has minimal and maximal mild
solutions between x(0) and y(0) if the following assumptions (H1)-(H4) are satisfied:

(H1) The function f : J×D → X is such that for t ∈ J , the function f(t, .) : D×X → X

is continuous and for all ϕ ∈ D, the function f(., ϕ) is strongly measurable.

(H2) For any t ∈ [0, b], the function f(t, .) : D → X satisfies the following

f(t, ϕ1) ≤ f(t, ϕ2),

where ϕ1, ϕ2 ∈ D with x0t ≤ ϕ1 ≤ ϕ2 ≤ y0t .

(H3) There exists a constant L ≥ 0 such that

µ(f(t, E)) ≤ L

[

sup
−a≤ν≤0

µ(E(ν))

]

,

for a.e. t ∈ J and E ⊂ D, where E(ν) = {ϕ(ν) : ϕ ∈ E}.

(H4) K = 2MLbα

Γ(α+1) < 1,

Proof. Let B = [x(0), y(0)] = {x ∈ C([−a, b], X) | x(0) ≤ x ≤ y(0)}. We define a map
Q : B → C([−a, b], X) by

Qx(t) =

{

U(t)φ(0) +
∫ t

0
(t− s)α−1V (t− s)f(s, xs)ds, t ∈ [0, b],

φ(t), t ∈ [−a, 0]. (8)

By (H2) and for any x ∈ B, we have that

f(t, x
(0)
t ) ≤ f(t, xt) ≤ f(t, y

(0)
t ).

By the normality of the positive cone P , there exists a constant k > 0 such that

‖f(t, xt)‖ ≤ k, x ∈ B. (9)
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Clearly Q : B → C([−a, b], X) is continuous. Let x, y ∈ B and x ≤ y, then x(t) ≤
y(t), t ∈ [−a, b]. Therefore, for any t ∈ [0, b], xt ≤ yt in the ordered Banach space D.
Now by positivity of operators U(t) and V (t), (H2), we have

Qx ≤ Qy. (10)

For showing x(0) ≤ Qx(0) and Qy(0) ≤ y(0), we let cDαx(0)(t) = Ax(0)(t) + ξ(t), t ∈ J ,
then by Definition 2.3, Lemma 2.1 and the positivity of U(t) and V (t) for t ∈ J , we get
that

x(0)(t) =U(t)x(0)(0) +

∫ t

0

(t− s)α−1V (t− s)ξ(s)ds

≤ U(t)φ(0) +

∫ t

0

(t− s)α−1V (t− s)f(s, x(0)s )ds, t ∈ J

and also x(0)(t) ≤ φ(t) = Qx(0)(t), t ∈ [−a, 0]. Thus x(0)(t) ≤ Qx(0)(t), t ∈ [−a, b].
Similarly we can prove that Qy(0)(t) ≤ y(0)(t), t ∈ [−a, b]. Thus Q : B → B is an
increasing monotonic operator. Now we define the sequences as

x(n) = Qx(n−1) and y(n) = Qy(n−1), n = 1, 2, . . . , (11)

and from (10), we have

x(0) ≤ x(1) ≤ . . . x(n) ≤ . . . ≤ y(n) ≤ . . . ≤ y(1) ≤ y(0). (12)

Now we show that Q is equicontinuous on [−a, b]. For this, we let any x ∈ B and
t1, t2 ∈ [−a, b] with t1 ≤ t2. First we take t1, t2 ∈ [−a, 0], then ‖Qx(t2) − Qx(t1)‖ =
‖φ(t2)− φ(t1)‖ → 0 as φ(.) is continuous and t1 → t2 independent of x ∈ B. Further, if
t1, t2 ∈ J with t1 ≤ t2 and by (9), then we have that

‖Qx(t2)−Qx(t1)‖ ≤‖U(t2)φ(0)− U(t1)φ(0)‖

+ ‖
∫ t1

0

(t2 − s)α−1 [V (t2 − s)− V (t1 − s)] f(s, xs)ds‖

+ ‖
∫ t1

0

[

(t2 − s)α−1 − (t1 − s)α−1
]

V (t1 − s)f(s, xs)ds‖

+

∫ t2

t1

(t− s)α−1V (t2 − s)f(s, xs)ds

≤‖U(t2)φ(0)− U(t1)φ(0)‖

+ k

∫ t1

0

(t2 − s)α−1‖V (t2 − s)− V (t1 − s)‖ds

+
Mk

Γ(α)

∫ t1

0

|(t2 − s)α−1 − (t1 − s)α−1|ds

+
Mk

Γ(α)

∫ t2

t1

(t− s)α−1ds

=I1 + I2 + I3 + I4, (13)
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where

I1 =‖U(t2)φ(0)− U(t1)φ(0)‖,

I2 =k

∫ t1

0

(t2 − s)α−1‖V (t2 − s)− V (t1 − s)‖ ds,

I3 =
Mk

Γ(α)

∫ t1

0

|(t2 − s)α−1 − (t1 − s)α−1| ds,

I4 =
Mk

Γ(α)

∫ t2

t1

(t− s)α−1ds.

