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The Problem of Stability by Nonlinear Approximation

to the 85th Birthday of Professor V.I. Zubov

A.Yu. Aleksandrov 1∗, A.A. Martynyuk 2 and A.P. Zhabko 1
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St. Petersburg 198504, Russia

2 Institute of Mechanics National Academy of Science of Ukraine, Nesterov Str. 3, Kiev,
03057, Ukraine
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Abstract: In the present paper, Vladimir Zubov’s results on the problem of stability
by nonlinear approximation are surveyed together with their recent developments and
extensions.

Keywords: stability; homogeneous system; nonlinear approximation; Lyapunov
function; perturbations; estimates of solutions.

Mathematics Subject Classification (2010): 34A34, 34D20.

1 Introduction

The outstanding Russian mathematician and mechanical engineer Vladimir Ivanovich
Zubov (1930-2000) made an invaluable contribution to the development of Stability The-
ory and Control Theory.

V. I. Zubov was born on April 14, 1930 in Kashira town, Moscow region, Russia. In
1945 he finished a middle school. At the age of 14, Vladimir was wounded by a hand
grenade explosed accidently and soon failed eyesight. In 1949 he finished the Leningrad
special school for blind and visually impaired children and entered the Mathematical
and Mechanical Faculty of the Leningrad State University. In 1953, after graduating
with honors, he joined the University faculty and since then his career was inseparably
associated with the Leningrad (now, Saint Petersburg) State University.

In 1955, V. I. Zubov defended his PhD thesis “Boundaries of the Asymptotic Stability
Domain” in which he proved the theorem on the asymptotic stability domain. This result
is now known as Zubov’s theorem.

∗ Corresponding author: mailto:alex43102006@yandex.ru

c© 2015 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua221
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Further Zubov’s activities involved both pure fundamental investigations and solution
of applied real-life problems in several fields — from spacecraft to ship control.

In 1969, the Faculty of Applied Mathematics and Control Processes was founded at
the Leningrad State University with Vladimir Zubov’s appointment as its first dean. Two
years later, a Research Institute of Computational Mathematics and Control Processes
was set up by the USSR Government. Zubov became its brains-and-heart. In particular,
he headed the projects on the design, development and operation of systems of self-guided
winged missiles, and tactical schemes construction for the USSR Navy to oppose aircraft
carriers of the potential enemy.

Zubov’s scientific activities was surveyed in the paper [8] dedicated to his 80th Birth-
day. In the present review, we would like to focus on Zubov’s works on the problem of
stability by nonlinear approximation together with their ramifications in the last decade
publications.

2 Stability Analysis by Nonlinear Approximation

The basic tool for the stability analysis of motions of differential equation systems is
the Lyapunov direct method (or the Lyapunov functions method). However, it should
be recalled that until now, a general algorithm has not been yet constructed for the
Lyapunov function generation for an arbitrary nonlinear system. The most common
approach to the problem consists in, firstly, reduction of an original system to a simpler
one, secondly, stability investigation of the reduced system via the Lyapunov function
construction, and, thirdly, subsequent testing of this function as a potential candidate
for the Lyapunov function of the original system.

A. M. Lyapunov has determined conditions under which the conclusion on the sta-
bility of the zero solution for a nonlinear system can be obtained via the analysis of the
corresponding system of linear approximation [22]. However, it is worth mentioning that
in numerous applications it is required to study differential equation systems for which
the expansions of the right-hand sides in powers of the phase variables do not contain
linear terms at all. Thus, there arises a problem of stability by nonlinear approximation.

The first theorems on stability by nonlinear approximation were proved by I. G.
Malkin, N. N. Krasovskii and V. I. Zubov [21, 23, 35, 36]. In these papers, systems with
homogeneous right-hand sides were considered as the first approximation.

Definition 2.1 Let R be the field of real numbers, R
n denote the n-dimensional

Euclidean space. A function f(x) : Rn → R is called homogeneous of the order µ, where
µ is a positive rational with the odd denominator, if

f(λx) = λµf(x) (1)

for λ ∈ R and x ∈ R
n. In the case when µ is a positive real number, and equality (1)

holds for λ ≥ 0 and x ∈ R
n, the function f(x) is called positive homogeneous of the

order µ.

Consider the system of differential equations

ẋ(t) = F(x(t)) (2)

and the corresponding perturbed system

ẋ(t) = F(x(t)) +G(t,x(t)). (3)
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Here x(t) ∈ R
n is the state vector; components of the vector F(x) are homogeneous

functions of the order µ > 0 which are continuous for all x ∈ R
n; vector function G(t,x)

is continuous for t ≥ 0, ‖x‖ < H and satisfies the inequality ‖G(t,x)‖ ≤ c‖x‖σ, where c

and σ are positive constants, 0 < H ≤ +∞, and ‖ · ‖ denotes the Euclidean norm of a
vector. Thus, systems (2) and (3) admit the zero solution.

It is required to determine conditions under which the asymptotic stability of the zero
solution of (2) implies the same type of stability for the zero solution of the perturbed
system (3).

In [21, 23], the case has been studied when components of the vector F(x) are homo-
geneous forms of an integer order µ > 1. It was proved that if the inequality σ > µ holds,
then the perturbations do not disturb the asymptotic stability of the zero solution.

It is worth mentioning that Malkin’s proof was based on a geometric approach [23].
A family of closed surfaces surrounding the origin were constructed, and angles between
these surfaces and trajectories of system (3) were estimated. To prove the theorem
on the stability by nonlinear approximation, Krasovskii has used the Lyapunov direct
method, see [21]. He has determined conditions under which for system (3) there exists
a Lyapunov function solving the stability problem and satisfying estimates of a special
form.

V. I. Zubov has extended the results of [21, 23] to wider classes of systems, see [34–
36]. Unlike [21, 23], in [34–36] it was assumed that the components of the vector F(x)
are, in general, not forms, but homogeneous functions of the order µ > 0. Zubov has
established the following properties of solutions of homogeneous systems:

(i) if x(t,x0) is a solution of (2) starting from the point x0 at t = 0, then, for any
c ∈ R, the function cx(cµ−1t,x0) is the solution of (2) as well;

(ii) the zero solution of (2) can be asymptotically stable only in the case when µ is a
rational with the odd numerator and denominator;

(iii) if the zero solution of (2) is asymptotically stable, then it is globally asymptoti-
cally stable.

Zubov has investigated conditions under which for a homogeneous system there exists
a homogeneous Lyapunov function satisfying the assumptions of the Lyapunov asymp-
totic stability theorem. He has obtained the following result, see [35, 36].

Theorem 2.1 Let for solutions of (2) the inequality ‖x(t,x0)‖ ≤ bt−α be valid for
t ≥ T , ‖x0‖ = 1, where T, b, α are positive constants. Then there exist functions V (x)
and W (x) possessing the properties:

(a) V (x) and W (x) are continuous for x ∈ R
n positive homogeneous functions of the

orders γ and γ + µ− 1 respectively, where γ is sufficiently large positive number;
(b) functions V (x) and W (x) are positive definite;
(c) function V (x) is differentiable with respect to solutions of system (2), and the

equality V̇
∣

∣

(2)
= −W (x) holds.

Moreover, in the case when the right-hand sides of (2) are k times continuously dif-
ferentiable functions for x ∈ R

n, where k ≥ 1, while constructing functions V (x) and
W (x), one can choose V (x) in the class of k times continuously differentiable functions.

It was shown, see [36], that if the function F(x) is continuously differentiable for
x ∈ R

n, then the functions V (x) and W (x) satisfy the system of partial differential
equations

(

∂V (x)

∂x

)T

F(x) = −W (x),

(

∂V (x)

∂x

)T

x = γV (x). (4)
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Zubov has studied the problem of solvability of this system [36]. In particular, in the
case when n = 2, he has proposed a constructive approach for finding solutions of (4).

On the basis of Theorem 2.1, Zubov has determined the following stability and ulti-
mate boundedness criteria for the perturbed system (3), see [35, 36].

Theorem 2.2 Let the vector function F(x) be continuously differentiable for x ∈ R
n,

and inequality σ > µ hold. Then from the asymptotic stability of the zero solution of (2)
it follows that the zero solution of (3) is asymptotically stable as well.

Theorem 2.3 Let the vector function F(x) be continuously differentiable for x ∈ R
n,

and the inequality σ < µ hold. Then from the asymptotic stability of the zero solution of
(2) it follows that solutions of (3) are uniformly ultimately bounded.

Moreover, new stability conditions were established in the critical case of several zero
roots and in the critical case of several pairs of purely imaginary roots of characteristic
equation, see [36, 37, 39, 40].

Zubov has also derived estimates for the convergence rate of solutions for asymptot-
ically stable homogeneous system (2) and for the perturbed system (3), see [36]. He has
proved that if µ > 1, function F(x) is continuously differentiable for x ∈ R

n, and the zero
solution of (2) is asymptotically stable, then, there exist positive constants c1, c2, c3, c4
such that for solutions of (2) the inequalities

‖x0‖
(

c1 + c2‖x0‖
µ−1 t

)

−

1

µ−1 ≤ ‖x(t,x0)‖ ≤ ‖x0‖
(

c3 + c4‖x0‖
µ−1 t

)

−

1

µ−1 (5)

hold for any x0 ∈ R
n and for t ≥ 0. For the case when 0 < µ < 1, Zubov has obtained

conditions under which every solution of system (2) gets to the origin in a finite time, and
remains at this point thereafter. In his later works [41, 43], this property of homogeneous
systems with homogeneity orders less than one was used for the design of feedback
controls providing finite-time synchronization of dynamical systems motions.

Furthermore, Zubov has extended the above results to systems with generally homo-
geneous right-hand sides [38, 39].

Definition 2.2 A function f(x) : Rn → R is called generally homogeneous of the
order ν with respect to the dilation (m1, . . . ,mn), where ν,m1, . . . ,mn are positive ra-
tionals with the odd denominators, if

f(λm1x1, . . . , λ
mnxn) = λνf(x) (6)

for all λ ∈ R
n and x ∈ R

n. In the case when ν,m1, . . . ,mn are positive real numbers,
and equality (6) holds for λ ≥ 0 and x ∈ R

n, the function f(x) is called positive generally
homogeneous of the order ν with respect to the dilation (m1, . . . ,mn).

Definition 2.3 A vector field F(x) = (f1(x), . . . , fn(x))
T : Rn → R

n is called gen-
erally homogeneous of the order µ with respect to the dilation (m1, . . . ,mn), where
µ,m1, . . . ,mn are rationals with the odd denominators, such that mi > 0 and µ+mi > 0,
i = 1, . . . , n, if fi(λ

m1x1, . . . , λ
mnxn) = λµ+mifi(x1, . . . , xn), i = 1, . . . , n, for all λ ∈ R

and x ∈ R
n. System (2) is called generally homogeneous if its vector field F(x) is

generally homogeneous.
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In [38, 39], for generally homogeneous systems, conditions of the existence of generally
homogeneous Lyapunov functions were obtained, and criteria of stability and ultimate
boundedness by generally homogeneous approximation were found.

V. I. Zubov has also set up a problem of the stability by the first, in a broad sense,
approximation. He has investigated the conditions for stability of the zero solution for
arbitrary admissible functions included in the first approximation [39, 42].

In particular, systems of the form

ẋi(t) =

n
∑

j=1

pij(t)fj(xj(t)) + gi(t,x(t)), i = 1, . . . , n, (7)

have been considered [42]. Here coefficients pij(t) are continuous for t ≥ 0; functions
fj(xj) are continuous for |xj | < H (0 < H ≤ +∞) and belong to a sector-like constrained
set defined as follows: xjfj(xj) > 0 for xj 6= 0, j = 1, . . . , n; the perturbations gi(t,x)
are given and continuous for t ≥ 0, ‖x‖ < H .

The following issues were investigated:
(i) under what conditions the zero solution of the unperturbed system (gi(t,x) ≡ 0,

i = 1, . . . , n) is asymptotically stable for any admissible functions fj(xj)?
(ii) under what conditions perturbations do not destroy the asymptotic stability of

the zero solution?
On the basis of the obtained results, Zubov has developed new and effective ap-

proaches to the problem of stability analysis of nonlinear systems in the cases being
critical in the Lyapunov sense.

3 Some Extensions of Zubov’s Rezults

3.1 Existence of homogeneous Lyapunov functions

From Zubov’s results it follows that for system (2) with homogeneous polynomial right-
hand sides possessing the asymptotic stability property for its zero solution, it is always
possible to choose a Lyapunov function in the class of homogeneous functions. In [31],
the problem has been discussed whether it is possible to choose this function in the class
of homogeneous polynomials (forms) or not. The answer proves to be negative. For any
given positive integer γ, there exists a system from the family

ẋ1(t) = (α− ε)x3
1(t)− x3

2(t), ẋ2(t) = x3
1(t)− αx3

2(t), 0 < ε < α < 1,

such that the zero solution of this system is asymptotically stable but the derivative of
any form of the order γ with respect to this system is not sign-definite.

L. Rosier has proved that it is possible to guarantee the existence of continuously
differentiable homogeneous functions for homogeneous systems under less conservative
conditions than those imposed in Zubov’s theorems, see [28].

Theorem 3.1 Let vector function F(x) be continuous for x ∈ R
n positive generally

homogeneous of the order µ ∈ R with respect to the dilation (m1, . . . ,mn), where mi > 0
and µ + mi > 0, i = 1, . . . , n. If the zero solution of (2) is asymptotically stable, then,
for any positive integer k, there exists a Lyapunov function V (x) possessing the following
properties:

(a) the function V (x) is k times continuously differentiable at the point x = 0, and
it is infinitely differentiable for x 6= 0;
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(b) function V (x) is positive definite;
(c) function V (x) is positive generally homogeneous of the order γ with respect to the

dilation (m1, . . . ,mn), where γ is an arbitrary number greater than kmaxi=1,...,nmi;
(d) the derivative of V (x) with respect to system (2) is negative definite.

The application of Theorem 3.1 permits us to weaken the conditions of known criteria
of the stability and the ultimate boundedness by nonlinear approximation.

For homogeneous systems, the problem of existence of homogeneous Lyapunov func-
tions satisfying the assumptions of the first Lyapunov instability theorem was studied
in [18].

3.2 Stability analysis of nonlinear systems via averaging

In [2, 3], nonlinear nonstationary systems whose right-hand sides are homogeneous with
respect to phase variables have been studied. For such systems, an approach for Lyapunov
functions constructing was proposed. Its application permits us to show that if the order
of homogeneity of the right-hand sides of the time-varying system under consideration is
greater than one, then the asymptotic stability of the zero solution of the corresponding
averaged system implies the same property for the zero solution of the original system.
These results have been further developed in [4, 5, 15, 26, 27, 30]. In particular, in [30],
a modification of the approach for the Lyapunov functions construction was suggested.
Other techniques for the determination of similar asymptotic stability conditions for
time-varying homogeneous systems have been developed in [26, 27].

Compared with the known stability conditions obtained by the application of av-
eraging technique, the principal novelty of the above results is that, to guarantee the
asymptotic stability for a nonstationary homogeneous system, the right-hand sides of
the system need not be fast time-varying. It is shown that in the averaging technique,
instead of a small parameter providing the fast time-variation of a vector field, the orders
of homogeneity can be used.

3.3 Stability of nonlinear complex and hybrid systems

In [24], a motion polystability problem for differential equation systems has been stud-
ied. In terms of matrix-valued Lyapunov functions, conditions of polystability for nonlin-
ear systems with separable motions by nonlinear and psevdo-linear approximation were
found.

Sufficient conditions of the asymptotic stability with respect to a part of variables for
equilibrium positions of nolinear complex systems have been derived in [4, 29].

In [20], an approach for the stability analysis of multiconnected systems by nonlin-
ear approximation was suggested. In [9, 10], the results of [20] were strengthened and
extended to wider classes of systems. It is worth mentioning that the approach in [20]
is based on the vector Lyapunov functions method, whereas in [9, 10] scalar Lyapunov
functions were proposed.

The stability problem for hybrid homogeneous systems was studied in [7, 32]. Suf-
ficient conditions were obtained under which a family of homogeneous subsystems ad-
mits a common Lyapunov function. The fulfilment of these conditions provides global
asymptotic stability of the zero solution of the corresponding switched system for any
admissible switching law. For the case when we can not guarantee the existence of such a
function, in [7], the multiple Lyapunov function and the dwell-time approaches were used
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to determine the classes of switching signals for which the zero solution of the hybrid
homogeneous system is locally or globally asymptotically stable. Stability conditions for
some types of nonlinear multiconnected systems with a variable structure were found in
[11, 33].

3.4 Preservation of stability under the digitization

In the papers [12, 14], the problem of preservation of stability under the digitization for
certain classes of nonlinear differential equation systems was studied.

In [12], the homogeneous system (2) and the corresponding difference system

y(k + 1) = y(k) + hF(y(k)) (8)

have been considered. Here y(k) ∈ R
n; components of the vector F(x) are homogeneous

functions of the order µ > 1 which are are continuously differentiable for all x ∈ R
n;

h > 0 is a digitisation step; k = 0, 1, . . ..
The following theorem was proved.

Theorem 3.2 If the zero solution of system (2) is asymptotically stable, then the
zero solution of (8) is asymptotically stable for any value of h > 0.

Thus, unlike the case of linear systems, for essentially nonlinear homogeneous systems,
the preservation of stability while passing from differential systems to difference ones can
be guaranteed for an arbitrary digitization step.

Furthermore, in [12, 14], theorems on the stability by nonlinear approximation were
obtained for various classes of difference systems.

3.5 Stability analysis of nonlinear time-delay systems

In the papers [5, 6, 13, 15], certain classes of nonlinear time-delay systems have been
studied. It was assumed that the trivial solution of a system is asymptotically stable
when delay is equal to zero. The Lyapunov direct method and the Razumikhin theorem
were used to show that if the system is essentially nonlinear, i.e., the right-hand sides of
the system do not contain linear terms, then the asymptotic stability of the zero solution
is preserved for an arbitrary positive value of the delay. On the basis of the proposed
approach, new delay-independent stability conditions have been obtained for wide classes
of nonlinear systems, see [5, 6, 13, 15].

In particular, in [6], homogeneous time-delay system of the form

ẋ(t) = F(x(t),x(t − τ)) (9)

has been considered. Here x(t) ∈ R
n; the components of the vector F(x,y) are homoge-

neous functions of the order µ > 1, defined for x,y ∈ R
n, and continuous with respect to

their variables, and continuously differentiable with respect to y; τ is a constant positive
delay. This means that system (9) admits the zero solution.

