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Abstract: In this paper, a new general chaos synchronization scheme is proposed
for coupled arbitrary 3-D quadratic chaotic dynamical systems in discrete-time. The
proposed synchronization method, based on nonlinear controllers and Lyapunov sta-
bility theory, is theoretically rigorous. The derived synchronization criterion can be
also applicable to a large class of discrete-time chaotic systems. Our control scheme
is used to illustrate complete synchronization between the three-dimensional hyper-
chaotic discrete-time Rössler and Wang systems. Moreover numerical simulations are
used to show the effectiveness and the feasibility of the proposed synchronization
scheme.
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1 Introduction

Over the last two decade, many scholars have proposed various control schemes in chaos
synchronization [1–6], but the most of works have concentrated on continuous-time rather
than discrete-time chaotic systems. In practice, discrete-time chaotic systems play a
more important role than their continuous counterparts [7]. In fact, many mathematical
models of physical processes [8], biological phenomena [10], chemical reactions [9] and
economic systems [11] were defined using discrete-time chaotic systems. Many 3D chaotic
and hyperchaotic dynamical systems in discrete-time are founded such as Baier-Klain
map [12], Hitzl-Zele map [13], Stefanski map [14], Wang system [15], discrete-time Rössler
system [16] and Grassi-Miller map [18], etc.
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Recently, synchronization in discrete-time chaotic systems attracts more and more
attention in many areas of science and technology, and has been extensively studied, due
to its potential applications in secure communication [19,20,22,23]. Until now, a variety
of approaches have been proposed for the synchronization of chaotic systems in discrete-
time [24–27] and different types of chaos synchronization have been presented [28–32].

In this paper, using new controller law and Lyapunov stability theory, a general
method is proposed to guarantee global synchronization for a special class of chaotic
maps. The aim of this paper is to develop a simple criterion for the synchronization
between two arbitrary 3D quadratic chaotic systems in discrete-time. In order to verify
the effectiveness of the new approach, the proposed scheme is applied between two 3D
hyperchaotic maps: the discrete-time Rössler system and the 3D Wang system.

The rest of this paper is organized as follows. In Section 2, a description of the chaotic
systems addressed in this paper is provided. In Section 3, a new chaos synchronization
approach in discrete-time is introduced and new synchronization criterion is derived. In
Section 4, the proposed synchronization scheme is applied to some typical 3D discrete-
time hyperchaotic systems and numerical simulations are used to verify the effectiveness
of the new approach. In Section 5, conclusion follows.

2 Description of Drive-response Systems

Consider the drive chaotic system in the form of

xi (k + 1) =
3

∑

j=1

aijxj (k) +
3

∑

q=1

3
∑

p=1

α(i)
pq xp (k)xq (k) + ci, 1 ≤ i ≤ 3, (1)

where X (k) = (xi (k))1≤i≤3 ∈ R
3 is the state vector of the drive system, (aij) ∈ R

3×3,
(

α
(i)
pq

)

∈ R
3×3 (i = 1, 2, 3), and (ci)

1≤i≤3
are real numbers.

As the response chaotic system, we consider the following system

yi (k + 1) =

3
∑

j=1

bijyj (k) +

3
∑

q=1

3
∑

p=1

β(i)
pq yp (k) yq (k) + di + ui, 1 ≤ i ≤ 3, (2)

where Y (k) = (yi (k))1≤i≤3 ∈ R
3 is the state vector of the response system, (bij) ∈ R

3×3,
(

β
(i)
pq

)

∈ R
3×3 (i = 1, 2, 3), (di)

1≤i≤3
are real numbers and U = (ui)1≤i≤3 ∈ R

3 is a vector

controller to be determined.

Remark 2.1 3D Quadratic chaotic maps can be written under the form of (1) such
as 3D Hénon-like map, Baier-Klein map, 3D generalized Hénon map, Stefanski map,
discrete-time Rössler system and Wang system, etc.