For any ǫ ∈ (0, t1), we have

I2 ≤k
∫ t1−ǫ

0

(t2 − s)α−1‖V (t2 − s)− V (t1 − s)‖ds

+ k

∫ t1

t1−ǫ

(t2 − s)α−1‖V (t2 − s)− V (t1 − s)‖ds

≤k
∫ t1−ǫ

0

(t2 − s)α−1ds. sup
s∈[0,t1−ǫ]

‖V (t2 − s)− V (t1 − s)‖

+
2Mk

Γ(α)

∫ t1

t1−ǫ

(t2 − s)α−1ds. (14)

By Lemma 2.2, we get that I2 → 0 as t1 → t2 and ǫ → 0 independent of x ∈ B. From
expression of I1, I3 and I4, we can easily show that I2 → 0, I3 → 0 and I4 → 0 as
t2 → t1 independent of x ∈ B. Therefore ‖Qx(t2)−Qx(t1)‖ → 0 as t1 → t2 independent
of x ∈ B. Thus for t1, t2 ∈ [−a, b] with t1 ≤ t2, we have that ‖Qx(t2)−Qx(t1)‖ → 0 as
t1 → t2 independent of x ∈ B. Therefore Q(B) is equicontinuous on [−a, b].

From (8), we must have x(n)(t) = y(n)(t) = φ(t), n = 1, 2, . . . , t ∈ [−a, 0]. So
x(n) → φ and y(n) → φ on [−a, 0]. Let S = {x(n)}∞n=1. The normality of positive cone
P and (12) imply that S is bounded. Note that µ(S(t)) = 0, for any t ∈ [−a, 0]. Since
S(t) = {x(1)(t)} ∪ {Q(S)(t)} for any t ∈ J , then µ(S(t)) = µ(Q(S)(t)) for any t ∈ J . By
using (H3), (8), (11) and for t ∈ J , we have that

µ(S(t)) =µ

(

{

U(t)φ(0) +

∫ t

0

(t− s)α−1V (t− s)f(s, x(n)s )ds

}∞

n=1

)

≤µ
(

{
∫ t

0

(t− s)α−1V (t− s)f(s, x(n)s )ds

}∞

n=1

)

≤ 2M

Γ(α)

∫ t

0

(t− s)α−1µ
({

f(s, x(n)s )
}∞

n=1

)

ds

≤ 2M

Γ(α)

∫ t

0

(t− s)α−1L sup
−a≤ν≤0

µ
({

x(n)(s+ ν)
}∞

n=1

)

ds
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≤2ML

Γ(α)

∫ t

0

(t− s)α−1 sup
0≤τ≤s

µ
({

x(n)(τ)
}∞

n=1

)

ds

≤2ML

Γ(α)

∫ t

0

(t− s)α−1ds. sup
0≤τ≤b

µ
({

x(n)(τ)
}∞

n=1

)

≤ 2MLbα

Γ(α+ 1)
sup

0≤τ≤b
µ
({

x(n)(τ)
}∞

n=1

)

. (15)

Since
{

Qx(n)
}∞
n=0

, i.e.
{

x(n)
}∞
n=1

, are equicontinuous on [−a, b] and µ(S(t)) = 0, for any
t ∈ [−a, 0], then Lemma 2.4 and inequality (15) imply that

µ(S) ≤ 2MLbα

Γ(α+ 1)
µ
({

x(n)
}∞

n=1

)

= Kµ(S). (16)

Since K < 1 as given in (H4), this implies that µ(S) = 0, i.e. µ({x(n)}∞n=1) = 0. Thus
the set {x(n) : n ≥ 1} is relatively compact in B. So we have that the sequence {x(n)}
has a convergent subsequence in B. In view of (12), we can easily show that {x(n)} itself
is convergent in B. So there exists x ∈ B such that x(n) → x as n→ ∞. By (8)and (11),
we have that

x(n)(t) =

{

U(t)φ(0) +
∫ t

0 (t− s)α−1V (t− s)f(s, x
(n−1)
s )ds, t ∈ [0, b],

φ(t), t ∈ [−a, 0].
(17)