Theorem 3.3 Let the zero solution of the corresponding delay free system ẋ(t) =
F(x(t),x(t)) be asymptotically stable. Then the zero solution of (9) is asymptotically
stable for any value of τ > 0.
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3.6 Estimates of the convergence rate of solutions

Zubov’s results on the finite-time stability and synchronization have been vigorously
developed during the past decades, see [16, 17] and the references cited therein.

In [12], a discrete-time counterpart of estimates (5) was obtained for nonlinear ho-
mogeneous difference systems.

In [15], in terms of the Razumikhin approach, a procedure for the estimation of the
convergence rate of solutions for essentially nonlinear time-delay systems was developed.

3.7 Stability by the first, in a broad sense, approximation

Some results on the stability by the first, in a broad sense, approximation have been
obtained in [1, 5, 9, 10, 19, 20]. For instance, in [9, 10], a generalization of system (7)
was studied. With the aid of the well-known Martynyuk–Obolenskij stability criteria for
autonomous Wazewskij systems, see [25], an approach to the construction of Lyapunov
functions for the system in question was proposed, and existence conditions for such
functions were found. By the use of the Lyapunov functions constructed, new theorems on
the stability and ultimate boundedness by nonlinear approximation have been proved [9,
10].

4 Conclusion

Vladimir Zubov was a prominent scholar, engineer and university lecturer. In the previ-
ous sections we have reviewed just only one area of scientific activity of his own and his
successors.

Zubov is the author of about 200 publications including 31 monographs and text
books. He was an advisor for 20 DSc and about 100 PhD dissertations. Under Zubov’s
supervision, a worldwide famous school in control theory was developed in St. Petersburg.

In 1968 V. I. Zubov became the USSR State Prize winner for his pioneer works in
Control Theory. In 1981 he was elected a corresponding member of the Soviet Union
Academy of Sciences, and in 1998 he was awarded the title of the Honor Scholar of
the Russian Federation. In 1996, the Zubov scientific school “Processes of control and
stability” was the winner of the competition for the State support of leading scientific
schools of Russia. In 2001, the Research Institute of Computational Mathematics and
Control Processes of St. Petersburg State University was named after him.

For outstanding merits to the world science, Zubov’s name was perpetuated as a
name of minor planet ’ZUBOV 10022’. This asteroid has a size of 6 km, a brightness of
13.8 magnitude, and the greatest orbit’s semiaxis of 2.369 astronomical units.
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Abstract: Mathematical models related to some Josephson junctions are pointed
out and attention is drawn to the solutions of certain initial boundary problems and
to some of their estimates. In addition, results of rigorous analysis of the behaviour
of these solutions when t → ∞ and when the small parameter ε tends to zero are
cited. These analyses lead us to mention some of the open problems.
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1 Introduction

Our purpose is to:
i) furnish a short review of the mathematical contributions to the dynamics of the

Josephson junctions,
ii) introduce some possible open problems.
From the mathematical point of view, many descriptions of superconductivity phe-

nomena have been developed and an important contribution has been given by Brian
David Josephson. He predicted in 1962 the tunnelling of superconducting Cooper pairs
through an insulating barrier to pass from one superconductor to another (Josephson
effect). He also predicted the exact form of the current and voltage relations for the
junction (Josephson junction) [1]. (Experimental work proved that his theory was right,
and Josephson was awarded the 1973 Nobel Prize in Physics.)
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The flux-dynamics of a Josephson junction, i.e., two layers of superconductors sep-
arated by a very thin layer of insulating material, can be described by means of Sine–
Gordon equation (SGE):

uxx − utt = sinu, (1)

where x denotes the direction of propagation, t is time and the variable u = u(x, t) repre-
sents the difference between the phases of the wave functions of the two superconductors.

However, in dealing with real junctions it seems necessary to take into account other
effects such as losses and bias. Therefore, many authors prefer to consider the so-called
perturbed Sine–Gordon equation (PSGE):

εuxxt + uxx − utt − aut = sinu− γ. (2)

In this case, terms εuxxt and aut represent respectively the dissipative normal electron
current flow along and across the junction, (longitudinal and shunt losses) while γ is the
normalized current bias [2]. The value’s range for a and ε depends on the real junction.
Indeed, there are cases with 0 < a, ε < 1 and, when the shunt resistance of the junction
is low, the case a large with respect to 1 arises [2–4].

In some cases, extra terms must be considered. For example in a semiannular or in a
S-shaped Josephson junction, when an applied magnetic field b parallel to the plane of
the dielectric barrier is considered, the dynamic equation is:

εuxxt + uxx − utt − aut = sinu− γ − b cos(kx), (3)

where the last term evaluates a transient force on the trapped fluxons and locates these
ones at the center of the junction [2,5,6]. Moreover, if an annular junction, also provided
with a microshort, is considered, the vortex dynamics in a static magnetic field is modelled
with the general perturbed sine–Gordon equation (see, f.i. [7]):

εuxxt + uxx − utt − aut = [1− δ(x)µ] sin u− γ − b cos(kx), (4)

where µ is the current density associated with the microshort.
Nowadays, in addition to rectangular or annular junctions, many other geometries

for Josephson junctions have been proposed. For instance, window Josephson junctions
(WJJ) ( [8] and reference therein) or exponentially shaped Josephson junctions (ESJJ)
[9–12]. This type of junction is only a particular case of a structure covering a region

0 ≤ x ≤ L, g2(x) ≤ y ≤ g1(x). (5)

Denoting by

0 < w(x) = g1(x) − g2(x) ≪ 1, (6)

the evolution of the phase inside the junction is given by:

εuxxt + uxx − utt − aut = sinu− Γ(x) −
ẇ(x)

w(x)
(ux + εuxt) + ηy

ẇ(x)

w(x)
, (7)

where Γ(x) =
ηx|g2

−ηx|g1

w(x) and ηx ηy is the normalized magnetic field respectively in the

x and y directions [10]. When one assumes g1(x) = −g2(x) = wo e
−λx, where λ is a

constant that, generally, is less than one, an ESJJ is obtained. Moreover, assuming
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that there is no bias current so that Γ(x) = 0 and ηy = 0, the equation achieved is the
following:

εuxxt + uxx − utt − ελuxt − λux − aut = sinu. (8)

The current due to the tapering is represented by terms λux and λ ε uxt . In par-
ticular λux characterizes the geometrical force driving the fluxons from the wide edge
to the narrow edge. These junctions assure many advantages compared to rectangular
ones, such as a voltage which is not chaotic anymore, but rather periodic excluding, in
this way, some among the possible causes of large spectral width. It is also proved that
the problem of trapped flux can be avoided (see f.i. [10]).

There exist numerous applications of Josephson junctions especially as superconduct-
ing quantum interference device (SQUID), which consists of a loop of superconductor
with one or more Josephson junctions. These devices are one of the most important
applications of superconductivity. They are basically extremely sensitive sensors of mag-
netic flux. This peculiarity allows to diagnose heart and/or blood circuit problems using
magnetocardiograms and even to evaluate magnetic fields generated by electric currents
in the brain using magnetoencephalography -MEG- [2]. SQUIDs are also used in non-
destructive testing as a convenient alternative to ultra sound or x-ray methods (see [2]
and reference therein). In geophysics, instead, they are used as gradiometers [3] or as
gravitational wave detectors (see [4] and reference therein). SQUIDs play an important
role in the study of the potential virtues of superconducting digital electronics, too [13].

2 Mathematical Models and Equivalences

All equations previously considered have something in common. More precisely, if one
denotes by L the following linear third order parabolic operator:

L = ε∂xxt − ∂tt + ∂xx − α∂t, (9)

(1)-(4) and (8) can be expressed by means of the unique equations:

Lu = f(x, t, u). (10)

According to the meaning of f, numerous other examples of dissipative phenomena can be
considered. For example, equation (10) arises in the motion of viscoelastic fluids or solids
(see [14–17] and references therein) and in the study of viscoelastic plates with memory,
when the relaxation function is given by an exponential function [18]. It can also be
employed in the analysis of phase-change problems for an extended heat conduction model
[19,20]. In addition, equation (10) arises also in heat conduction at low temperature [15,
21] and in the propagation of localized magnetohydrodinamic models in plasma physics
[22]. Still, it is possible to find others in [23–26].

Then, an equivalence between the third order equation (10), typical of Josephson
junctions, and biological phenomena has been pointed out in [27]. Indeed, let us consider
the FitzHugh-Nagumo system (FHN) [28, 29]:











∂ u

∂ t
= ε

∂2 u

∂ x2
− v − a u + u2 ( a+ 1 − u ) (0 < a < 1),

∂ v

∂ t
= b u − β v,

(11)

where u(x, t) represents a membrane potential of a nerve axon at distance x and time
t, and v(x, t) is a recovery variable that models the transmembrane current.



234 M. DE ANGELIS

This reaction-diffusion model characterizes the theory of the propagation of nerve
impulses, and the connection between a third order equation like (10) and the (FHN)
system can be realized changing the first one into the second one under continuous
parameter variations [27].

An equation that is able to model all these physical problems has been introduced
in [30] and it is represented by the following parabolic integro-differential equation:

LR u ≡ ut − εuxx + au+ b

∫ t

0

e−β(t−τ) u(x, τ) dτ = F (x, t, u). (12)

Indeed, it has been proved that (12) characterizes both reaction diffusion models like
the FitzHugh-Nagumo system and superconductive models [30–34].

In particular, perturbed Sine-Gordon equation (2) can be obtained by (12) as soon
as one assumes

a = α −
1

ε
, b = −

a

ε
, β =

1

ε
(13)

and F is such that

F (x, t, u) = −

∫ t

0

e−

1

ε
(t−τ ) [ sen u(x, τ) − γ ] dτ. (14)

Furthermore, the integro-differential equation (12) is able to describe the evolution
inside an exponentially shaped Josephson junction, too. Indeed, as it has already been
underlined in [12], assuming

β =
1

ε
, b = β2 (1 − α ε), a β =

λ2

4
− b, (15)

F = −

∫ t

0

e−
1

ε
(t−τ)f1(x, τ, u) dτ,

with

f1 = e−
λ
2
x [ sin (e xλ/2 u) − γ], (16)

from the integro-differential equation (12) it follows:

εuxxt − utt + uxx − (α + ε
λ2

4
)ut −

λ2

4
u = f1. (17)

Therefore, assuming e
λ
2
x u = ū, (17) turns into equation (8).

Remark: In (12) the kernel e−β(t−τ) u(x, τ) can be modified as physical situations
demand and in this way many other physical phenomena could be described (see, f.i.
[35–38] and references therein). The particular choice made here is due to describe the
superconductive and biological models considered.

3 Mathematical Results

There exist many significant analytic results concerning the qualitative analysis of equa-
tions related to Josephson junctions and many initial-boundary problems have been dis-
cussed in a lot of papers (see [15, 39–43] and references therein).
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A first analysis, where the fundamental solution is determined, concerns operator L in
case α = 0 [14,44]. Later, in [45,46], the fundamental solution of the whole operator L of
(9) is explicitly determined and various properties are analyzed. Estimates and properties
of continuous dependence for the solution of initial value problem are determined, too.

Moreover, in [47], in order to deduce an exhaustive asymptotic analysis, the Green
function of the linear operator L of (9) has been determined by Fourier series and by
means of its properties, an exponential decrease of solution related to the Dirichlet prob-
lem is deduced. And still by means of Fourier series, existence and uniqueness for Dirich-
let, Neumann and pseudoperiodic initial-boundary conditions are achieved, too [42, 43].

The Dirichlet problem is still considered with respect to equation (8) and in [11] the
problem is reduced to an integral equation with kernel G endowed with rapid convergence
and exponentially vanishing as t tends to infinity. Indeed, let

γn =
nπ

l
, bn = (γ2

n + λ2/4 ), gn =
1

2
(α + ε bn ), ωn =

√

g2n − bn (18)

and

Gn(t) =
1

ωn

e−gn t sinh(ωnt), (19)

the Green function is given by

G(x, t, ξ) =
2

l
e

λ
2

x

∞

∑

n=1

Gn(t) sinγnξ sinγnx. (20)

The initial boundary problem with Dirichlet conditions is analyzed and an appropriate
analysis implies results on the existence and uniqueness of the solution.

That is, indicating by

ΩT ≡ { (x, t) : 0 ≤ x ≤ L ; 0 < t ≤ T },

the following initial boundary problem














(∂xx − λ∂x ) (εut + u)− ∂t(ut + αu) = F (x, t, u), (x, t) ∈ ΩT ,

u(x, 0) = h0(x), ut(x, 0) = h1(x), x ∈ [0, L],

u(0, t) = g1(t), u(l, t) = g2(t), 0 < t ≤ T.

(21)

for g1 = g2 = 0 admits the following integral equation:

u(x, t) = (∂t + α+ ε λ∂x − ε∂xx)

∫ L

0

h0(ξ)e
−

λξ

2 G(x, ξ, t)dξ (22)

+

∫ L

0

h1(ξ)e
−

λξ

2 G(x, ξ, t)dξ +

∫ t

0

dτ

∫ L

0

G(x, ξ, t− τ)e−
λξ

2 F (ξ, τ, u(ξ, τ))dξ.

So, a priori estimates, continuous dependence and asymptotic behaviour of the solu-
tion, are deduced, too.

When boundary data are non null, in order to achieve explicit estimates of boundary
contributions related to the Dirichlet problem, equivalence between the equation describ-
ing the evolution inside an (ESJJ) and the integro-differential equation (12) has been
considered. Indeed, operator LR of (12) has already been extensively examined in [30]
and the fundamental solution K with many of its properties have been determined.
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More in detail, if a, b, ε, β are positive constants, r = |x| /
√
ε and Jn(z) denotes

the Bessel function of first kind and order n, let us consider the function

K(r, t) =
e−

r2

4t

2
√
πεt

e−at −
1

2

√

b

πε

∫ t

0

e−
r2

4y
−ay

√
t− y

e−β(t−y)J1(2,
√

by(t− y) )dy. (23)

The following theorem has been proved:

Theorem 3.1 The function K has the same basic properties of the fundamental
solution of the heat equation, that is: K(x, t) ∈ C∞ for t > 0, x ∈ ℜ.

For fixed t > 0, K and its derivatives are exponentially vanishing as fast as |x|
tends to infinity.

For any fixed δ > 0, uniformly for all |x| ≥ δ, it results:

lim
t ↓0

K(x, t) = 0. (24)

For t > 0, it is LR K = 0.
Moreover, it results

|K(x, t)| ≤
e−

x2

4ε t

2
√
πεt

[ e− at + bt
e− at − e−β t

β − a
]. (25)

Previous estimates show, as well, that K exponentially decays to zero as t increases.
These and other properties also allowed to prove in [12] numerous properties of the
following function which is similar to theta functions:

θ(x, t) = K(x, t) +

∞

∑

n=1

[K(x+ 2nL, t) +K(x− 2nL, t)] =

∞

∑

n=−∞

K(x+ 2nL, t). (26)

So that, as for problem (21), denoting by

G(x, ξ, t) = θ ( |x− ξ|, t ) − θ (x+ ξ, t )

and

F (x, t, u) = e−
λ
2
x

[
∫ t

0

e−
1

ε
(t−τ)[ sin (e xλ/2 u) − γ] dτ − h1(x) e

−

t
ε

]

,

it has been proved that the problem admits the following integral equation:

u(x, t) =

∫ L

0

G(x, ξ, t)e−
λ
2
xh0(ξ)dξ +

∫ t

0

dτ

∫ L

0

G(x, ξ, t)F (ξ, τ, u(x, τ))dξ (27)

−2ε

∫ t

0

θx(x, t− τ)g1(τ)dτ + 2ε

∫ t

0

θx(x− L, t− τ)e−
λL
2 g2(τ)dτ.

Besides, a priori estimates and asymptotic properties have proved that when t tends
to infinity, the effect due to the initial disturbances (h0, h1 ) is vanishing, while the effect
of the non linear source is bounded for all t. Furthermore, for large t, the effects due to
boundary disturbances g1, g2 are null or at least everywhere bounded.

Indeed, if h0 = h1 = 0 and F = 0, the following theorem holds:
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Theorem 3.2 When t tends to infinity and data gi (i = 1, 2) are two continuous
functions convergent for large t, one has:

u = g1,∞
sinhσ0 (L− x)

sinh σ0 L
+ g2,∞

sinhσ0 x

sinh σ0 L
, (28)

where σ0 = λ
2 and gi,∞ = limt→∞

gi, (i = 1, 2). Otherwise, when ġi ∈ L1[0,∞] (i = 1, 2)
too, the effects determined by boundary disturbance vanish.

Another aspect frequently highlighted in many papers is that the linear third order
operator L is an example of wave operator perturbed by higher order viscous terms. The
behaviour of solution of (10) when α = 0, has been analyzed in various applications of
artificial viscosity method [48,49]. Moreover, in [50], when ε is vanishing, the interaction
between diffusion effects and pure waves has been evaluated by means of slow time εt

and fast times t/ε. These aspects are also analyzed in [16] referring to the strip problem
for equation (10) with a linear source term f , while in the non-linear case, the Neumann
boundary problem has been discussed in [51].

Also equation (8) can be considered as a semilinear hyperbolic equation perturbed
by viscous terms described by higher-order derivatives with small diffusion coefficients ε.
In [52], the influence of the dissipative terms has been estimated proving that they are
both bounded when ε tends to zero and when time tends to infinity, giving a mathematical
proof of what has been observed in [9].

As for explicit solutions, an extensive literature exists, and more recently, various
classes of solutions for (SGE) have been determined (see, f.i., [53, 54]). Furthermore,
when ε = 0, some travelling-wave solutions for (2) have been obtained both for |γ| not
larger than 1 and for |γ| > 1 [55, 56]. Still when ε = 0, some classes of explicit solutions
have been determined for equation (8), too [52].

4 Open Problems

In light of what has been stated until now, many open problems can be highlighted.
It would be interesting, for example, to study equation (2) when interface conditions

for the phase (and its normal gradient) are added, connecting, in this way, with the
problems of window Josephson junctions (WJJ) when the influence of an external mag-
netic field must be considered [57]. Indeed, letting ε = 0, (2) exactly recalls one of the
equations usually considered for (WJJ).

When, on the other hand, ε is not vanishing, a viscous term, represented by the third
order term, appears. So that, it would be interesting to give an estimate of the diffusive
effects due to the ε-term, too.

Moreover, according to the analogy between superconductor equations and reaction-
diffusion models, the Robin boundary problem would be considered in order to achieve
results for many biological phenomena, too [58, 59].

Besides, as for analysis on asymptotic effects due to the boundary perturbations
related to equation (8), as it has been pointed out, the Dirichlet boundary problem has
already been considered in [12]. So, the evaluation could be extended to other boundary
problems, such as, for instance, Neumann and mixed ones.