Our aim is to realize synchronization between the drive system (1) and the response

system (2) for arbitrary constants aij , bij , α
(i)
pq , β

(i)
pq , ci and di (i, p, q = 1, 2, 3), and to

determine the controllers ui (1 ≤ i ≤ 3), which stabilize the synchronization errors

ei (k) = yi (k)− xi (k) , 1 ≤ i ≤ 3, (3)

then the aim of synchronization is to make limk→∞ ei (k) = 0, (i = 1, 2, 3) .
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3 New Chaos Synchronization Scheme in Discrete-time

The synchronization errors between the drive system (1) and the response system (2),
can be derived as follows

ei (k + 1) =

3
∑

j=1

bijej (k) +Ri + ui, 1 ≤ i ≤ 3, (4)

where

Ri =

3
∑

j=1

(bij − aij)xj (k) +

3
∑

q=1

3
∑

p=1

β(i)
pq yp (k) yq (k) (5)

−

3
∑

q=1

3
∑

p=1

α(i)
pq xp (k)xq (k) + di − ci, 1 ≤ i ≤ 3.

To achieve synchronization between systems (1) and (2), we choose the vector controller
U = (ui)1≤i≤3 as follows

u1 = l1e1 (k) + (b22 − b12 + l2) e2 (k)− (b13 + b33 + l3) e3 (k)−R1, (6)

u2 = − (b21 + b11 + l1) e1 (k) + l2e2 (k) + (b33 − b23 + l3) e3 (k)−R2,

u3 = (b11 − b31 + l1) e1 (k)− b32e2 (k) + (b33 + 2l3) e3 (k)−R3,

where (li)1≤i≤3 are control constants to be determined later. By substituting Eq. (6)
into Eq. (4), the synchronization errors can be written as

e1 (k + 1) = (b11 + l1) e1 (k) + (b22 + l2) e2 (k)− (b33 + l3) e3 (k) , (7)

e2 (k + 1) = − (b11 + l1) e1 (k) + (b22 + l2) e2 (k) + (b33 + l3) e3 (k) ,

e3 (k + 1) = (b11 + l1) e1 (k) + 2 (b33 + l3) e3 (k) .

Now, we have the following result.

Theorem 3.1 If the control constants (li)1≤i≤3 are chosen such that











−b11 −
1√
3
< l1 < −b11 +

1√
3
,

−b22 −
1√
2
< l2 < −b22 +

1√
2
,

−b33 −
1√
6
< l3 < 1√

6
,

(8)

then the drive system (1) and the response system (2) are globally synchronized under
the controller law (6).

Proof. Let us consider the following quadratic Lyapunov function

V (e (k)) =

3
∑

i=1

e2i (k) , (9)
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then we obtain

∆V (e(k)) = V (e(k + 1))− V (e(k))

=

3
∑

i=1

e2i (k + 1)−

3
∑

i=1

e2i (k)

=
(

3 (b11 + l1)
2
− 1

)

e21 (k) +
(

2 (b22 + l2)
2
− 1

)

e22 (k)

+
(

6 (b33 + l3)
2
− 1

)

e23 (k)

+ [(b11 + l1) (b22 + l2)− (b11 + l1) (b22 + l2)] e1 (k) e2 (k)

+ [− (b11 + l1) (b33 + l3)− (b11 + l1) (b33 + l3)

+2 (b11 + l1) (b33 + l3)] e1 (k) e3 (k)

+ [− (b22 + l2) (b33 + l3) + (b22 + l2) (b33 + l3)] e2 (k) e3 (k)

=
(

3 (b11 + l1)
2
− 1

)

e21 (k) +
(

2 (b22 + l2)
2
− 1

)

e22 (k)

+
(

6 (b33 + l3)
2
− 1

)

e23 (k) ,

and by using (8), we get: ∆V (e(k)) < 0.

Thus, from the Lyapunov stability theory, it is immediate that limk→∞ ei(k) = 0,
(i = 1, 2, 3). Therefore, the systems (1) and (2) are globally synchronized.

4 Illustrative Example

In this example, we consider the discrete-time Rössler system as the drive system and the
controlled Wang system as the response system. The discrete-time Rössler system [16],
is described by

x1 (k + 1) = αx1 (k) (1− x1 (k))− β (x3 (k) + γ) (1− 2x2 (k)) , (10)

x2 (k + 1) = δx2 (k) (1− x2 (k)) + ςx3 (k) ,

x3 (k + 1) = η ((x3 (k) + γ) (1− 2x2 (k))− 1) (1− θx1 (k)) ,

where α = 3.8, β = 0.05, γ = 0.35, δ = 3.78, ς = 0.2, η = 0.1, θ = 1.9. The hyperchaotic
attractor of the 3D discrete-time Rössler system is shown in Fig. 1.