Taking n→ ∞ and Lebesgue dominated convergence theorem, we have that

x(t) =

{

U(t)φ(0) +
∫ t

0
(t− s)α−1V (t− s)f(s, xs)ds, t ∈ [0, b],

φ(t), t ∈ [−a, 0].
(18)

Then x ∈ C([−a, b], X) and x = Qx. Thus x is a fixed point of Q, hence x becomes
a mild solution of (1). Similarly we can prove that there exists x ∈ C([−a, b], X) such
that y(n) → x as n → ∞ and x = Qx. Let x ∈ B be any fixed point of Q, then by (10),
x(1) = Qx(0) ≤ Qx = x ≤ Qy(0) = y(1). By induction, x(n) ≤ x ≤ y(n). Using (12)
and taking the limit as n → ∞ we conclude that x(0) ≤ x ≤ x ≤ x ≤ y(0). Hence x, x
are the minimal and maximal mild solutions of the finite delay differential equations of
fractional order (1) on [x(0), y(0)] respectively. ✷

In the next theorem, we shall prove the uniqueness of the solution of system (1)
by using monotone iterative procedure. For this we make the the following additional
assumption:

(H5) f : J×D → X is a continuous function and there exists a constant η ≥ 0 such that

f(t, ϕ2)− f(t, ϕ1) ≤ η(ϕ2(ν)− ϕ1(ν)), for some ν ∈ [−a, 0]

for any t ∈ J and x
(0)
t ≤ ϕ1 ≤ ϕ2 ≤ y

(0)
t .

Theorem 3.2 Let X be an ordered Banach space, whose positive cone P is normal
with normal constant N and T (t)(t ≥ 0) be a positive operator. Also assume that the
Cauchy delay problem (1) has a lower solution x(0) ∈ C([−a, b], X) and an upper solution
y(0) ∈ C([−a, b], X) with x(0) ≤ y(0). If the assumptions (H2) and (H5) hold and K =
2MNηbα

Γ(α+1) < 1, then the Cauchy delay problem (1) has a unique mild solution between x(0)

and y(0).
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Proof. Let {x(n)} ⊂ B be monotone increasing sequence. For any m,n = 1, 2, . . .,
with m > n, by H(4) and H(6), we have that

θ ≤ f(t, x
(m)
t )− f(t, x

(n)
t ) ≤ η(x

(m)
t (ν)− x

(n)
t (ν)).

Using the normality of the positive cone P , we get

‖f(t, x(m)
t )− f(t, x

(n)
t )‖ ≤ Nη‖x(m)

t (ν) − x
(n)
t (ν)‖. (19)

From the definition of measure of noncompactness and (19), we get

µ
({

f
(

s, x
(n)
t

)})

≤Nη sup
−a≤ν≤0

µ
({

x
(n)
t (ν)

})

. (20)

From (19), f is a Lipschitz continuous for second variable. So f satisfies the assump-
tions (H1) and (H3) with L = Nη. Thus all the conditions of Theorem 3.1 are satisfied,
the Cauchy delay problem (1) has maximal and minimal solutions on the ordered interval
B = [x(0), y(0)].

Let x(t) and x(t) be the minimal solution and maximal solution of Cauchy delay
problem (1) respectively on the ordered interval B = [x(0), y(0)]. Since x(t) ≡ x(t) for
t ∈ [−a, 0], then we have to prove that x(t) ≡ x(t) on J for the uniqueness. By (8), (H5)
and the positivity of operator U(t) and V (t) and take t ∈ J , we get

θ ≤ x(t)− x(t) = Qx(t)−Qx(t)

=

∫ t

0

(t− s)α−1V (t− s) [f(s, xs)− f(s, xs)] ds

≤ η

∫ t

0

(t− s)α−1V (t− s)(xs(ν) − xs(ν))ds, for some ν ∈ [−a, 0].

By applying the normality of the positive cone P , we get

‖x(t)− x(t)‖ ≤ Nη‖
∫ t

0

(t− s)α−1V (t− s)(xs(ν)− xs(ν))ds‖

≤ MNη

Γ(α)

∫ t

0

(t− s)α−1‖xs(ν) − xs(ν)‖ds

=
MNη

Γ(α)

∫ t

0

(t− s)α−1‖x(s+ ν)− x(s+ ν)‖ds

≤ MNη

Γ(α)

∫ t

0

(t− s)α−1‖x− x‖ds

≤ MNηbα

Γ(α+ 1)
‖x− x‖. (21)