Of course, in order to achieve estimates for other more significant physical problems,
this analysis and many other estimates could be carried out for solution of equation
(3) and for equations like (4) where the presence of a gap in the vacuum chamber is
considered, too [41].



238 M. DE ANGELIS

The analysis conducted so far required that in (12) constants a, b, ε, β were all
positive. This can be valid if we look for an analogy with an (ESJJ), but excludes
application of (12) to some other junctions. Therefore it would be interesting to extend
the analysis of operator LR for any value of a, b, ε, β.

Finally a qualitative analysis of operators should be made in case ε, α, λ were not
constant.

5 Conclusion

The state of the art proves that many significant analytic results concerning the qualita-
tive analysis of equations related to Josephson junctions have been obtained and many
initial-boundary problems have been discussed. However other many important open
problems may be considered and solved.
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Abstract: This is a study of the scalar fractional differential equation of Riemann-
Liouville type

D
q
x(t) = f(t, x(t)), lim

t→0+
t
1−q

x(t) = x
0
,

where q ∈ (0, 1) and x
0
6= 0. This is first written as a Volterra integral equation

x(t) = x
0
t
q−1 +

1

Γ(q)

∫ t

0

(t− s)q−1
f(s, x(s)) ds.

After two existence results for a solution on a short interval (0, T ] are presented, it is
then transformed in two steps into an integral equation

y(t) = F (t) +

∫ t

0

R(t− s)

[

y(s) +
f(s+ T, y(s))

J

]

ds,

where y(t) = x(t + T ). The function R is completely monotone on (0,∞) and
∫

∞

0
R(t) dt = 1. When f is bounded and continuous for y bounded and continu-

ous on [0,∞), then the integral maps sets of bounded continuous functions into sets
of bounded equicontinuous functions. Moreover, F is uniformly continuous on [0,∞),
F (t) → 0, and F ∈ L

1[0,∞), while J is an arbitrary positive constant. A growth
condition on f is used to show that all of these equations share solutions.

The point of the work is that an integral equation with two singularities and a
kernel having infinite integral is transformed into an equation with a mildly singular
kernel and finite integral. That final form is very suitable for a variety of fixed point
theorems yielding qualitative properties of solutions of each of the stated equations.
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1 Introduction

A myriad of real-world problems can be modeled by the fractional differential equation
of Riemann-Liouville type

Dqx(t) = f(t, x(t)), lim
t→0+

t1−qx(t) = x0 (0 < q < 1). (1.1)

Substantial treatments are found in Diethelm [10], Kilbas et al. [12], Lakshmikantham
et al. [14], and Podlubny [19]. An annotated bibliography is found in Oldham and
Spanier [17].

Under certain conditions it is known that this initial value problem and the Volterra
equation

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds (1.2)

share solutions. Equation (1.2) is far more familiar to most analysts than is (1.1), so there
is good reason to pursue a study of (1.2) and its relation to (1.1). It can be argued that
this last equation has essentially three singularities and a kernel which does not belong
to L1(0,∞). The singular forcing function immediately feeds back into the function f

producing a singularity which can cause us to restrict the values of q for which a solution
will exist. These properties offer a strong challenge. Our goal is to transform it into a
far more tractable equation.

The conditions with (1.1), and subsequently transferred to (1.2), are of critical impor-
tance. Both the literature and the results which we will obtain here dictate very precise
properties for solutions contained in this definition.

Definition 1.1 For a given q ∈ (0, 1), a function φ : (0, T ] → ℜ is said to be a solution
of (1.2) if φ is continuous, if φ satisfies (1.2) on (0, T ], and if

t1−qφ(t) is continuous on [0, T ] with lim
t→0+

t1−qφ(t) = x0.

The first task is to obtain some general existence theorems for solutions on a short
interval (0, T ] which will get us past the singularities and facilitate the transformation.
The continuing work does not rely on these particular existence results, but asks only
local existence.

Next, we improve the kernel by transforming the Volterra equation into an interme-
diate equation

x(t) = z(t) +

∫ t

0

R(t− s)

[

x(s) +
f(s, x(s))

J

]

ds (1.3)

in which J is an arbitrary positive constant, while R is a completely monotone kernel
residing in L1(0,∞), while

z(t) = x0tq−1 −

∫ t

0

R(t− s)x0sq−1ds (1.4)

still contains the singularity in the forcing function. Thus, we make one more transfor-
mation mapping that last equation into

y(t) = F (t) +

∫ t

0

R(t− s)

[

y(s) +
f(s+ T, y(s))

J

]

ds, (1.5)
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where y(t) = x(t + T ). Not only is the kernel nice but now our function F is uniformly
continuous on [0,∞), F (t) → 0 as t→ ∞, and F ∈ L1[0,∞).

With this we have achieved our goal. We have transformed the fractional equation
into a very standard Volterra equation with a mildly singular kernel. From this the inves-
tigator can now move out and apply classical techniques to obtain qualitative properties
of solutions of the original fractional differential equation. There is a more complete
summary and guide for further work located in the first part of Section 4.

While our goal is the transformation, in the process there emerges a property which
seems entirely new. In order to obtain our existence theorem for a solution on (0, T ], we
ask a growth condition

|f(t, x)| ≤ |f(t, 0)|+Ktr1|x|r2 ,

∫ T

0

|f(t, 0)| dt <∞ (1.6)

for 0 < t ≤ T with r1 > −1 and other technical conditions including

r1 + r2(q − 1) + 1 > 0. (1.7)

The local existence follows from these, a contraction mapping, and a nonlinear Lipschitz
condition. A similar growth condition is also used (in work to be offered elsewhere
because of its length), together with Schauder’s theorem, to obtain existence without a
Lipschitz condition.

1.1 Two central issues

There are two properties which will play central roles in this paper and we want to alert
the reader to them early. The first issue is that existence theory must place restrictions
on the values of q in (0, 1). As r1 and r2 are constants inherently part of f(t, x), (1.7)
restricts the values of q to an interval q0 < q < 1 for some q0 ≥ 0, a restriction not seen
in the aforementioned references. However, Example 2.3 shows that general existence
theorems must contain such restrictions. A study of the references reveals that such
restrictions were missed since the investigators ask for either a Lipschitz condition, a
severe bound on f , or both. See Section 2.5 of [14], [19, p. 127], or [10, p. 77] for example.
This brings in the property which to a large extent ties this paper together. Every
existence result which we have encountered either in the literature cited just now or in
our own work presented here and in preparation has a condition subsumed by

|f(t, x)| ≤ u(t) +K2t
r1 |x|r2 (1.6*)

with mild conditions on u(t) and technical relations between q, r1, r2. It is common to
find q restricted to an interval smaller than (0, 1) [13, p. 1 and Lemma1] for reasons other
than existence theory.

The second issue is encountered almost immediately and continues to be foremost in
the considerations. A main sufficient condition to transfer from (1.1) to (1.2) and again
to transfer from (1.2) to (1.3) is that a solution on a short interval (0, T ] must satisfy

∫ T

0

[|x(s)| + |f(s, x(s))|] ds <∞. (1.8)

Now, the two issues are brought together using Lemma 2.1 and Theorem 2.6. It is
shown that if there is a solution and if f does satisfy (1.6) then it will also satisfy (1.8).
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Thus, every existence theorem we encounter asks (1.6) and, hence, has as a corollary
(1.8). And (1.8) is a main sufficient condition to pass from (1.1) to (1.2) and is also a
main sufficient condition to pass from (1.2) to (1.3). The passage from (1.3) to (1.5) is
just a translation. Hence, our entire stated problem of passing from (1.1) to (1.5) rests
in an essential way on (1.6), and consequently on (1.8), whether we use one of our own
existence results or one of the cited works.

2 Existence and Uniqueness

We are concerned with the fractional differential equation and initial condition

Dqx(t) = f(t, x(t)), lim
t→0+

t1−qx(t) = x0 (0 < q < 1), (2.1)

where x0 ∈ ℜ, x0 6= 0, f : (0, T ] × ℜ → ℜ is continuous for some T > 0. The symbol
Dq denotes the Riemann-Liouville fractional differential operator of order q, which for
0 < q < 1 is defined by

Dqx(t) :=
1

Γ(1− q)

d

dt

∫ t

0

(t− s)−qx(s) ds,

where Γ: (0,∞) → ℜ is Euler’s Gamma function:

Γ(x) :=

∫

∞

0

tx−1e−t dt.

Our study will focus on the integral equation

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds, (2.2)

where q ∈ (0, 1) and x0 ∈ ℜ. However, we exclude x0 = 0 from consideration since
this particular value would remove the singularity at t = 0, thereby changing (2.2) to a
different type of equation.

Notice that this equation contains essentially three singularities. The singular forcing
function and kernel are clear. But there is instantaneous feedback of the forcing function
into the function f resulting in a complicated singularity in the integrand. This will
become more clear as we study existence problems and examine growth properties of f .

The following result given in [4] establishes mild conditions under which (2.1) and
(2.2) are equivalent in the sense that they share solutions.

Theorem 2.1 Let q ∈ (0, 1) and x0 6= 0. Let f(t, x) be a function that is continuous
on the set

B := {(t, x) ∈ ℜ2 : 0 < t ≤ T, x ∈ I},

where I ⊂ ℜ denotes an unbounded interval. Suppose a function x : (0, T ] → I is con-
tinuous and that both x(t) and f(t, x(t)) are absolutely integrable on (0, T ]. Then x(t)
satisfies the initial value problem (2.1) on the interval (0, T ] if and only if it satisfies the
Volterra integral equation (2.2) on this same interval.
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It can give the reader pause to be confronted with the need to show x(t) and f(t, x(t))
absolutely integrable. But according to the discussion in the subsection of the introduc-
tion, a sufficient condition is that f satisfy (1.6) and that requires no knowledge of the
solution.

In order to get past the singularity in the forcing function, tq−1, we will first present
two existence results for a short interval (0, T ]. In the first existence result (cf. Theo-
rem 2.5), we assume there is a positive constantK2 so that f : [0, T ]×ℜ → ℜ is continuous
and satisfies the Lipschitz condition

|f(t, x)− f(t, y)| ≤ K2|x− y| (2.3)

for 0 ≤ t ≤ T and all x, y ∈ ℜ. Then, because of the continuity of f , there is also a
positive constant K1 such that

|f(t, x)| ≤ |f(t, 0)|+K2|x| ≤ K1 +K2|x| (2.4)

for 0 ≤ t ≤ T and all x ∈ ℜ. In the second existence result (cf. Theorem 2.7), f is
allowed to have a singularity at t = 0 and the Lipschitz condition (2.3) is replaced with
a more general condition.

All of our work on existence will be done in a certain weighted space (X, | · |g), which
we define next. The term g-norm is what we call | · |g.

Definition 2.1 For a fixed T > 0 and for g(t) := tq−1, let (X, | · |g), or simply X ,
denote the space of continuous functions φ : (0, T ] → ℜ for which

|φ|g := sup
0<t≤T

|φ(t)|

g(t)

is finite.

Theorem 2.2 The space (X, | · |g) is a Banach space.

Proof. It is a straightforward exercise to show that X is a subspace of the vector
space of all continuous functions on (0, T ] and to verify that | · |g is a norm. Thus,
(X, | · |g) is a normed vector space. To show that it is also complete, let {xn} ⊂ X be a
Cauchy sequence. This translates into {t1−qxn(t)} being a uniformly Cauchy sequence
of continuous functions on (0, T ]. By the Cauchy criterion, it converges uniformly on
(0, T ] to a limit function ϕ, which is also continuous on (0, T ]. Finally, ϕ ∈ (X, | · |g). In
order to see this, choose N large enough so that

∣

∣

∣

∣

ϕ(t)

tq−1
−
xN (t)

tq−1

∣

∣

∣

∣

< 1

for all t ∈ (0, T ]. Then we have

|ϕ(t)|

tq−1
≤

∣

∣

∣

∣

ϕ(t)

tq−1
−
xN (t)

tq−1

∣

∣

∣

∣

+

∣

∣

∣

∣

xN (t)

tq−1

∣

∣

∣

∣

< 1 +
|xN (t)|

tq−1
.

Hence

sup
0<t≤T

|ϕ(t)|

tq−1
≤ 1 + sup

0<t≤T

|xN (t)|

tq−1
<∞.
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We now define a mapping P by φ ∈ X implies that

(Pφ)(t) := x0tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, φ(s)) ds (2.5)

and show that P : X → X . The next theorem involves the integral

H(t) :=

∫ t

0

(t− s)n−1φ(s) ds. (2.6)

It follows from classical theorems for Lebesgue integrals depending on a parameter (e.g. [2,
Thm. 10.38]) that if the function φ is continuous on a closed interval [0, T ], then so is H.
Part of the proof of this result depends on φ being bounded on [0, T ]. However, even if
φ(s) has a singularity at s = 0, we still have the following lemma.

Lemma 2.1 Let n ∈ ℜ+. If a function φ is continuous and absolutely integrable on
(0, T ], then the integral H given by (2.6) defines a function that is also continuous and
absolutely integrable on (0, T ].

A proof of this lemma can be found in [4, Lemma 4.6]. It will be used twice in the
proof of the following theorem. The transformation of Section 3 will rest heavily on it.

Theorem 2.3 Let P be the mapping defined by (2.5).

(i) If φ ∈ X, then
∫ t

0
(t− s)q−1φ(s) ds ∈ X.

(ii) If for each φ ∈ X a function ψφ ∈ X exists with

|f(t, φ(t))| ≤ ψφ(t) (2.7)

for all 0 < t ≤ T , then
∫ t

0 (t− s)q−1f(s, φ(s)) ds ∈ X.

(iii) If (ii) holds and if φ ∈ X, then Pφ ∈ X.

Proof. According to the definition of the weighted space, we must show that the
integral function in (i) is continuous and that

sup
0<t≤T

1

g(t)

∣

∣

∣

∣

∫ t

0

(t− s)q−1φ(s) ds

∣

∣

∣

∣

<∞,

where g(t) = tq−1.
As for continuity, first notice that as φ ∈ X then

|φ(t)| ≤ |φ|g t
q−1

for 0 < t ≤ T . Hence, φ is absolutely integrable on (0, T ] since

∫ T

0

|φ(t)| dt ≤ |φ|g

∫ T

0

tq−1 dt = |φ|g
T q

q
<∞.

It then follows that
∫ t

0
(t− s)q−1φ(s) ds is continuous on (0, T ] by Lemma 2.1. As for the

second part of the proof of (i), we have
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1

g(t)

∣

∣

∣

∣

∫ t

0

(t− s)q−1φ(s) ds

∣

∣

∣

∣

≤
1

tq−1

∫ t

0

(t− s)q−1|φ(s)| ds

≤
1

tq−1

∫ t

0

(t− s)q−1|φ|g s
q−1 ds = t1−q|φ|g

∫ t

0

(t− s)q−1sq−1 ds

for 0 < t ≤ T . With the change of variable s = tv, the integral becomes
∫ t

0

(t− s)q−1sq−1 ds = t2q−1

∫ 1

0

vq−1(1 − v)q−1 dv.

Now it can be expressed in terms of the Beta function, namely, the function B(p, q) that
is defined by

B(p, q) :=

∫ 1

0

vp−1(1− v)q−1 dv (2.8)

and which converges if and only if both p and q are positive. Hence,
∫ t

0

(t− s)q−1sq−1 ds = t2q−1B(q, q) <∞

since B(q, q) converges as q > 0. Since the Beta function is related to the Gamma
function (cf. [11, p. 200] or [18, p. 521]) by the equation

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
,

we obtain
∫ t

0

(t− s)q−1sq−1 ds = t2q−1 Γ
2(q)

Γ(2q)
.

As a result, we have

1

g(t)

∣

∣

∣

∣

∫ t

0

(t− s)q−1φ(s) ds

∣

∣

∣

∣

≤ t1−q |φ|g t
2q−1 Γ

2(q)

Γ(2q)
≤
T qΓ2(q)

Γ(2q)
|φ|g <∞

for all t ∈ (0, T ]. This concludes the proof of (i).
Let φ ∈ X . Then, as a function ψφ ∈ X exists satisfying (2.7), we have

∫ T

0

|f(t, φ(t)| dt ≤

∫ T

0

ψφ(t) dt <∞.

This allows us to invoke Lemma 2.1 again to conclude that the integral function in (ii)
is continuous on (0, T ]. Also, as ψφ ∈ X , it follows from (i) that

1

g(t)

∣

∣

∣

∣

∫ t

0

(t− s)q−1f(s, φ(s)) ds

∣

∣

∣

∣

≤
1

g(t)

∫ t

0

(t− s)q−1|f(s, φ(s))| ds ≤
1

g(t)

∫ t

0

(t− s)q−1ψφ(s) ds

≤ sup
0<t≤T

1

g(t)

∣

∣

∣

∣

∫ t

0

(t− s)q−1ψφ(s) ds

∣

∣

∣

∣

<∞

for all t ∈ (0, T ], which completes the proof of (ii).
Finally, it follows from (ii) and x0tq−1 ∈ X that all terms of P belong to X . Since X

is a vector space, Pφ ∈ X .
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Theorem 2.4 Let f : (0, T ] × ℜ → ℜ be continuous. Suppose that a function
x : (0, T0] → ℜ is a solution of

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds (2.2)

on (0, T0] where T0 ≤ T . Then, for each ǫ ∈ (0, |x0|), there is a T ∗ ≤ T0 so that

(|x0| − ǫ)tq−1 < |x(t)| < (|x0|+ ǫ)tq−1 < 2|x0|tq−1 (2.9)

for 0 < t ≤ T ∗.

Proof. We have

t1−qx(t) = x0 + t1−q 1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds

and t1−qx(t) is continuous on the closed interval [0, T0] (cf. Def. 1.1). It follows that

t1−q

∫ t

0

(t− s)q−1f(s, x(s)) ds

is continuous on [0, T0]. Now

0 = lim
t→0+

|t1−qx(t) − x0| =
1

Γ(q)
lim
t→0+

∣

∣

∣

∣

t1−q

∫ t

0

(t− s)q−1f(s, x(s)) ds

∣

∣

∣

∣

.

For a given ǫ ∈ (0, |x0|), there is a T ∗ ∈ (0, T0] such that 0 ≤ t ≤ T ∗ implies that

1

Γ(q)

∣

∣

∣

∣

t1−q

∫ t

0

(t− s)q−1f(s, x(s)) ds

∣

∣

∣

∣

< ǫ.