The controlled Wang system can be described as

y1 (k + 1) = a3y2 (k) + (a4 + 1) y1 (k) + u1, (11)

y2 (k + 1) = a1y1 (k) + y2 (k) + a2y3 (k) + u2,

y3 (k + 1) = (a7 + 1) y3 (k) + a6y2 (k) y3 (k) + a5 + u3,

where U = (u1, u2, u3)
T

is the vector controller. The 3D hyperchaotic Wang system
(i.e., the system (11) with u1 = 0, u2 = 0, u3 = 0) is chaotic when the parameter
values are taken as (a1, a2, a3, a4, a5, a6, a7) = (−1.9, 0.2, 0.5,−2.3, 2,−0.6,−1.9) [15].
The hyperchaotic attractor of the 3D Wang system is shown in Fig. 2. To achieve
global synchronization between the discrete-time Rössler system and the controlled Wang
system, according to our approach presented in Section 2, the vector controller can be
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Figure 1: The hyperchaotic attractor of the discrete-time Rossler system.

Figure 2: Hyperchaotic attractor of Wang system when (a1, a2, a3, a4, a5, a6, a7, δ) =
(−1.9, 0.2, 0.5,−2.3, 2,−0.6,−1.9, 1).

constructed as follows

u1 = l1e1 (k) + (1− a3 + l2) e2 (k)− (a7 + 1 + l3) e3 (k)−R1, (12)

u2 = − (a1 + a4 + 1 + l1) e1 (k) + l2e2 (k) + (a7 + 1− a2 + l3) e3 (k)−R2,

u3 = (a4 + 1 + l1) e1 (k) + (a7 + 1 + 2l3) e3 (k)−R3,

where the control constants (li)1≤i≤3 are chosen as follows











−a4 − 1− 1√
3
< l1 < −a4 − 1 + 1√

3
,

−1− 1√
2
< l2 < −1 + 1√

2
,

−a7 − 1− 1√
6
< l3 < −a7 − 1− 1√

6

(13)

and
Ri = Li +Ni, i = 1, 2, 3, (14)
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Figure 3: Time evolution of synchronization errors between the drive system (10) and the
response system (11).

where

L1 = (a4 + 1− α) x1 (k) + (a3 − βγ2)x2 (k) + βx3 (k) + βγ, (15)

L2 = a1x1 (k) + (1− βγ2)x2 (k) + (a2 − ς)x3 (k) ,

L3 = −θ (1− ηγ)x1 (k) + 2ηγx2 (k) + (a7 + 1− η)x3 (k) + a5 − ηγ + 1

and

N1 = αx2
1 (k)− 2βx3 (k)x2 (k) , (16)

N2 = δx2
2 (k) ,

N3 = a6y2 (k) y3 (k)− 2ηγθx1 (k)x2 (k) + ηθx1 (k)x3 (k)

+2ηx2 (k)x3 (k)− 2ηθx1 (k)x2 (k)x3 (k) .

It is easy to show that all conditions of Theorem 3.1 are satisfied. Therefore, the
drive system (10) and the response system (11) are globally synchronized.

Using controllers (12), the error functions can be described as:

e1 (k + 1) = (a4 + 1 + l1) e1 (k) + (1 + l2) e2 (k)− (a7 + 1 + l3) e3 (k) , (17)

e2 (k + 1) = − (a4 + 1 + l1) e1 (k) + (1 + l2) e2 (k) + (a7 + 1 + l3) e3 (k) ,

e3 (k + 1) = (a4 + 1 + l1) e1 (k) + 2 (a7 + 1 + l3) e3 (k) .

Corollary 4.1 For two coupled systems: the hyperchaotic discrete-time Rössler sys-
tem and the hyperchaotic Wang system, if we choose the control constants (li)1≤i≤3 such

that: l1 = 1, l2 = −
1
2 and l3 = 0.8. Then, they are globally synchronized, see Fig. 3.
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5 Conclusion

In this paper, a new control scheme has been designed to achieve synchronization be-
tween 3-D quadratic drive-response chaotic systems in discrete-time. Based on nonlinear
controllers and Lyapunov stability theory, a synchronization criterion has been obtained
and new conditions have been derived. It was shown that the proposed controllers guar-
antee the asymptotic convergence to zero of the errors between the drive and the response
systems. Finally, numerical example and computer simulations were used to verify the
effectiveness of the proposed approach.
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