Inequality implies that ‖x− x‖ ≤ K‖x− x‖. Since K < 1
2 , then ‖x− x‖ = 0, i.e. x = x

on [−a, b]. Hence x = x is the unique mild solution of the Cauchy delay problem (1)
between x(0) and y(0). ✷
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4 Example

Let X = L2([0, π],R). Consider the following finite delay patial differential equation of
fractional order:















∂
1

2

∂t
1

2

z(t, y) = ∂2

∂y2 z(t, y) + 2η sin( z(t−1,y)
2 ), (t, y) ∈ [0, π2 ]× [0, π],

z(t, 0) = z(t, π) = 0, t ∈ [0, π2 ],

z(ν, y) = φ(ν, y) ν ∈ [−1, 0],

(22)

where ∂
1

2

∂t
1

2

is the Caputo fractional partial derivative, 0 ≤ η ≤ min{ 2√
π
,
√
π

4M }, f : J×D →
X is a nonlinear functions, here D = C([−1, 0]× [0, π], X) and φ(ν, y) ∈ D.

Let P = {φ ∈ X |φ(y) ≥ 0 a.e. y ∈ [0, π]}. Then P is a normal cone in Banach space
X and its normal constant is 1, i.e. N = 1. We define an operator A : X → X by
Av = v′′ with domain

D(A) = {v ∈ X : v, v′ is absolutely continuous v′′ ∈ X, v(0) = v(π) = 0}.

It is well known that A is an infinitesimal generator of a compact analytic semigroup of
uniformly bounded linear operator {T (t), t ≥ 0} in X . Now we define x(t)(y) = z(t, y),
cD

1

2

t x(t)(y) = ∂
1

2

∂t
1

2

z(t, y), f(t, xt)(y) = 2η sin( z(t−1,y)
2 ), x(ν)(y) = φ(ν)(y) = φ(ν, y).

Therefore, the above impulsive fractional differential equation (22) can be written as the
abstract form (1).

The continuous function φ is such that 0 ≤ φ(ν, y) ≤ −νy(π − y), (ν, y) ∈ [−1, 0]×
[0, π]. Let v(t, y) = 0, (t, y) ∈ [−1, π2 ] × [0, π]. Then f(t, vt(ν, y)) = 0 for t ∈ [0, π2 ] and
φ(ν, y) ≥ v(ν, y) for ν ∈ [−1, 0]. Thus v becomes a lower solution of the problem (1).
Now we take w(t, y) such that

w(t, x) =

{

ty(π − y), (t, y) ∈ [0, π2 ]× [0, π],

−ty(π − y), (t, y) ∈ [−1, 0]× [0, π].

Note that ∂
1

2

∂t
1

2

w(t, y) = 2t
1

2 y(π−y)√
π

and ∂2

∂y2w(t, y) = −2t. Since t
1

2 y(π−y)
2 ≥ ty(π−y)

2 for

0 ≤ t ≤ 1, the function sin(.) is increasing for interval [−π
2 ,

π
2 ] and

4√
π
≥ 2η, these imply

that
2t

1

2 y(π − y)√
π

≥ 2η sin(
ty(π − y)

2
) ≥ 2η sin(

(t− 1)y(π − y)

2
).

Thus
∂

1

2

∂t
1

2

w(t, y) ≥ ∂2

∂y2
w(t, y) + 2η sin(

w(t− 1, y)

2
),

and w(ν, y) ≥ φ(ν, y) for ν ∈ [−1, 0]. So w is an upper solution of the problem (1).
Clearly the function f(t, ϕ) is increasing in ϕ for v ≤ ϕ ≤ w, so the assumptions (H2)
is satisfied. Since the function sin(.) is Lipschitz function and is increasing for interval
[−π

2 ,
π
2 ]. So the function f satisfies the following condition:

0 ≤ f(t, z(2)(t− 1, y))− f(t, z(1)(t− 1, y)) ≤ η(z(2)(t− 1, y)− z(1)(t− 1, y)), ν ∈ [−1, 0]
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for any v(t, y) ≤ z(1)(t, y) ≤ z(2)(t, y) ≤ w(t, y), (t, y) ∈ [−1, π2 ]× [0, π]. This means

θ(y) ≤ f(t, x
(2)
t )(y)− f(t, x

(1)
t )(y) ≤ η(x

(2)
t (−1)(y)− x

(1)
t (−1)(y))

for any v ≤ x(1) ≤ x(2) ≤ w. Thus the assumption (H5) is also satisfied. At last
K = 2MNη

Γ(1+ 1

2
)
= 4Mη√

π
< 1. All the conditions of the Theorem 3.2 are satisfied, hence the

system (22) has a unique solution. ✷
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