So, for 0 < t ≤ T ∗, we have

∣

∣|x(t)| − |x0|tq−1
∣

∣

≤
∣

∣x(t) − x0tq−1
∣

∣ =
1

Γ(q)

∣

∣

∣

∣

∫ t

0

(t− s)q−1f(s, x(s)) ds

∣

∣

∣

∣

< ǫtq−1.

Using the first and last terms, we obtain

−ǫtq−1 < |x(t)| − |x0|tq−1 < ǫtq−1

so that
(

|x0| − ǫ
)

tq−1 < |x(t)| <
(

|x0|+ ǫ
)

tq−1 < 2|x0|tq−1,

as required.

Corollary 2.1 For the T ∗ of Theorem 2.4, the solution x(t) has the sign of x0.
Moreover, x(t) is absolutely integrable on (0, T ∗].
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Proof. For the given ǫ ∈ (0, |x0|) and T ∗ in the proof of Theorem 2.4, we see that

|t1−qx(t) − x0| < ǫ

or
(x0 − ǫ)tq−1 < x(t) < (x0 + ǫ)tq−1

for 0 < t ≤ T ∗. And so if x0 > 0, then ǫ < x0 and

x(t) >
x0 − ǫ

t1−q
> 0

for 0 < t ≤ T ∗. If x0 < 0, then ǫ < −x0 and

x(t) <
x0 + ǫ

t1−q
< 0

for 0 < t ≤ T ∗.
Finally, as |x(t)| < 2|x0|tq−1 for 0 < t ≤ T ∗,

∫ T∗

0

|x(s)| ds ≤ 2|x0|

∫ T∗

0

sq−1 ds =
2|x0|

q
(T ∗)q <∞.

Corollary 2.2 Let f : [0, T ]× ℜ → ℜ be continuous and satisfy condition (2.4). If
x(t) is a solution of (2.2) on the interval (0, T ∗] as in Theorem 2.4, then both x(t) and
f(t, x(t)) are absolutely integrable on (0, T ∗].

Proof. It follows from (2.4) that

|f(t, x(t))| ≤ K1 +K2|x(t)|

for 0 ≤ t ≤ T ∗. We have already shown in Corollary 2.1 that x(t) is absolutely integrable
on (0, T ∗]. Thus,

∫ T
∗

0

|f(t, x(t))| dt ≤ K1T
∗ +K2

∫ T
∗

0

|x(t)| dt <∞.

Applications.

(a1) Theorem 2.4 tells us precisely where to look for a function x(t) satisfying the integral
equation (2.2). For a sufficiently small T ∗ ∈ (0, T ], it will lie in the set

M := {φ ∈ C(0, T ∗] | |φ(t)| ≤ 2|x0|tq−1},

where C(0, T ∗] denotes the set of all continuous functions on (0, T ∗]; and it will be
sandwiched between two constant multiples of x0tq−1, as in (2.9).

(a2) In this paper we mainly consider the growth of f(t, x), not its sign. However in
situations where the sign becomes important, then it will be critical to replace M
with the following set M+. Suppose x0 > 0. Then we see from Corollary 2.1 with
ǫ = x0/2 and T ∗ ∈ (0, T ] sufficiently small that the solution x(t) will reside in the
set

M+ := {φ ∈ C(0, T ∗] | 1
2x

0 < t1−qφ(t) < 3
2x

0}.

There is a parallel statement for x0 < 0.
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(b) A suitable space of functions for a fixed point mapping would be the Banach space
(X, | · |g) described in Definition 2.1.

(c) To find a solution of (2.2) we would contrive to define a mapping P : M → X by
φ ∈M implies that

(Pφ)(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, φ(s)) ds

and a fixed point of P in M would satisfy (2.2). We would then examine f(t, x)
in the light of the sandwich inequality (2.9) to determine the range of values of q
for which the remainder of the definition of solution would hold. The sandwich in-
equality tells us that if there is a solution it will lie very near x0tq−1. For reasonable
functions f , such as polynomials, we will be able to use that sandwich inequality
information to tell precisely which values of q will generate a solution.

(d) The absolute integrability of the solution will be used in Theorem 2.1 to show that
a solution of (2.2) is a solution of (2.1).

We now prepare to obtain a solution. Let X be the Banach space of continuous func-
tions φ : (0, T ] → ℜ satisfying Definition 2.1. Note that because of (2.4) the conditions
of part (ii) in Theorem 2.3 are satisfied. As a result, φ ∈ X implies

∫ t

0

(t− s)q−1f(s, φ(s)) ds ∈ X. (2.10)

For the given x0 6= 0 and some T0 ∈ (0, T ] to be determined, define the set M as before
by

M := {φ ∈ X : |φ|g ≤ 2|x0|}. (2.11)

Then for each φ ∈M ,
|φ(t)| ≤ 2|x0|tq−1

for 0 < t ≤ T0. For the set X , define the natural mapping P by φ ∈ X implies that

(Pφ)(t) := x0tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, φ(s)) ds (2.12)

for 0 < t ≤ T .
The following theorem can be proved by showing that P is a contraction on the set

M : that is to say, P : M →M and a constant α ∈ (0, 1) exists such that

ρ(Px, Py) ≤ αρ(x, y) (2.13)

for all x, y ∈M , where ρ(x, y) := |x− y|g is the metric provided by the norm | · |g. Then
Banach’s contraction mapping principle asserts that P has a unique fixed point in M ,
i.e., a unique φ ∈M such that Pφ = φ. Since this theorem will turn out to be a special
case of Theorem 2.7, the proof is omitted.

Theorem 2.5 Let f : [0, T ]×ℜ→ ℜ be continuous and satisfy the Lipschitz condition
(2.3). Then, for each q ∈ (0, 1), there is a T0 ∈ (0, T ] such that (2.2) has a unique
continuous solution φ on (0, T0] with

lim
t→0+

t1−q

∫ t

0

(t− s)q−1f(s, φ(s)) ds = 0, lim
t→0+

t1−qφ(t) = x0. (2.14)

Finally, both φ(t) and f(t, φ(t)) are absolutely integrable.
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Earlier we pointed out that the Volterra equation (2.2) has a singularity at t = 0 due
to the forcing function, a singularity at the upper limit of integration t due to the kernel,
and whatever singularity might arise from f . In the following example, f has an obvious
singularity at t = π2/4.

Example 2.1 The Volterra equation

x(t) =
1
√
t
−

1

2

∫ t

0

1
√
t− s

·
J1(

√
s)

cos(
√
s )

x(s) ds,

where J1(t) denotes the Bessel function of the first kind of order 1, has a unique con-
tinuous solution φ(t) on an interval (0, T0] for some value of T0 ∈ (0, π2/4). It satisfies
(2.14), where

f(t, x) = −

√
π J1(

√
t)

2 cos(
√
t )

x,

and both φ(t) and f(t, φ(t)) are absolutely integrable on (0, T0]. Furthermore, φ(t) is
also the unique continuous solution of the initial value problem

D1/2x(t) = −

√
π J1(

√
t)

2 cos(
√
t )

x(t), lim
t→0+

√
t x(t) = 1

on the interval (0, T0].

Proof. Comparing the Volterra equation with (2.2), we see that x0 = 1, q = 1/2,
and the function f is as given above. Since J1(z) is an entire function of z in the complex
plane, J1(

√
t) is continuous for all t ≥ 0. Thus, for any fixed T ∈ (0, π2/4), the part of

f depending only on t is continuous on the closed interval [0, T ]. This implies there are
positive constants K1,K2 such that (2.3) and (2.4) hold for 0 ≤ t ≤ T and all x, y ∈ ℜ.
As a result, all of the conclusions stated in the example, except for the very last one,
follow from Theorem 2.5. The last one follows from Theorem 2.1.

Remark 2.1 In fact, the function

φ(t) :=
cos(

√
t)

√
t

is the unique continuous solution of the Volterra equation on all of (0, π2/4). To verify
this, use the change of variable

√
s =

√
t sin θ. Then

∫ t

0

1
√
t− s

·
J1(

√
s)

cos(
√
s )

φ(s) ds =

∫ t

0

1
√
t− s

·
J1(

√
s)

√
s

ds

= 2

∫ π/2

0

J1(
√
t sin θ) dθ.

From an integration formula in [20, p. 374], we see that

√

2z

π

∫ π/2

0

J1(z sin θ) dθ = H1/2(z),
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where H1/2 denotes Struve’s function of order 1
2 . From [1, (12.1.16)], we have

H1/2(z) =

√

2

πz
(1− cos z).

Thus,
∫ π/2

0

J1(z sin θ) dθ =
1− cos z

z
.

Therefore, letting x(t) = φ(t), we obtain

1

2

∫ t

0

1
√
t− s

·
J1(

√
s)

cos(
√
s )

φ(s) ds =

∫ π/2

0

J1(
√
t sin θ) dθ

=
1− cos

√
t

√
t

=
1
√
t
− φ(t)

for 0 < t < π2/4.
In [4] we also verify directly that the function φ(t) is a solution of the fractional

differential equation and its accompanying initial condition in Example 2.1.

The proof of Theorem 2.5 rests on the Lipschitz condition (2.3). Let us generalize
this theorem by replacing the Lipschitz condition with a more general condition (cf. item
(iii)) below. In addition, consider the modifications listed below in items (i)–(ii).

(i) For some T > 0 let f : (0, T ]×ℜ → ℜ be continuous.

(ii) Let r1 > −1. Let r2 = m/n, where m,n are positive integers with no common
factors and n is odd, and r2 ≥ 1. (Note then that xr2 ∈ ℜ for all x ∈ ℜ.)
Furthermore, let r1, r2 satisfy the inequality

µ := 1 + r1 + (q − 1)r2 > 0. (2.15)

(iii) Let the function f satisfy the additional condition that a constant K > 0 exists
such that

|f(t, x)− f(t, y)| ≤ Ktr1 |xr2 − yr2 | (2.16)

for t ∈ (0, T ] and for all x, y ∈ ℜ.

Example 2.2 The function f(t, x) =
3
√
tx4 satisfies conditions (i), (ii), and (iii) with

K = 1, r1 = 1/3, r2 = 4/3 for any fixed q ∈ (0, 1). The function f(t, x) = t−1/2x4/3

satisfies conditions (i) and (iii) with K = 1, r1 = −1/2, r2 = 4/3. As for (ii), µ > 0 if
q ∈ (5/8, 1).

Before we generalize Theorem 2.5, we present a theorem that will aid in its proof and
will be crucial for other results in Sections 3 and 4. The function G in part b) of the
theorem is defined by

G(t, x) := −

[

x+
f(t, x)

J

]

,

where J is a positive constant.
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Theorem 2.6 Suppose that f : (0, T ]×ℜ → ℜ is continuous where

|f(t, x)| ≤ |f(t, 0)|+Ktr1 |x|r2

with r1, r2 satisfying item (ii) containing (2.15), that f(t, 0) is absolutely integrable on
(0, T ], and that x(t) is a continuous solution of (2.2) on an interval (0, T0] ⊂ (0, T ]
satisfying |x(t)| ≤ 2|x0|tq−1. Then:

a) There is a constant κ > 0 with

∫ T0

0

[|x(s)| + |f(s, x(s))|] ds = κ.

b) For each t ∈ (0, T0], there is a nonnegative D(t) ∈ ℜ with
∫ t

0

∫ s

0

(t− s)q−1(s− u)q−1|G(u, x(u))| du ds = D(t).

Proof. We have
∫ T0

0

[|x(s)|+ |f(s, x(s))|] ds

≤

∫ T0

0

[2|x0|sq−1 + |f(s, 0)|+Ksr1(2|x0|sq−1)r2 ] ds

= 2|x0|
T0

q

q
+

∫ T0

0

|f(s, 0)| ds+K(2|x0|)r2
∫ T0

0

sr1sr2(q−1) ds

which is finite because r1 + r2(q − 1) + 1 > 0, completing the proof of part a).
The continuity of f and x implies that

φ(s) := |G(s, x(s))|

is continuous on (0, T0] while part a) implies that it is absolutely integrable on this
interval. Now, apply Lemma 2.1 to see that

ψ(s) :=

∫ s

0

(s− u)q−1φ(u) du

is continuous and absolutely integrable. Hence
∫ t

0

(t− s)q−1ψ(s) ds

is continuous and absolutely integrable on (0, T0].

Note. If f(t, x) = −Jx for a given J > 0, then G ≡ 0 and D(t) = 0 for t ∈ (0, T0].
Then (2.2) simplifies to

x(t) = x0tq−1 −
J

Γ(q)

∫ t

0

(t− s)q−1x(s) ds.

It is well-established that this linear equation has a unique continuous solution on the
entire interval (0,∞), which can be expressed in terms of the resolvent function. For
more details, see (3.3) and (3.4) in Section 3. For nonlinear equations, the focus of this
paper, the function G is not identically zero and so D(t) is positive.
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Theorem 2.7 Suppose conditions (i)–(iii) listed before Example 2.2 hold and that

lim
t→0+

t1−q

∫ t

0

(t− s)q−1|f(s, 0)| ds = 0. (2.17)

Then, for each q ∈ (0, 1) satisfying (2.15), a T0 ∈ (0, T ] exists such that the integral
equation (2.2) has a unique continuous solution φ on (0, T0]. Furthermore, both φ(t) and
f(t, φ(t)) are absolutely integrable on (0, T0]. Also, φ satisfies (2.14) and is the unique
continuous solution of the initial value problem (2.1) on (0, T0].

Proof. We first show that (2.17) implies that f(t, 0) is absolutely integrable on (0, T ].
Let ǫ = 1. Then there exists a δ ∈ (0, T ] such that

t1−q

∫ t

0

(t− s)q−1|f(s, 0)| ds < 1

for t ∈ (0, δ). And so for t ∈ (0, δ), we have

0 ≤

∫ t

0

|f(s, 0)|ds =

∫ t

0

(t− s)1−q(t− s)q−1|f(s, 0)| ds

≤

∫ t

0

t1−q(t− s)q−1|f(s, 0)| ds ≤ 1.

It follows that f(s, 0) is absolutely integrable on (0, δ). Thus f(s, 0) is absolutely inte-
grable on (0, T ] because of the continuity of f .

Next consider the setM and the mapping P defined by (2.11) and (2.12), respectively.
If T0 ∈ (0, T ] is sufficiently small, we will show that the “generalized Lipschitz condition”
(2.16) implies P : M →M . First observe from (2.16) that

|f(t, x)| ≤ |f(t, 0)|+Ktr1 |x|r2

for 0 < t ≤ T . It follows from this, the integrability of f(t, 0), and the proof of Theo-
rem 2.6 a) that for every φ ∈M , f(t, φ(t)) is absolutely integrable on (0, T0]. Of course,
φ being in M is continuous and absolutely integrable on this interval. The absolute
integrability and continuity of f(t, φ(t)) imply the integral term of Pφ is continuous on
(0, T0] by Lemma 2.1. Thus Pφ itself is continuous on (0, T0].

Now we show P : M →M . For any φ ∈M ,

|(Pφ)(t)| ≤ |x0|tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1|f(s, φ(s))| ds

≤ |x0|tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1
[

Ksr1 |φ(s)|r2 + |f(s, 0)|
]

ds

≤ |x0|tq−1 +
K

Γ(q)

∫ t

0

(t− s)q−1sr1
(

2|x0|sq−1
)r2

ds

+
1

Γ(q)

∫ t

0

(t− s)q−1|f(s, 0)| ds.
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Using the assumption that r1 + (q − 1)r2 = µ− 1 and the Beta function, we have

|(Pφ)(t)| ≤ |x0|tq−1 +
K
(

2|x0|
)r2

Γ(q)

∫ t

0

sµ−1(t− s)q−1 ds

+
1

Γ(q)

∫ t

0

(t− s)q−1|f(s, 0)| ds

= |x0|tq−1 +
K
(

2|x0|
)r2

Γ(µ)

Γ(µ+ q)
tµ+q−1

+
1

Γ(q)

∫ t

0

(t− s)q−1|f(s, 0)| ds.

And so for φ ∈M ,

|(Pφ)(t)| ≤

{

|x0|+
KΓ(µ)

(

2|x0|
)r2

Γ(µ+ q)
tµ

+
t1−q

Γ(q)

∫ t

0

(t− s)q−1|f(s, 0)| ds

}

tq−1.

Thus, as µ > 0, 1− q > 0, and because of (2.17),

|(Pφ)(t)| ≤ 2|x0|tq−1

for 0 < t ≤ T0, if T0 is sufficiently small. For such a T0, PM ⊂M .
To prepare the way for showing that P is a contraction mapping in the weighted

norm | · |g, first consider the difference xr2 − yr2 for a given pair x, y ∈ ℜ and a given
rational number r2 > 1 satisfying the conditions listed in item (ii). It follows from the
Mean Value Theorem that there exists a number ξ between x and y such that

|xr2 − yr2 | = r2|ξ|
r2−1|x− y|.

Since r2 > 1, the function zr2−1 is increasing on [0,∞). Consequently, as |ξ| ≤
max{|x|, |y|},

|ξ|r2−1 ≤
(

max{|x|, |y|}
)r2−1

.

Thus, for φ, ψ ∈M ,

∣

∣(φ(t))r2 − (ψ(t))r2
∣

∣ ≤ r2
(

max{|φ(t)|, |ψ(t)|}
)r2−1

|φ(t) − ψ(t)|

≤ r2
(

2|x0|tq−1
)r2−1

|φ(t)− ψ(t)|

for 0 < t ≤ T0.
It follows from the previous inequality and (2.16) that

|(Pφ)(t) − (Pψ)(t)|

tq−1
≤
t1−q

Γ(q)

∫ t

0

(t− s)q−1|f(s, φ(s))− f(s, ψ(s))| ds

≤
t1−q

Γ(q)

∫ t

0

(t− s)q−1Ksr1
∣

∣(φ(s))r2 − (ψ(s))r2
∣

∣ ds

≤
Kt1−q

Γ(q)

∫ t

0

(t− s)q−1sr1r2
(

2|x0|sq−1
)r2−1

|φ(s)− ψ(s)| ds.
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Hence, because of the definition of the g-norm and (2.15),

|(Pφ)(t) − (Pψ)(t)|

tq−1

≤
r2Kt

1−q

Γ(q)

(

2|x0|
)r2−1

∫ t

0

(t− s)q−1sr1+(q−1)(r2−1)|φ(s) − ψ(s)| ds

≤
r2Kt

1−q

Γ(q)

(

2|x0|
)r2−1

|φ− ψ|g

∫ t

0

(t− s)q−1sr1+(q−1)r2 ds

≤
r2Kt

1−q

Γ(q)

(

2|x0|
)r2−1

|φ− ψ|g

∫ t

0

sµ−1(t− s)q−1 ds.

Evaluating the integral with the Beta function, we obtain

|(Pφ)(t) − (Pψ)(t)|

tq−1
≤
r2Kt

1−q

Γ(q)

(

2|x0|
)r2−1

|φ− ψ|g · t
µ+q−1Γ(µ)Γ(q)

Γ(µ+ q)

=

[

r2KΓ(µ)

Γ(µ+ q)

(

2|x0|
)r2−1

tµ
]

|φ− ψ|g.

Although this was derived for r2 > 1, it is also true for r2 = 1. Since µ > 0, the bracketed
quantity is less than 1 for t ∈ (0, T0] if T0 is small enough. We conclude a T0 ∈ (0, T ]
exists such that P : M → M and P is a contraction on M . Therefore, by Banach’s
contraction mapping principle, there is a unique φ ∈M such that Pφ = φ.

Both the fixed point φ(t) and the function f(t, φ(t)) are absolutely integrable on
(0, T0] since this is true of all functions in M , as we saw earlier in the proof.

It follows from the bound we obtained for Pφ that

t1−q

Γ(q)

∫ t

0

(t− s)q−1|f(s, φ(s))| ds

≤
K
(

2|x0|
)r2

Γ(µ)

Γ(µ+ q)
tµ +

t1−q

Γ(q)

∫ t

0

(t− s)q−1|f(s, 0)| ds,

where µ > 0. This along with (2.17) implies the first limit in (2.14). This in turn implies
the second limit in (2.14) as

lim
t→0+

t1−qφ(t) = lim
t→0+

t1−q(Pφ)(t) = x0.

Finally, the fixed point φ fulfills all of the conditions of Theorem 2.1. Therefore it is also
the unique continuous solution of (2.1) on (0, T0].

Remark 2.2 Two items worth noticing are:

(i) Consider the function f(t, x) when x = 0. The continuity of f in Theorem 2.5
implies that f(t, 0) is bounded on the closed interval [0, T ]. Contrast this with
Theorem 2.7 which no longer requires it to be defined at t = 0 nor bounded as long
as it satisfies (2.17).

(ii) Theorem 2.7 generalizes Theorem 2.5.
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Item (ii) follows from observing that if condition (2.3) holds on a closed interval [0, T ],
then condition (2.16) certainly holds on the half-open interval (0, T ] with r1 = 0 and
r2 = 1. Also, condition (2.15) holds as

µ = 1 + r1 + (q − 1)r2 = 1 + 0 + (q − 1)(1) = q > 0.

Furthermore, as f(t, 0) is bounded on [0, T ], condition (2.17) holds.

Example 2.3 Part 1: the range of q. We now show that existence must take q
into account. We will examine an assumed solution of (2.2) taking f(t, x) = x2n+1 with
n a positive integer and x0 > 0. The work takes place in the context of Theorem 2.4 and
(a2) in the applications located just after Corollary 2.2. Thus, any solution x : (0, T ] → ℜ
will be continuous, while t1−qx(t) will be continuous on the closed interval [0, T ] and for
T small enough will satisfy

(1/2)x0tq−1 ≤ x(t) ≤ (3/2)x0tq−1.

Here is the important part and it can be used to test many functions in the same way
to determine permissible values of q. The function f(t, x) is increasing in x > 0 so it
preserves inequalities: for x0 > 0 and for s small we have

[

(1/2)x0sq−1

]2n+1

≤

[

x(s)

]2n+1

≤

[

(3/2)x0sq−1

]2n+1

which we write for convenience as

A(s) ≤ B(s) ≤ C(s).

Moreover,

Q(t) := t1−q

∫ t

0

(t− s)q−1(x(s))2n+1ds

must be continuous on [0, T ] for some sufficiently small positive T ; in particular, the limit
as t ↓ 0 of Q(t) must exist. But notice that

t1−q

∫ t

0

(t− s)q−1A(s) ds ≤ t1−q

∫ t

0

(t− s)q−1B(s) ds ≤ t1−q

∫ t

0

(t− s)q−1C(s) ds.

However the end terms differ only by a multiplicative constant so if we can prove that
the end terms both have limit zero as t ↓ 0, then the middle term will have the same
limit of zero. We will see that the end terms have a limit if and only if

q >
2n

2n+ 1
(2.18)

and that limit is zero. If that fails to hold, then both of the end terms are unbounded.
This means that if (2.18) fails then the middle term can not have a limit, while if (2.18)
holds then the middle term has the same limit of zero.

Using the Beta function to compute the integral, we obtain

t1−q

∫ t

0

(t− s)q−1sq(2n+1)−2n−1 ds = Ktq(2n+1)−2n
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for some K > 0. This gives the required convergence if and only if (2.18) holds.

Now let us return to Theorem 2.7 and condition (2.15). We have

µ = 1 + 0 + (q − 1)(2n+ 1) > 0

which is the same as (2.18). Note that f(t, x) = x2n+1 trivially satisfies all of the other
conditions of Theorem 2.7. We conclude a continuous solution of (2.2) exists on some
interval (0, T ] if and only if

2n

2n+ 1
< q < 1.

Moreover, one of the statements of Theorem 2.7 tells us that the solution x(t) as well
as f(t, x(t)) are absolutely integrable on (0, T ]. As a result, we also conclude from
Theorem 2.1 that x(t) is also a continuous solution of (2.1) on (0, T ].

Part 2: the third singularity.

We readily see that (2.2) has a singularity in the forcing function and one in the
kernel. But both of them are mild in a technical sense. However they coalesce as t ↓ 0.
From (2.9) we see that as ǫ ↓ 0 then x(s) in the integrand of (2.2) gets as close to x0sq−1

as we please on a sufficiently short interval (0, T ]. For instance, with f(t, x) = x2n+1,
(2.2) is approximated arbitrarily well for very small t by

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1(x0sq−1)2n+1 ds.

As t ↓ 0 both terms in the integrand tend to infinity producing a product of singularities
which is no longer mild in any technical sense.

3 A Transformation

Equation (2.2) and its solution on some short interval [0, T ) that is ensured by Theo-
rem 2.7 hold many challenges if we wish to continue that solution beyond T . The forcing
function is singular at t = 0 so the solution is singular there too and that introduces
another singularity in the integrand besides the one already at s = t. In Example 2.3,
Part 2 we discussed how this added singularity will coalesce with the singularity in the
kernel producing a singularity of a radically different type than either that in the forcing
function or in the kernel. And this added singularity cannot be avoided because it occurs
as t ↓ 0. This is also the situation in Example 2.1. Note however its integrand has even
more singularities: those located at the zeroes of cos(

√
t), which were avoided in that

example by simply restricting the interval under consideration.

To make matters worse, consider the integral in the mapping P , calling it H for now,
and suppose for the moment that f satisfies a global Lipschitz condition with constant
α < 1. If the functions φi : [0,∞) → ℜ (i = 1, 2) are bounded and continuous with the
supremum norm ‖ · ‖, then

H(t, x) :=

∫ t

0

(t− s)q−1f(s, x(s)) ds
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satisfies

|H(t, φ1(t))−H(t, φ2(t)| ≤

∫ t

0

(t− s)q−1α|φ1(s)− φ2(s)| ds

≤ α‖φ1 − φ2‖

∫ t

0

sq−1 ds

= α‖φ1 − φ2‖t
q/q.

So for this situation H , as well as P , is not a contraction for t ≥ (q/α)1/q . More-
over, if f(t, x) contains a bounded additive function u(t), then it transforms into
∫ t

0 (t− s)q−1u(s) ds passing from a bounded u to a possibly unbounded integral.
There is a simple way out of all these difficulties. In [5] we introduced a transformation

for a fractional differential equation of Caputo type which has turned out to be very useful
in the construction of fixed point mappings. The first part of it will now be given. It
will take a second step to make it work for fractional differential equations of Riemann-
Liouville type because of the singular forcing function.

Let J be an arbitrary positive constant and write (2.2) as

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1[−Jx(s) + Jx(s) + f(s, x(s))] ds

= x0tq−1 −
J

Γ(q)

∫ t

0

(t− s)q−1x(s) ds

+
J

Γ(q)

∫ t

0

(t− s)q−1

[

x(s) +
f(s, x(s))

J

]

ds,

which we then rewrite as

x(t) = x0tq−1 −

∫ t

0

C(t− s)[x(s) +G(s, x(s))] ds, (3.1)

where

C(t) :=
Jtq−1

Γ(q)
(3.2a)

and

G(s, x(s)) := −

[

x(s) +
f(s, x(s))

J

]

. (3.2b)

Now view the linear equation

z(t) = x0tq−1 −

∫ t

0

C(t− s)z(s) ds (3.3)

as the linear part of the nonlinear equation (3.1). Closely allied to both (3.1) and (3.3)
is the resolvent equation

R(t) = C(t)−

∫ t

0

C(t− s)R(s) ds. (3.4)

It is well-established that (3.4) has a unique continuous solution on (0,∞), which is
known as the resolvent (cf. [3, Thm. 4.2]). Because of this uniqueness, it follows from
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multiplying both sides of (3.4) by x0Γ(q)/J that (3.3) also has a unique continuous
solution on (0,∞), namely

z(t) =
x0Γ(q)

J
R(t).

Substituting this for z(s) in the integrand of (3.3) and using (3.2a), we obtain

z(t) = x0tq−1 −

∫ t

0

C(t− s)
x0Γ(q)

J
R(s) ds

= x0tq−1 −

∫ t

0

J

Γ(q)
(t− s)q−1 x

0Γ(q)

J
R(s) ds

= x0tq−1 −

∫ t

0

(t− s)q−1x0R(s) ds.

With an obvious change of variable, we can also write this as

z(t) = x0tq−1 −

∫ t

0

R(t− s)x0sq−1 ds. (3.5)

Important properties of R(t) (cf. [15, p. 212 f.]) that we rely on are

0 < R(t) ≤ C(t),

∫

∞

0

R(s) ds = 1 (3.6)

and the fact that R(t) is completely monotone on (0,∞) ( [15, p. 224]).
Suppose the conditions of an existence theorem, such as Theorem 2.5 or 2.7, are

satisfied so that a solution x(t) of (2.2), equivalently of (3.1), is known to exist on an
interval (0, T0]. In that case, a variation of parameters formula found in Miller [15, (1.4),
p. 192] states that x(t) will also satisfy the equation

x(t) = z(t)−

∫ t

0

R(t− s)G(s, x(s)) ds (3.7)

provided

∫ t

0

∫ s

0

R(t− s)C(s − u)G(u, x(u)) du ds

=

∫ t

0

∫ t

u

R(t− s)C(s− u)G(u, x(u)) ds du (3.8)

for 0 < t ≤ T0. Note that this interchange in the order of integration is valid if the
conditions of either Theorem 2.5 or Theorem 2.7 are satisfied since those conditions
imply part b) of Theorem 2.6, which in turn implies (3.8) by the Hobson-Tonelli test
(cf. [16, p. 93]). We further note a function satisfying (3.7) and (3.8) will also satisfy
(2.2) since, as Miller [15, p. 192] points out, the steps from (3.1) to (3.7) are reversible.

The solution z of (3.5) will play a major role in the subsequent work and the following
result offers its properties.

Lemma 3.1 For each ǫ > 0, the function z defined by (3.5) is bounded on [ǫ,∞) and
tends to zero as t→ ∞. Furthermore

|z(t)| ≤ |x0|tq−1

[

1−

∫ t

0

R(s) ds

]

(3.9)
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for all t > 0. The bounds on both z and
∫ t

0
R(t−s)sq−1 ds are independent of the positive

constant J . Moreover,

z(t) =
x0Γ(q)

J
R(t).

Proof. From (3.4) we see that

R(t) =
J

Γ(q)
tq−1 −

J

Γ(q)

∫ t

0

(t− s)q−1R(s) ds

=
J

Γ(q)

[

tq−1 −

∫ t

0

R(t− s)sq−1 ds

]

=
J

x0Γ(q)
z(t).

Consequently, for t > 0,

0 ≤

∫ t

0

R(t− s)sq−1 ds ≤ tq−1 (3.10)

as R(t) > 0 for t > 0 [15, p. 222]. Note this is independent of J . Hence (3.5) has the
following limit:

lim
t→∞

z(t) = x0
[

lim
t→∞

tq−1 − lim
t→∞

∫ t

0

R(t− s)sq−1ds

]

= 0.

This limit, along with the continuity of z(t) on (0,∞), implies that z(t) is bounded on
[ǫ,∞) for each ǫ > 0.

By the previous inequality,

|z(t)| = |x0|

∣

∣

∣

∣

tq−1 −

∫ t

0

R(t− s)sq−1 ds

∣

∣

∣

∣

= |x0|

(

tq−1 −

∫ t

0

R(t− s)sq−1 ds

)

.

As tq−1 is decreasing,

∫ t

0

R(t− s)sq−1 ds ≥ tq−1

∫ t

0

R(t− s) ds.

Therefore,

|z(t)| ≤ |x0|

(

tq−1 − tq−1

∫ t

0

R(t− s) ds

)

= |x0|tq−1

[

1−

∫ t

0

R(u) du

]

. (3.11)

4 A Translation

We have one more step to take and it is a large one. Fix x0 and let x be a solution
of (2.2). Redefine the interval of definition and say that it is a solution on the interval
(0, 2T ] satisfying Definition 1.1 as well as (3.7) and (3.8). In particular, we have

|x(t)| ≤ 2|x0|tq−1
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on that interval. However, we must keep in mind that z still has a singularity. This
section is devoted to showing that a translation with y(t) = x(t+T ) will transform (3.7)
into

y(t) = F (t) +

∫ t

0

R(t− s)

[

y(s) +
f(s+ T, y(s))

J

]

ds,

where F is bounded, continuous, in L1[0,∞), and converges to zero as t→ ∞. But most
of all we want to remember (3.6).

The value of x0 determines z(t) and we know from Lemma 3.1 that z(t) is bounded
and continuous for t ≥ T and that z(t) → 0 as t→ ∞. Now translate (3.7) as follows:

x(t+ T ) = z(t+ T )−

∫ t+T

0

R(t+ T − s)G(s, x(s)) ds

= z(t+ T ) +

∫ T

0

R(t+ T − s)

[

x(s) +
f(s, x(s))

J

]

ds

+

∫ t+T

T

R(t+ T − s)

[

x(s) +
f(s, x(s))

J

]

ds

= F (t) +

∫ t

0

R(t− s)

[

x(s+ T ) +
f(s+ T, x(s+ T ))

J

]

ds, (4.1)

where

F (t) := z(t+ T ) +

∫ T

0

R(t+ T − s)

[

x(s) +
f(s, x(s))

J

]

ds. (4.2)

Next, let

y(t) := x(t+ T )

and rewrite the translated equation (4.1) as

y(t) = F (t) +

∫ t

0

R(t− s)

[

y(s) +
f(s+ T, y(s))

J

]

ds, (4.3)

where y(0) = x(T ). From this we see how to define an appropriate mapping for estab-
lishing solutions in the Banach space of bounded continuous functions on [0,∞) with the
sup norm, which we denote by (BC, ‖ · ‖). For a specified subset Q of this space, define
the mapping P : Q→ BC by φ ∈ Q implies

(Pφ)(t) := F (t) +

∫ t

0

R(t− s)

[

φ(s) +
f(s+ T, φ(s))

J

]

ds. (4.4)

The last line of the following theorem need not be disquieting. If we ask that f
satisfy (1.6), then we invoke Theorem 2.6 and find that x(s) and f(s, x(s)) are absolutely
integrable on (0, T ] so that (3.8) is assured by the Hobson-Tonelli theorem.

Theorem 4.1 Let q ∈ (0, 1), f : (0,∞) × ℜ → ℜ be continuous, and x0 ∈ ℜ with
x0 6= 0. Let x(t) be a solution of

x(t) = x0tq−1 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds (2.2)
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on an interval (0, T ]. For a given constant J > 0, let z(t) denote the unique continuous
solution of (3.3) on (0,∞) and let a function F : [0,∞) → ℜ be defined by (4.2). Lastly,
let y(t) be a solution of (4.3) on an interval [0, τ ] for some τ > 0.

If the piecewise-defined function

xc(t) :=

{

x(t), if 0 < t ≤ T ,

y(t− T ), if T < t ≤ T + τ,
(4.5)

satisfies (3.8) at each t ∈ (0, T + τ ], then it is a solution of (2.2) on (0, T + τ ].

Proof. Suppose xc(t) satisfies (3.8) at each t ∈ (0, T + τ ]. Then the solution x(t)
must satisfy (3.8) at each t ∈ (0, T ]. Hence, by the variation of parameters formula x(t)
is also a solution of (3.7). Thus,

xc(t) = z(t)−

∫ t

0

R(t− s)G(s, xc(s)) ds (0 < t ≤ T ), (4.6)

where from (3.2b)

G(s, xc(s)) = −

[

xc(s) +
f(s, xc(s))

J

]

.

Since y(t) is a solution of (4.3) for 0 ≤ t ≤ τ , y(0) = F (0). Setting t = 0 in (4.2) and
replacing x(t) with xc(t), we get

y(0) = z(T )−

∫ T

0

R(T − s)G(s, xc(s)) ds.

Comparing this with (4.6) when t = T , we see y(0) = xc(T ). And so

y(0) = x(T ).

Thus, as x and y are continuous functions on their respective domains, the piecewise-
defined function xc is continuous on the interval (0, T + τ ].

Since the function y(t) satisfies (4.3) on the interval [0, τ ], we have

y(t) = F (t)−

∫ t

0

R(t− s)G(s+ T, y(s)) ds

= z(t+ T )−

∫ T

0

R(t+ T − s)G(s, x(s)) ds

−

∫ t

0

R(t− s)G(s+ T, y(s)) ds.

With the change of variable u = s+ T , this becomes

y(t) = z(t+ T )−

∫ T

0

R(t+ T − s)G(s, x(s)) ds

−

∫ t+T

T

R(t+ T − u)G(u, y(u− T )) du.
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Rewriting the right-hand side in terms of the function xc, we have

y(t) = z(t+ T )−

∫ T

0

R(t+ T − s)G(s, xc(s)) ds

−

∫ t+T

T

R(t+ T − u)G(u, xc(u)) du.

And so

y(t) = z(t+ T )−

∫ t+T

0

R(t+ T − s)G(s, xc(s)) ds

for 0 ≤ t ≤ τ . Or,

y(t− T ) = z(t)−

∫ t

0

R(t− s)G(s, xc(s)) ds

for T ≤ t ≤ T + τ . That is,

xc(t) = z(t)−

∫ t

0

R(t− s)G(s, xc(s)) ds. (T ≤ t ≤ T + τ)

This and (4.6) implies that the function xc(t) is a solution of the intermediate equation
(3.7) on the interval (0, T + τ ].

Finally since xc(t) satisfies (3.8) for 0 < t ≤ T + τ , we can invoke the variation of
parameters result to conclude xc(t) is also a solution of the integral equation (2.2) on
(0, T + τ ].

Summary

Our stated goal was to transform (2.2) into a standard Volterra integral equation with
a singularity only in the kernel which was to be completely monotone and have integral
equal to one. That final equation is (4.3). In the next subsection we will develop the
properties of the function F because F did not appear in (2.2). The solution of (2.2) will
be that original solution on the short interval (0, T ] and then continued with the solution
y of (4.3). Here are details which should guide the investigator.

Suppose that some existence theorem yields a solution of (2.2) on an interval (0, T ].
That solution resides in

A) M = {φ ∈ X : |φ(t)| ≤ 2|x0|tq−1}

provided that T is sufficiently small.
Regardless of which existence theorem we might use, suppose that we have assumed

f : (0,∞)×ℜ → ℜ is continuous and satisfies

B) |f(t, x)| ≤ |f(t, 0)|+Ktr1 |x|r2

and with the assumption that f(t, 0) is absolutely integrable on (0, T ]. We need only
note from A) and B) above that

∫ T

0

sr1(sq−1)r2 ds =

∫ T

0

sr1+r2(q−1) ds = ktr1+r2(q−1)+1

for some k > 0 and our basic requirement for integrability is

C) r1 + r2(q − 1) + 1 > 0.
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By Theorem 2.6 if A), B), and C) hold then

D) |x|+ |f(t, x)| is integrable on (0, T ]

so Theorem 2.1 holds, as does (3.8) making (2.2), (3.7), and (4.3) equivalent in the
sense of Theorem 4.1 as long as the solution extending x(t) from (0, T ] to (0, T + τ ] is
continuous.

In conclusion, after verifying B), C), and any existence result, the investigator may
go directly to (4.3) and begin the task of extracting properties of continuous solutions.
Those properties are inherited by both (2.1) and (2.2).

4.1 Properties of the forcing function

Properties of the function F defined by (4.2) that will govern solutions of (4.3) are stated
in the next theorem. We noted earlier that a solution of (2.2) lies in the set M defined
in (2.11) so it is absolutely integrable. We gave conditions in Theorem 2.6 to ensure
that a solution x will have |x| + |f(t, x)| integrable. Moreover, when that holds so does
conclusion b) of that theorem which is a sufficient condition for (3.8) to hold and, indeed,
to assure us by Theorem 2.1 that the solution satisfies (2.1). That, in turn, was used
together with a solution of (2.2) on a short interval to pass from (2.2) to (3.7) and then on
to our final equation (4.3). This paragraph then is describing the fundamental position
of item (iii) in the next theorem. Items (i) and (ii) are reminding us of Definition 1.1.

Theorem 4.2 Let f : (0, T1] × ℜ → ℜ be continuous. Suppose there exists a T ∈
(0, T1/2] and a continuous function x : (0, 2T ] → ℜ that is absolutely integrable and
satisfies the equation

x(t) = z(t)−

∫ t

0

R(t− s)G(s, x(s)) ds (3.7)

= z(t) +

∫ t

0

R(t− s)

[

x(s) +
f(s, x(s))

J

]

ds

on (0, 2T ]. Suppose further that

(i) t1−qx(t) is continuous on [0, 2T ],

(ii) limt→0+ t
1−qx(t) = x0,

(iii) f(t, x(t)) is absolutely integrable on (0, 2T ].

Then the function F : [0,∞) → ℜ defined by (4.2), where J denotes an arbitrary positive
constant, is uniformly continuous on [0,∞), tends to zero as t→ ∞, and is in L1[0,∞).
Moreover, a bound for F exists that is independent of the value of J .

The proof of this theorem is a consequence of the following three lemmas, namely
Lemmas 4.1–4.3.

Lemma 4.1 Under the conditions of Theorem 4.2, for any given constant J > 0, the
function

G(t) := −

∫ T

0

R(t+ T − s)G(s, x(s)) ds (4.7)

=

∫ T

0

R(t+ T − s)

[

x(s) +
f(s, x(s))

J

]

ds
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is uniformly continuous on [η,∞) for any η > 0.

Proof. Fix an arbitrary J > 0. Let ǫ > 0. We see from (3.6) that R(t) is continuous
on [η,∞) and R(t) → 0 as t → ∞, which implies it is uniformly continuous on this
interval. For a given λ > 0, there is a γ > 0 such that distinct t1, t2 ∈ [η,∞) and

|t1 + T − s− t2 − T + s| = |t1 − t2| < γ

and T − s ≥ 0 imply that

|R(t1 + T − s)−R(t2 + T − s)| < λ.

Hence for these ti, we have

|G(t1)− G(t2)| ≤

∫ T

0

∣

∣R(t1 + T − s)−R(t2 + T − s)
∣

∣

∣

∣G(s, x(s))
∣

∣ ds

≤ λ

∫ T

0

∣

∣G(s, x(s))
∣

∣ ds

≤ λ

∫ T

0

[

|x(s)|+
|f(s, x(s))|

J

]

ds =: λHJ ,

where HJ denotes the constant defined by the last integral. So choose λ < ǫ/HJ .
Therefore, for the given ǫ > 0, there is a γ > 0 such that |t1 − t2| < γ implies |G(t1) −
G(t2)| < ǫ.

The function F in the following two lemmas refers to the function defined by (4.2).

Lemma 4.2 Under the conditions of Theorem 4.2, for any given constant J > 0, the
function F (t) is right-continuous at t = 0. Furthermore, it is uniformly continuous on
[0,∞).

Proof. By hypothesis, a continuous function x(t) exists satisfying (3.7) on (0, 2T ].
Recall earlier we defined y by

y(t) := x(t+ T ) (4.8)

with the purpose of continuing the solution of (3.7) beyond 2T . This then yielded equa-
tion (4.3), which we find convenient here to write as

y(t) = F (t) + L(t), (4.9)

where

L(t) :=

∫ t

0

R(t− s)

[

y(s) +
f(s+ T, y(s))

J

]

ds. (4.10)

This suggests defining L(0) = 0. In so doing, we have from (4.9), (4.2), and (3.7) that

y(0) = F (0) = z(T )−

∫ T

0

R(T − s)G(s, x(s)) ds = x(T ).

Note this is consistent with (4.8). Thus let L(0) := 0.
Since x is continuous on (0, 2T ], we see from (4.8) that y is continuous on (−T, T ]. So

it follows from (4.9) that if we can show that L(t) is right-continuous at t = 0, then the
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same will be true of F . It follows from the hypothesis that the function f is continuous
on (0, 2T ]×ℜ. Thus, as y is continuous on [0, T ], there is a constant CJ such that

∣

∣

∣

∣

y(s) +
f(s+ T, y(s))

J

∣

∣

∣

∣

≤ CJ

on [0, T ]. This along with (3.6) implies

|L(t)| ≤ CJ

∫ t

0

R(t− s) ds ≤
CJJ

Γ(q)

∫ t

0

sq−1 ds ≤
CJJt

q

qΓ(q)
. (4.11)

Hence L(t) → L(0) as t→ 0+. As a result, F is right-continuous at t = 0.
As for uniform continuity, first observe from (4.2) and (4.7) that

F (t) = z(t+ T ) + G(t). (4.12)

By default, G is right-continuous at t = 0 since z(t+T ) is continuous on [0,∞). Because
of this and Lemma 4.1, we see that G is continuous on [0,∞). This, together with the
uniform continuity of G on [η,∞) for every η > 0, implies that G is uniformly continuous
on [0,∞). It follows from Lemma 3.1 that z(t+T ) → 0 as t→ ∞. This and the continuity
of z(t + T ) on [0,∞) imply that z(t+ T ) is also uniformly continuous on [0,∞). Since
the sum of uniformly continuous functions is uniformly continuous, we conclude F is
uniformly continuous on [0,∞).

Finally note that the foregoing argument is valid for any given J > 0. This concludes
the proof.

Lemma 4.3 Under the conditions of Theorem 4.2, F ∈ L1[0,∞), F (t) → 0 as
t → ∞, and F is bounded on [0,∞). Moreover, there is a bound for F on [0,∞) that is
independent of J .

Proof. Let us start with the first term of F (t), namely z(t + T ). We have already
determined that z(t + T ) → 0 as t → ∞. Now consider G(t), the other term of F (t).
Recall that R is completely monotone, so it is decreasing on (0,∞). Consequently,

|G(t)| ≤

∫ T

0

R(t+ T − s)
∣

∣G(s, x(s))
∣

∣ ds

≤ R(t)

∫ T

0

∣

∣

∣

∣

x(s) +
f(s, x(s))

J

∣

∣

∣

∣

ds

≤ R(t)

∫ T

0

[

|x(s)|+
|f(s, x(s))|

J

]

ds = KR(t), (4.13)

where K denotes the last integral, which has a finite value since both x(s) and f(s, x(s))
are absolutely integrable on (0, T ]. As t → ∞, G(t) → 0 since R(t) → 0. Because both
terms of F (t) tend to zero, so does F (t).

It also follows from (4.13) that G ∈ L1[0,∞) because R ∈ L1[0,∞). Moreover,
z(t + T ) ∈ L1[0,∞) since z(t) is proportional to R(t) (cf. Lemma 3.1). Hence, F ∈
L1[0,∞).

Recall from Lemma 4.2 that F is uniformly continuous on [0,∞). This together with
F (t) → 0 as t→ ∞ implies that F is bounded on [0,∞).
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We now come to the final part of the proof, which is to show that a bound for F
exists independent of J . Consider z(t+T ), the first term of F (t). From (3.9) we see that

|z(t+ T )| ≤ |x0|(t+ T )q−1 ≤ |x0|T q−1 (4.14)

for t ≥ 0, yielding a bound for z(t + T ) on [0,∞) that depends on T but not on J . So
what remains is to prove that the integral term G(t) in (4.12) also has a bound on [0,∞)
independent of J .

Condition (i) of Theorem 4.2 implies the existence of a constant k such that |x(t)| ≤
ktq−1 for all t ∈ (0, 2T ]. Then in view of (3.6), (3.2a), and the monotonicity of R, we
have

|G(t)| ≤

∫ T

0

R(t+ T − s)

[

|x(s)| +
|f(s, x(s))|

J

]

ds

≤

∫ T

0

R(t+ T − s)ksq−1 ds

+

∫ T

0

J

Γ(q)
(t+ T − s)q−1 |f(s, x(s))|

J
ds

≤ k

∫ T

0

R(T − s)sq−1 ds+
1

Γ(q)

∫ T

0

(t+ T − s)q−1|f(s, x(s))| ds.

Applying (3.10), we obtain the bound

|G(t)| ≤ kT q−1 +
1

Γ(q)

∫ T

0

(T − s)q−1|f(s, x(s))| ds. (4.15)

By hypothesis, f(s, x(s)) is absolutely integrable on (0, T ]. So the integral in (4.15)
converges according to Lemma 2.1. Because of this, (4.12), and (4.14), we have

|F (t)| ≤
(

|x0|+ k
)

T q−1 +
1

Γ(q)

∫ T

0

(T − s)q−1|f(s, x(s))| ds

for t ≥ 0. Thus the right-hand side serves as a bound for F . Since it does not depend
on J , the proof is complete.

The completion of the proof of this last lemma also completes the proof of Theo-
rem 4.2.

5 Future Work

The objective was to reduce the fractional differential equation to a very common Volterra
integral equation. Equation (4.3) now has three properties which make it ideal for fixed
point theory.

First, the kernel R(t−s) has two properties used extensively in fixed point theory. If Q
is a convex set in the Banach space of bounded continuous functions with the supremum
norm and if f(s+ T, y(s)) is bounded for y ∈ Q, then

∫ t

0

R(t− s)

[

y(s) +
f(s+ T, y(s))

J

]

ds
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maps Q into an equicontinuous set [6, Thm. 5.1] all ready for numerous fixed point
theorems of the Schauder type. Further work will actually give compactness of the
mapping provided that Q is a ball in the Banach space [9]. On the other hand, if the
function in large brackets defines a contraction, it will be preserved by that same integral.

Next, we have said nothing of J , but it serves a prime function, together with that
extra y(s) in the integrand. These work together to secure a self mapping set parallel to
that seen in [6] concerning Caputo problems.

There are many directions we can take from here. Our next project involves offering
an existence theorem based on the growth condition given here, but without any kind of
contraction assumption. We then pick up (4.3) and obtain results on bounded solutions,
solutions in L1[T,∞), and solutions which are asymptotically periodic. While such results
are of interest in themselves, they put us in a position to compare and contrast the
behavior of solutions of Caputo equations having a Volterra representation parallel to
(2.2) of the form

x(t) = x0 +
1

Γ(q)

∫ t

0

(t− s)q−1f(s, x(s)) ds.

The difference in initial conditions is clear and that is a prime reason for considering
them. The present work leading up to (4.3) reveals new differences which an investigator
would like to take into account. For example, the function z(t) discussed in Lemma 3.1
is in L1[T,∞), but it is seen in [7] the corresponding z(t) for the Caputo equation is in
Lp[0,∞) if and only if p > 1/q. Other differences appear in the study of asymptotically
periodic solutions in (4.3) compared to those for the Caputo equation as shown in [8].

References

[1] Abramowitz, M. and Stegun, I. A. (Eds.), Handbook of Mathematical Functions with For-
mulas, Graphs, and Mathematical Tables, 2nd printing. National Bureau of Standards,
Applied Mathematical Series 55, 1964.

[2] Apostol, T.M., Mathematical Analysis, Second ed. Addison-Wesley, Reading MA, 1974.

[3] Becker, Leigh C., Resolvents for weakly singular kernels and fractional differential equa-
tions. Nonlinear Anal.: TMA 75 (2012) 4839–4861.

[4] Becker, L.C., Burton, T. A., and Purnaras, I. K., Complementary equations: A fractional
differential equation and a Volterra integral equation. Electron. J. Qual. Theory Differ.
Equ. (12) (2015) 1–24.

[5] Burton, T. A., Fractional differential equations and Lyapunov functionals. Nonlinear
Anal.: TMA 74 (2011) 5648–5662.

[6] Burton, T. A. and Zhang, Bo, Fixed points and fractional differential equations: Examples,
Fixed Point Theory 14 (2) (2013) 313–326.

[7] Burton, T. A. and Zhang, Bo, Lp-solutions of fractional differential equations. Nonlinear
Studies 19 (2) (2012) 161–177.

[8] Burton, T. A. and Zhang, Bo, Asymptotically periodic solutions of fractional differential
equations. Dynamics of Continuous, Discrete and Impulsive Systems, Series A: Mathemat-
ical Analysis 2 (2013) 1–21.

[9] Burton, T.A. and Zhang, Bo, A Schauder-type fixed point theorem. J. Math. Anal. Appl.
417 (2014) 552–558.

[10] Diethelm, Kai, The Analysis of Fractional Differential Equations. Springer, Heidelberg,
2010.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (3) (2015) 242–271 271

[11] Jones, Frank, Lebesgue Integration on Euclidean Spaces, revised ed., Jones and Bartlett,
Boston, MA, 2001.

[12] Kilbas, A., Srivastava, H., and Trujillo, J., Theory and Applications of Fractional Differen-
tial Equations. North-Holland Mathematical Studies 204. Elsevier, 2006.

[13] Kumar, S. and Sukavanam, N., On the approximate controlability of fractional order control
systems with a delay. Nonlinear Dynamics and Systems Theory 13 (1) (2013) 69–78.

[14] Lakshmikantham,V., Leela, S. and Devi, J. Vasundhara, Theory of Fractional Dynamic
Systems. Cambridge Scientific Publishers, Cottenham, Cambridge, 2009.

[15] Miller, R.K., Nonlinear Volterra Integral Equations. Benjamin, Menlo Park, CA, 1971.

[16] Natanson, I. P., Theory of Functions of a Real Variable, Vol. II, Frederick Ungar Publishing
Co., New York, 1961.

[17] Oldham, Keith B. and Spanier, Jerome, The Fractional Calculus: Theory and Applications
of Differentiation and Integration to Arbitrary Order. Dover, Mineola, NY, 2006.

[18] Olmsted, John M.H., Real Variables. Appleton-Century-Crofts, New York, 1959.

[19] Podlubny, I., Fractional Differential Equations. Academic Press, San Diego, 1999.

[20] Watson, G.N., A Treatise on the Theory of Bessel Functions, 2nd ed. Cambridge University
Press, Cambridge, 1966.



Nonlinear Dynamics and Systems Theory, 15 (3) (2015) 272–289

Mild Solution for Impulsive Neutral Integro-Differential

Equation of Sobolev Type with Infinite Delay

Alka Chadha ∗

Department of Mathematics, Indian Institute of Technology Roorkee,
Roorkee-247667, India

Received: September 18, 2014; Revised: June 26, 2015

Abstract: In this work, we consider an impulsive neutral integro-differential equa-
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1 Introduction

In our recent work [19], we have studied the impulsive neutral integro-differential equation
with infinite delay in a Banach space (X, ‖ · ‖),

d

dt
[u(t)− F (t, ut)] = A[u(t) +

∫ t

0

f(t− s)u(s)ds] +G(t, ut,

∫ t

0

E(t, s, us)ds),

t ∈ J = [0, T0], t 6= tk, k = 1, 2, · · · ,m, (1)

u0 = φ ∈ B, (2)

∆u(ti) = Ii(uti), i = 1, 2, · · · ,m, (3)

where 0 < T0 < ∞, A is a closed linear operator defined on a Banach space
(X ; ‖ · ‖) with dense domain D(A) ⊂ X ; f(t), t ∈ [0, T0] is a bounded lin-
ear operator. The functions F : [0, T0] × B → X , G : [0, T0] × B × X → X ,
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E : [0, T0] × [0, T0] × B → X , Ii : X → X, i = 1, · · · ,m are appropriate functions
and 0 < t1 < t2 < · · · < tm < tm+1 = T0 are pre-fixed numbers. The symbol
∆u(t) = u(t+) − u(t−) denotes the jump of the function u at t i.e., u(t−) and u(t+)
denotes the end limits of the u(t) at t. The history ut : (−∞, 0] → X is a continuous
function defined as ut(s) = u(t + s), s ≤ 0 belongs to the abstract phase space B and
B is the phase space defined axiomatically later in Section 2. We have established the
existence results by using Hausdorff measure of noncompactness and Darbo fixed point
theorem with the assumption that A generates an analytic resolvent operator and G

satisfies the Carathèodary condition.

In [20], the authors have discussed the regularity of solutions of the semilinear integro-
differential equations of Sobolev type in Banach space which is illustrated as

d

dt
[Ey(t)] = A[y(t) +

∫ t

0

f(t− s)y(s)ds] + F (t, y(t)), (4)

y(0) = y0, t ∈ [0, T0], 0 < T0 < ∞, (5)

where E and A are considered as closed linear operators such that the domains contained
in Banach space X and ranges contained in Banach space Y , f(t), t ∈ [0, T0] is a bounded
linear operator such that Y is continuously and densely embedded in X . The nonlinear
function F : [0, T0] ×X → Y is a continuous function. The authors have obtained the
results by using Banach fixed point theorem and resolvent operator.

As in the above mentioned work, our aim in this paper is to investigate the existence of
mild solution of the following impulsive Sobolev type neutral integro-differential equation
with infinite delay in a Banach space (X, ‖ · ‖),

d

dt
[Ey(t) + F (t, yt,

∫ t

0

a(t, s, ys)ds)] = A[y(t) +

∫ t

0

f(t− s)y(s)ds]

+G(t, ut,

∫ t

0

E(t, s, us)ds), t ∈ J = [0, T0], t 6= ti, (6)

u0 = φ ∈ B, (7)

∆u(ti) = Ii(uti), i = 1, 2, · · · ,m, (8)

where E and A are the same operators as defined in equation (4). The functions
F : [0, T0] × B × X → Y , G : [0, T0] × B × X → Y , E : [0, T0] × [0, T0] × B → X ,
Ii : X → X, i = 1, · · · ,m are appropriate functions satisfying some suitable conditions
to be mentioned in Section 3.

Recently, impulsive differential equations have been rising as an important area of
study due to their wide applicability in sciences and engineering such as physics, control
theory, biology, population dynamics, medical domain and many others, and hence they
have earned considerable attention of researchers. The process or phenomena subject
to short-term external influences can be modeled by the impulsive differential equations
which allow for discontinuities in the evolution of the state. For more study of such
differential equations and their applications, we refer to the monographs [12], [24] and
papers. Moreover, Sobolev type semilinear integrodifferential equation can be used to
describe the flow of fluid through fissured rocks [2], thermodynamics and shear in second
order fluids and many others. For wide study of Sobolev type differential equation, we
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refer to papers [20] – [23]. A lot of natural phenomena emerging from numerous areas,
for example, fluid dynamics, electronics and kinetics, can be modeled in the form of
the integro-differential equation. Integro-differential equation of neutral type with delay
describe the system of rigid heat conduction with finite wave spaces.

The organization of the paper is as follows: Section 2 provides some basic facts,
lemmas and theorems which will be used for establishing the result. Section 3 focuses
on the existence of a mild solution by means of Hausdorff measure of noncompactness
and analytic semigroup. Section 4 provides an example based on the obtained abstract
theory. The last section of the paper is devoted to providing conclusion.

2 Preliminaries and Assumptions

In this section, we provide some fundamental definition, lemmas and theorems which will
be utilized all around this paper.

Let X be a Banach space. The symbol C([a, b];X), (a, b ∈ R) stands for the Banach
space of all the continuous functions from [a, b] intoX equipped with the norm ‖ z(t)‖C =
supt∈[a,b] ‖ z(t)‖X and Lp((a, b);X) stands for Banach space of all Bochner-measurable
functions from (a, b) to X with the norm

‖ z‖Lp = (

∫

(a,b)

‖ z(s)‖pXds)1/p.

For the differential equation with infinite delay, Kato and Hale [9] have proposed the
phase space B satisfying certain fundamental axioms.

Definition 2.1 The linear space of all functions from (−∞, 0] into Banach space X

with a seminorm ‖ · ‖B is known as phase space B. The fundamental axioms on B are
the following:

(A) If y : (−∞, d + T0] → X , T0 > 0 is a continuous function on [d, d + T0] such that
yd ∈ B and y|[d,d+T0] ∈ B ∈ PC([d, d + T0];X), then for every t ∈ [d, d + T0), the
following conditions hold:

(i) yt ∈ B,

(ii) H‖ yt‖B ≥ ‖ y(t)‖,

(iii) ‖ yt‖B ≤ N(t+ d)‖ yd‖B +K(t− d) sup{‖ y(s)‖ : d ≤ s ≤ t},
where H is a positive constant; N, K : [0,∞) → [1,∞), N is locally bounded, K
is continuous and K, H, N are independent of y(·).

(A1) For the function y in (A1), yt is a B-valued continuous function for t ∈ [d, d+ T0].

(B) The space B is complete.

Consider the following integro-differential equation

d

dt
[Ey(t)] = A[y(t) +

∫ t

0

f(t− s)y(s)ds]. (9)

To prove the result, we impose the following data on operators A and E. The following
conditions are fulfilled by operators A : D(A) ⊂ X → Y and E : D(E) ⊂ X → Y :
(E1) A and E are closed linear operators,
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(E2) D(E) ⊂ D(A) and E is bijective,
(E3) E−1 : Y → D(E) is continuous operator and E−1B = BE−1,
(E4) AE−1 : Y → Y is the infinitesimal generator of uniformly continuous semigroup of
bounded linear operators in X .

To set the structure for our primary existence results, we have to introduce the
following definitions.

Definition 2.2 A family {R(t)}t∈[0,T0] of bounded linear operators is said to be a
resolvent operator for equation (9) if the following conditions are satisfied

(i) R(0) = I, where I is the identity operator on X .

(ii) R(t) is strongly continuous for t ∈ [0, T0].

(iii) R(t) ∈ B(Z), t ∈ [0, T0]. For z ∈ Z and R(·)z ∈ C([0, T0];Z) ∩ C1([0, T0];Z), we
have

d

dt
R(t)z = AE−1[R(t)z +

∫ t

0

f(t− s)R(s)zds], (10)

= R(t)AE−1z +

∫ t

0

R(t− s)AE−1f(s)zds, t ∈ [0, T0]. (11)

Here B(Z) denotes the space of bounded linear operators defined on Z and Z is a
Banach space formed from D(A) with the graph norm.

Throughout the work, the resolvent operator {R(t)}t≥0 is assumed to be analytic in
Banach space X and there exist positive constants N1 and N2 such that ‖ R(t)‖ ≤ N1

and ‖f(t)‖ ≤ N2 for each t ∈ [0, T0].
To consider the mild solution for the impulsive problem, we propose the set

PC([0, T0];X) = {y : [0, T0] → X : y is continuous at t 6= ti and left continuous
at t = ti and y(t+i ) exists, for all i = 1, · · · ,m}. Clearly, PC([0, T0];X) is a Banach space
endowed with the norm ‖ u‖

PC
= supt∈[0,T0] ‖ u(s)‖. For a function y ∈ PC([0, T0];X)

and i ∈ {0, 1, · · · ,m}, we define the function ỹi ∈ C([ti, ti+1], X) such that

ỹi(t) =

{

y(t), for t ∈ (ti, ti+1],

y(t+i ), for t = ti.
(12)

For W ⊂ PC([0, T0];X) and i ∈ {0, 1, · · · ,m}, we have ˜Wi = {ỹi : y ∈ W} and the
following Accoli-Arzelà type criteria.

Lemma 2.1 [7]. A set W ⊂ PC([0, T0];X) is relatively compact if and only if each

set ˜Wi ⊂ C([ti, ti+1], X) (i = 0, 1 · · · ,m) is relatively compact.

Now, we discuss some basic definition of measure of noncompactness (MNC).

Definition 2.3 [10] The Hausdorff’s measure of noncompactness (H’MNC) χY is
defined as

χY (U) = inf{ε > 0 : U can be covered by a finite number of balls with radius ε}, (13)

for the bounded set U ⊂ Y , where Y is a Banach space.
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Lemma 2.2 [10] For any bounded set U, V ⊂ Y , where Y is a Banach space. Then

the following conditions are fulfilled:

(i) χY (U) = 0 if and only if U is pre-compact;

(ii) χY (U) = χY (conv U) = χY (U), where conv U and U denote the convex hull and

closure of U respectively;

(iii) χY (U) ⊂ χY (V ), when U ⊂ V ;

(iv) χY (U + V ) ≤ χY (U) + χY (V ), where U + V = {u+ v : u ∈ U, v ∈ V };

(v) χY (U ∪ V ) ≤ max{χY (U), χY (V )};

(vi) χY (λU) = λ · χY (U), for any λ ∈ R;

(vii) If the map P : D(P ) ⊂ Y → Z is continuous and satisfy the Lipschitsz condition

with constant κ, then we have that χ
Z
(PU) ≤ κχY (U) for any bounded subset

U ⊂ D(P ), where Y and Z are Banach spaces.

Definition 2.4 [10] A bounded and continuous map P : D ⊂ Z → Z is a χZ-
contraction if there exists a constant 0 < κ < 1 such that χZ(P (U)) ≤ κχZ(U), for any
bounded closed subset U ⊂ D, where Z is a Banach space.

Lemma 2.3 [16] Let D ⊂ Z be closed, convex with 0 ∈ D and the continuous map

P : D → D be a χZ-contraction. If the set {u ∈ D : u = λPu, for 0 < λ < 1} is

bounded, then the map P has a fixed point in D.

Lemma 2.4 (Darbo-Sadovskii) [10]. Let D ⊂ Z be bounded, closed and convex. If

the continuous map P : D → D is a χZ-contraction, then the map P has a fixed point in

D.

In this paper, we consider that χ denotes the Hausdorff’s measure of noncompactness
(H’MNC)in X , χC denotes the Hausdorff’s measure of noncompactness in C([0, T0];X)
and χ

PC
denotes the Hausdorff’s measure of noncompactness in PC([0, T0];X).

Lemma 2.5 ( [10]. If U is bounded subset of C([0, T0];X), then we have that

χ(U(t)) ≤ χC(U), ∀ t ∈ [0, T0], where U(t) = {u(t);u ∈ U} ⊆ X. Furthermore, if

U is equicontinuous on [0, T0], then χ(U(t)) is continuous on the interval [0, T0] and

χC(U) = sup
t∈[0,T0]

{χ(U(t))}. (14)

Lemma 2.6 [10] If U ⊂ C([0, T0];X) is bounded and equicontinuous, then χ(U(t))
is continuous and

χ(

∫ t

0

U(s)ds) ≤

∫ t

0

χ(U(s))ds, ∀ t ∈ [0, T0], (15)

where
∫ t

0
U(s)ds = {

∫ t

0
u(s)ds, u ∈ U}.

Lemma 2.7 [14]
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(1) If U ⊂ PC([0, T0];X) is bounded, then χ(U(t)) ≤ χ
PC

(U), ∀ t ∈ [0, T0], where

U(t) = {u(t) : u ∈ U} ⊂ X;

(2) If U is piecewise equicontinuous on [0, T0], then χ(U(t)) is piecewise continuous for

t ∈ [0, T0] and
χ
PC

(U) = sup{χ(U(t)) : t ∈ [0, T0]}; (16)

(3) If U ⊂ PC([0, T0];X) is bounded and equicontinuous, then χ(U(t)) is piecewise

continuous for t ∈ [0, T0] and

χ(

∫ t

0

U(s)ds) ≤

∫ t

0

χ(U(s))ds, ∀ t ∈ [0, T0], (17)

where
∫ t

0
U(s)ds = {

∫ t

0
u(s)ds : u ∈ U}.

Now, we present the definition of mild solution for the system (6)-(8).

Definition 2.5 A piecewise continuous function y : [−∞, T0] is said to be a mild
solution for the system (6)-(8) if y0 = φ, y(·)|[0,T0] ∈ PC and the following integral
equation

y(t) = E−1R(t)Eφ(0) + E−1R(t)F (0, φ, 0)− E−1F (t, yt,

∫ t

0

a(t, s, ys)ds)

−E−1

∫ t

0

R(t− s)AE−1F (s, ys,

∫ s

0

a(s, τ, yτ )dτ)ds

−E−1

∫ t

0

R(t− s)AE−1

∫ s

0

f(s− τ)F (τ, yτ ,

∫ τ

0

a(τ, ξ, yξ)dξ)dτds

+E−1

∫ t

0

R(t− s)G(s, ys,

∫ s

0

E(s, τ, yτ )dτ)ds

+
∑

0<ti<t

E−1R(t− ti)Ii(yti), t ∈ [0, T0], (18)

is verified.

3 Main Results

We assume the following conditions which will be required to establish the result.

(E5) The function F : [0, T0] × B × X → X is a continuous function and there exist
positive constants LF1

and LF2
such that

‖F (t1, w1, z1)− F (t2, w2, z2)‖ ≤ LF1
[|t1 − t2|+ ‖w1 − w2‖B + ‖z1 − z2‖X ],

‖AF (t, w1, z1)−AF (t, w2, z2)‖ ≤ LF2
[‖w1 − w2‖B + ‖z1 − z2‖X ], (19)

for all t1, t2, t ∈ [0, T0], w1, w2 ∈ B and z1, z2 ∈ X with L1 = supt∈[0,T0] ‖F (t, 0, 0)‖,
L2 = supt∈[0,T0] ‖AF (t, 0, 0)‖.

(E6) (1). The function a(t, s, ·) : B → X is continuous for each (t, s) ∈ [0, T0] × [0, T0]
and a(·, ·, w), E(·, ·, w) : [0, T0]× [0, T0] → X are strongly measurable for all w ∈ B.
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The function a : J ×J ×B → X is a continuous function and there exists constant
a1 > 0 such that

‖

∫ t

0

[a(t, s, w) − a(t, s, z)]ds‖ ≤ a1‖w − z‖B, (20)

for each (t, s) ∈ J × J and z, w ∈ B.
(2). There exist functions ma,mE

: [0, T0]× [0, T0] → [0,+∞) such that ma,mE
are

differentiable, a.e., with respect to the first variable and
∫ t

0
ma(t, s)ds,

∫ t

0
m

E
(t, s)ds,

∫ t

0
∂,ma(t,s)[or m

E
(t,s)]

∂t
ds are bounded on [0, T0] and

∂m
E

∂t
≥ 0, for a.e., 0 ≤ s < t ≤ T0

such that

‖a(t, s, w)‖ ≤ ma(t, s)Wa(‖w‖B),

‖E(t, s, w)‖ ≤ m
E
(t, s)W

E
(‖w‖B), (21)

for each 0 ≤ s < t ≤ T0, w ∈ B and Wa,WE
: [0,∞) → (0,∞) are continuous

nondecreasing functions.

(E7) G : [0, T0]×B×X → X is a nonlinear function such that
(1) For each y : (−∞, T0] → X , y0 = φ ∈ B, G(t, ·, ·) is continuous a.e. for

t ∈ [0, T0] and function t 7→ G(t, yt,
∫ t

0 E(t, s, ys)ds) is strongly measurable for
y ∈ PC([0, T0];X).
(2) There are integrable functions α, β : J → [0,∞) and continuously differentiable
increasing functions Ω, W : R+ → R+ such that

‖ G(τ, w, z)‖ ≤ α(τ)Ω(‖ w‖B) + β(τ)W(‖ z‖), τ ∈ [0, T0], (w, z) ∈ B×X. (22)

(3) There is an integrable function ξ : J → [0,∞) such that for any bounded subsets
H1 ⊂ PC((−∞, 0];X), H2 ⊂ X , we have that

χ(R(τ)G(τ,H1, H2)) ≤ ξ(τ){ sup
−∞≤θ≤0

χ(H1(θ)) + χ(H2)}, (23)

a.e. for t ∈ [0, T0]. Where H1(θ) = {u(θ) : u ∈ H1}.

(E8) (1) The functions Ii : B → X, i = 1, 2, · · · ,m are continuous and there are con-
stants Li > 0 (i = 1, 2, · · · ,m) such that

‖ Ii(x) − Ii(y)‖ ≤ Li‖ x− y‖B, ∀ x, y ∈ B. (24)

(2) There exist positive constants K1
i and K2

i ,(i = 1, · · · ,m) such that

‖ Ii(x)‖ = K1
i ‖ x‖B +K2

i , x ∈ B. (25)

(E9)

∫ T0

0

b(s)ds ≤

∫ +∞

e

[Wa(ϑ) + Ω(ϑ) +
W

E
(ϑ)

Ω′(ϑ)
W

′

(LW
E
(ϑ))]−1ds, (26)
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where

b1(t) =
1

1− C2
[(NT0

ΛLF1
+ Λ2N1T0LF2

+ Λ2N2N1T
2
0LF2

)(ma(t, t)

+

∫ t

0

∂ma(t, s)

∂t
ds)],

b2(t) =
NT0

ΛN1p(t)

1− C2
, b3(t) = m

E
(t, t) +

∫ t

0

‖
∂m

E
(t, s)

∂t
‖ds,

p(t) = max{α(t), β(t)} b(t) = max{b1(t), b2(t), b3(t)} d =
C1

1− C2
,

C1 = NT0
[ΛN1(LF1

T0 + L1) + ΛL1 + Λ2N1T0L2(1 +N2T0) +N1 +
∑

0<ti<t

K2
i ]

+[N1LF1
NT0

+ (NT0
ΛΛ

′

N1H +KT0
)]‖φ‖B,

C2 = NT0
[ΛLF1

+ Λ2N1T0LF2
+ Λ2N2N1T

2
0LF2

+ ΛN1

∑

0<ti<t

K1
i ] < 1,

e = Ω−1(Ω(d) +W(d)),

∫ t

0

m
E
(t, s)ds < L0,

Ω1 is arbitrary positive constant.

We consider the function z : (−∞, T0] → X defined by z0 = φ and z(t) = E−1R(t)Eφ(0)
on [0, T0]. It is easy to see that ‖zt‖ ≤ [NT0

ΛΛ
′

N1H + KT0
]‖φ‖B, where NT0

=
supt∈[0,T0] N(t), KT0

= supt∈[0,T0] K(t) and Λ = ‖E−1‖, Λ
′

= ‖E‖.

Theorem 3.1 If the assumptions (E1)− (E9) are fulfilled and

NT0
[Λ(1 + a1)(LF1

+ ΛN1T0LF2
+ ΛN1N2T

2
0LF2

) + ΛN1

∑

0<ti<t

Li]

+Λ(1 + L0Ω1)

∫ t

0

ξ(s)ds < 1. (27)

Then, there exists at least one solution for the system (6)-(8).

Proof. Let S(T0) = {y : (−∞, T0] → X : y0 = φ, y|[0,T0] ∈ PC} with the supremum
norm (‖ · ‖T0

) be the space. Now, we consider the operator Π : S(T0) → S(T0) defined
by

Πy(t) =



















































0, t ∈ (−∞, 0],

E−1R(t)F (0, φ, 0)− E−1F (t, yt + zt,
∫ t

0
a(t, s, ys + zs)ds)

−E−1
∫ t

0 R(t− s)AE−1F (s, ys + zs,
∫ s

0 a(s, τ, yτ + zτ )dτ)ds

−E−1
∫ t

0
R(t− s)AE−1

∫ s

0
f(s− τ)F (τ, yτ + zτ ,

∫ τ

0
a(τ, ξ, yξ + zξ)dξ)dτds

+E−1
∫ t

0
R(t− s)G(s, ys + zs,

∫ s

0
E(s, τ, yτ + zτ )dτ)ds

+
∑

0<ti<t E
−1R(t− ti)Ii(yti + zti), t ∈ [0, T0].

(28)

Clearly, we have ‖yt + zt‖B ≤ [NT0
ΛΛ

′

N1H + KT0
]‖φ‖B + NT0

‖y‖t, where ‖y‖t =
sups∈[0,t] ‖y(s)‖. From the axioms A, our assumptions and the strong continuity of R(t),
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we can see that Πy ∈ PC. For y ∈ S(T0), we get

‖R(t− s)AE−1F (s, ys + zs,

∫ s

0

a(s, τ, yτ + zτ )dτ)‖ ≤ ΛN1[LF2
(‖ys + zs‖B

+

∫ t

0

ma(t, s)Wa(‖ys + zs‖B)) + L2],

and

‖f(s− τ)AE−1F (τ, yτ + zτ ,

∫ τ

0

a(τ, ξ, yξ + zξ)dξ)dτ‖ ≤ N2Λ[LF2
(‖ys + zs‖B

+

∫ t

0

ma(t, s)Wa(‖ys + zs‖B)) + L2].

Thus, from the Bocher theorem it takes after that AR(t−s)F (s, ys+zs,
∫ s

0 a(s, τ, yτ+
zτ )dτ) is integrable. So, we deduce that Π is well defined on S(T0). Next, we give the
demonstration of Theorem 3.1 in numerous steps.

Step 1. The set {y ∈ PC([0, T0], X) : y(t) = λΠy(t), for 0 < λ < 1} is bounded.
For λ ∈ (0, 1), let yλ be a solution for y = λΠy. We obtain

‖ yλt + zt‖ ≤ [NT0
ΛΛ

′

N1H +KT0
]‖φ‖B +NT0

‖yλ‖t. (29)

Let uλ(t) = [NT0
ΛΛ

′

N1H +KT0
]‖φ‖B +NT0

‖yλ‖t for each t ∈ [0, T0] and λ ∈ (0, 1).
‖yλ(t)‖ = ‖λΠyλ(t)‖ ≤ ‖Πyλ(t)‖

≤ ‖E−1R(t)F (0, φ, 0)‖+ ‖E−1F (t, yλt + zt,

∫ t

0

a(t, s, yλs + zs)ds)‖

+‖E−1

∫ t

0

R(t− s)AE−1F (s, yλs + zs,

∫ s

0

a(s, τ, yλτ + zτ )dτ)ds‖

+‖E−1

∫ t

0

R(t− s)AE−1

∫ s

0

f(s− τ)F (τ, yλτ + zτ ,

∫ τ

0

a(τ, ξ, yλξ + zξ)dξ)dτds‖

+‖

∫ t

0

R(t− s)E−1G(s, yλs + zs,

∫ s

0

E(s, τ, yλτ + zτ )dτ)ds‖

+
∑

0<ti<t

‖E−1R(t− ti)Ii(yλti + zti)‖,

≤ ΛN1(LF1
(T0 + ‖φ‖B) + L1) + Λ[LF1

(uλ(t) +

∫ t

0

ma(t, s)Wa(uλ(s))ds) + L1]

+Λ2N1T0[LF2
(uλ(t) +

∫ t

0

ma(t, s)Wa(uλ(s))ds) + L2]

+Λ2N2N1T
2
0 [LF2

(uλ(s) +

∫ t

0

ma(t, s)Wa(uλ(s))ds) + L2]

+ΛN1

∫ t

0

α(s)Ω(uλ(s)) + β(s)W(

∫ s

0

m
E
(s, τ)W

E
(uλ(τ))dτ)ds

+ΛN1

∑

0<ti<t

(K1
i uλ(t) +K2

i ),
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which gives that
‖yλ(t)‖

≤ ΛN1(LF1
T0 + L1) + ΛL1 + Λ2N1T0L2(1 +N2T0) +N1

∑

0<ti<t

K2
i +N1LF1

‖φ‖B

+[ΛLF1
+ Λ2N1T0LF2

+ Λ2N2N1T
2
0LF2

+ ΛN1

∑

0<ti<t

K1
i ]uλ(t)

+[ΛLF1
+ Λ2N1T0LF2

+ Λ2N2N1T
2
0LF2

]

∫ t

0

ma(t, s)Wa(uλ(s))ds

+ΛN1

∫ t

0

α(s)Ω(uλ(s)) + β(s)W(

∫ s

0

m
E
(s, τ)W

E
(uλ(τ))dτ)ds.

Thus, we estimate

uλ(t) ≤
C1

1− C2
+

NT0

1− C2
[ΛLF1

+ Λ2N1T0LF2

+Λ2N2N1T
2
0LF2

]

∫ t

0

ma(t, s)Wa(uλ(s))ds

+
NT0

ΛN1

1− C2

∫ t

0

α(s)Ω(uλ(s)) + β(s)W(

∫ s

0

m
E
(s, τ)W

E
(uλ(τ))dτ)ds.

Take d = C1

1−C2

and get

uλ(t) ≤ d+
NT0

1− C2
[ΛLF1

+ Λ2N1T0LF2
+ Λ2N2N1T

2
0LF2

]

∫ t

0

ma(t, s)Wa(uλ(s))ds

+
NT0

ΛN1

1− C2

∫ t

0

α(s)Ω(uλ(s)) + β(s)W(

∫ s

0

m
E
(s, τ)W

E
(uλ(τ))dτ)ds. (30)

Let

µλ(t) = d+
NT0

1− C2
[ΛLF1

+ Λ2N1T0LF2
+ Λ2N2N1T

2
0LF2

]

∫ t

0

ma(t, s)Wa(uλ(s))ds

+
NT0

ΛN1

1− C2

∫ t

0

α(s)Ω(uλ(s)) + β(s)W(

∫ s

0

m
E
(s, τ)W

E
(uλ(τ))dτ)ds, (31)

then, we get µλ(0) = d and uλ(t) ≤ µλ for each t ∈ [0, T0]. Thus, we get

µ
′

λ(t) ≤
NT0

1− C2
[ΛLF1

+ Λ2N1T0LF2
+ Λ2N2N1T

2
0LF2

]

×(a0(t, t)Wa(uλ(t)) +

∫ t

0

∂ma(t, s)

∂t
Wa(uλ(t))ds)

+
NT0

ΛN1

1− C2
[α(t)Ω(uλ(t)) + β(t)W(

∫ t

0

m
E
(t, s)W

E
(uλ(s))ds)].

Let ϑ(t) be such that

Ω(ϑ) = Ω(µλ) +W(

∫ t

0

m
E
(t, s)W

E
(µλ)ds). (32)
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We also have ϑ ≥ µλ. We differentiate the above equation and get

Ω
′

(ϑ)ϑ
′

= Ω
′

(µλ)µ
′

λ +W
′

(

∫ t

0

m
E
(t, s)W

E
(µλ)ds)

×[

∫ t

0

∂m
E

∂t
(t, s)W

E
(µλ)ds+m

E
(t, t)W

E
(µλ)],

Ω
′

(ϑ)ϑ
′

≤ Ω
′

(ϑ)[
NT0

1− C2
(ΛLF1

+ Λ2N1T0LF2
+ Λ2N2N1T

2
0LF2

)

×Wa(ϑ)(a0(t, t) +

∫ t

0

∂ma(t, s)

∂t
ds)

+
NT0

ΛN1

1− C2
p(t)Ω(ϑ)] +W

′

(W
E
(ϑ)

∫ t

0

m
E
(t, s)ds)

×W
E
(ϑ)[

∫ t

0

‖
∂m

E

∂t
(t, s)‖ds+m

E
(t, t)] (33)

Furthermore, from the hypotheses on Ω, we get

Ω
′

(ϑ) ≥ Ω
′

(µλ) ≥ Ω(µλ(0)) ≥ Ω
′

(ΛΛN1‖φ‖B) > 0.

Thus, we get

ϑ
′

≤
1

1− C2
[(NT0

ΛLF1
+ Λ2N1T0LF2

+ Λ2N2N1T
2
0LF2

)×Wa(ϑ)(a0(t, t)

+

∫ t

0

∂ma(t, s)

∂t
ds) +NT0

ΛN1p(t)Ω(ϑ)] +
W

E
(ϑ)

Ω′(ϑ)
W

′

(W
E
(ϑ)

∫ t

0

m
E
(t, s)ds)

×[

∫ t

0

‖
∂m

E

∂t
(t, s)‖ds+m

E
(t, t)]. (34)

By the assumption (E9), we estimate

ϑ
′

≤ [b1Wa(ϑ) + b2Ω(ϑ) +
b3WE(ϑ)

Ω′(ϑ)
W

′

(LW
E
(ϑ))],

≤ b(t)(Wa(ϑ) + Ω(ϑ) +
W

E
(ϑ)

Ω′(ϑ)
W

′

(LW
E
(ϑ))). (35)

Thus, for t ∈ [0, T0]

∫ ϑ(t)

ϑ(0)

[Wa(ϑ) + Ω(ϑ) +
W

E
(ϑ)

Ω′(ϑ)
W

′

(LW
E
(ϑ))]−1ds

≤

∫ T0

0

b(s)ds,

≤

∫ +∞

e

[Wa(ϑ) + Ω(ϑ) +
W

E
(ϑ)

Ω′(ϑ)
W

′

(LW
E
(ϑ))]−1ds, (36)

it implies that the function ϑ(t) is bounded function on [0, T0]. Thus, we obtain that the
function uλ(t) is bounded on [0, T0]. Hence, yλ(·) is bounded on [0, T0].
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Step 2. Π is a χ-contraction.
Now, we introduce the decomposition of Π = Π1 +Π2 defined by

Π1y(t) = E−1R(t)F (0, φ, 0)− E−1F (t, yt + zt,

∫ t

0

a(t, s, ys + zs)ds)

−E−1

∫ t

0

R(t− s)AE−1F (s, ys + zs,

∫ s

0

a(s, τ, yτ + zτ )dτ)ds

−E−1

∫ t

0

R(t− s)AE−1

∫ s

0

f(s− τ)F (τ, yτ + zτ ,

∫ τ

0

a(τ, ξ, yξ + zξ)dξ)dτds

+
∑

0<ti<t

E−1R(t− ti)Ii(yti + zti), (37)

Π2y(t) = E−1

∫ t

0

R(t− s)G(s, ys + zs,

∫ s

0

E(s, τ, yτ + zτ )dτ)ds. (38)

Now, we firstly show that Π is Lipschitz continuous with Lipschitz constant K1. Let
y1, y2 ∈ S(T0). Then, we obtain

‖Π1y1(t)−Π1y2(t)‖ ≤

‖E−1F (t, y1t + zt,

∫ t

0

a(t, s, y1s + zs)ds)− E−1F (t, y2t + zt,

∫ t

0

a(t, s, y2s + zs)ds)‖

+‖E−1‖

∫ t

0

‖R(t− s)AE−1[F (s, y1s + zs,

∫ s

0

a(s, τ, y1τ + zτ )dτ)

−F (s, y2s + zs,

∫ s

0

a(s, τ, y2τ + zτ )dτ)]‖ds

+‖E−1‖

∫ t

0

‖R(t− s)AE−1

∫ s

0

f(s− τ)F (τ, y1τ + zτ ,

∫ τ

0

a(τ, ξ, y1ξ + zξ)dξ)

−F (τ, y2τ + zτ ,

∫ τ

0

a(τ, ξ, y2ξ + zξ)dξ)]dτ‖ds

+
∑

0<ti<t

‖E−1R(t− ti)‖ · ‖Ii(y1ti + zti)− Ii(y2ti + zti)‖,

≤ ΛLF1
(1 + a1)‖y1t − y2t‖B + Λ2N1T0LF2

(1 + a1)‖y1t − y2t‖B

+Λ2N1N2T
2
0LF2

(1 + a1)‖y1t − y2t‖B + ΛN1

∑

0<ti<t

Li‖y1t − y2t‖B,

≤ NT0
[Λ(1 + a1)(LF1

+ ΛN1T0LF2
+ ΛN1N2T

2
0LF2

) + ΛN1

∑

0<ti<t

Li]

×‖y1 − y2‖T0
, (39)

which implies that Π1 is Lipschitz continuous with Lipschitz constant K1 =
NT0

[Λ(1 + a1)(LF1
+ ΛN1T0LF2

+ ΛN1N2T
2
0LF2

) + ΛN1

∑

0<ti<t Li] < 1.

Let B be an arbitrary subset of S(T0). Besides, R(t) is equicontinuous resolvent
operator. Therefore, from the assumption (HG) and the strong continuity of R(t), we
have that R(t− s)G(s, xs + ys,

∫ s

0
E(s, τ, xτ + yτ )dτ) is piecewise equicontinuous. Then,

by Lemma 2.6 we have
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χ(Π2(B(t)))

≤ χ(E−1

∫ t

0

R(t− s)G(s,Bs + zs,

∫ s

0

E(s, τ, Bτ + zτ )dτ)ds),

≤ Λ

∫ t

0

ξ(s) · ( sup
−∞<θ≤0

χ(B(s+ θ) + z(s+ θ)) + χ(

∫ s

0

E(s, τ, Bτ + zτ )dτ))ds,

≤ Λ

∫ t

0

ξ(s) sup
−∞<θ≤0

[χ(B(s+ θ) + z(s+ θ)) + L0χ(WE
(B(s+ θ) + z(s+ θ)))]ds,

≤ Λ

∫ t

0

ξ(s) sup
0≤τ≤s

(χ(B(τ)) + L0χ(WE
(B(τ))))ds,

≤ Λ χ
PC

(B)[1 + Ω1L0]

∫ t

0

ξ(s)ds, [∴ χ(W
E
(B(τ))) ≤ Ω1χ(B(τ))], (40)

for every bounded set B ⊂ PC. Here Ω1 is constant and
∫ t

0 mE
(t, s)ds ≤ L0.

Now we can see that for any bounded subset B ∈ PC

χ
PC

(Π(B)) = χ
PC

(Π1B +Π2B),

≤ χ
PC

(Π1B) + χ
PC

(Π2B),

≤ (K1 + Λ(1 + L0Ω1)

∫ t

0

ξ(s)ds)χ
PC

(B), (41)

from the above inequality we obtain that Π is χ-contraction. Hence Π has at least one
fixed point in B by Darbo fixed point theorem. Let y be the fixed point of the map Π
on S(T0). Thus u = y + z is a mild solution for the problem (6)-(8). Therefore, this
completes the proof of the theorem.

Theorem 3.2 Let us assume that the hypotheses (E1)-(E4) and (E5)-(E9) are sat-

isfied and

NT0
[ΛLF1

+ Λ2N1T0LF2
+ Λ2N1N2T

2
0LF2

+N1Λ
∑

0<ti<t

K1
i ]

+(ΛLF1
+ Λ2N1T0LF2

+ Λ2N1N2T
2
0LF2

)×

∫ T0

0

ma(T0, s) lim
τ→∞

sup
Wa(τ)

τ
ds

+ΛN1

∫ T0

0

[α(s) lim
τ→∞

sup
Ω(τ)

τ
+ β(s) lim

τ→∞

sup
W(τ)

τ
]ds < 1. (42)

Then, there exists at least one mild solution for Sobolev type equation (6)-(8).

Proof. The proof of the theorem is similar to the proof of the previous Theorem 3.1.
We consider the operator Π defined by the equation (28). Next, we show that there exist
a positive constant k such that Π(Bk) ⊂ Bk, here Bk denotes the closed and convex ball
with center at the origin and radius k i.e.,Bk = {y ∈ S(T0) : ‖y‖T0

≤ k}. To show the
claim, we assume that for any k > 0, there exists yk ∈ Bk and tk ∈ [0, T0] such that
k < ‖ Πyk(tk)‖. For yk ∈ Bk and tk ∈ [0, T0], we get
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k < ‖Πyk(tk)‖

≤ ΛN1(LF1
T0 + L1)‖φ‖B + Λ[LF1

(‖yktk + ztk‖B

+

∫ tk

0

ma(tk, s)Wa(‖yktk + ztk‖B)ds) + L1]

+Λ2N1T0[LF2
(‖yktk + ztk‖B +

∫ tk

0

ma(tk, τ)Wa(‖ykτ + zτ‖B)dτ) + L2]

+Λ2N1N2T
2
0 [LF2

(‖yks + zs‖B +

∫ tk

0

ma(tk, τ)Wa(‖ykτ + zτ‖B)dτ) + L2]

+ΛN1

∫ tk

0

α(s)Ω(‖yks + zs‖B) + β(s)W(

∫ s

0

m
E
(s, τ)W

E
(‖ykτ + zτ‖B)dτ)ds

+N1Λ
∑

0<ti<t

(K1
i ‖yktk + ztk‖B +K2

i ),

≤ N1(LF1
T0 + L1)‖φ‖B + ΛL1 + Λ2N1T0L2 + Λ2N1N2T

2
0L2 +N1Λ

∑

0<ti<t

K2
i

+[ΛLF1
+ Λ2N1T0LF2

+ Λ2N1N2T
2
0LF2

+N1Λ
∑

0<ti<t

K1
i ]× ‖yktk + ztk‖B

+(ΛLF1
+ Λ2N1T0LF2

+ Λ2N1N2T
2
0LF2

)

∫ tk

0

ma(tk, s)Wa(‖yktk + ztk‖B)ds

+ΛN1

∫ tk

0

[α(s)Ω(‖yks + zs‖B) + β(s)W(

∫ s

0

m
E
(s, τ)W

E
(‖ykτ + zτ‖B)dτ)]ds,

≤ N1(LF1
T0 + L1)‖φ‖B + ΛL1 + Λ2N1T0L2 + Λ2N1N2T

2
0L2 +N1Λ

∑

0<ti<t

K2
i

+[ΛLF1
+ Λ2N1T0LF2

+ Λ2N1N2T
2
0LF2

+N1Λ
∑

0<ti<t

K1
i ]

×[(NT0
ΛΛ

′

N1H +KT0
)‖φ‖B +NT0

k] + (ΛLF1
+ Λ2N1T0LF2

+ Λ2N1N2T
2
0LF2

)

×

∫ tk

0

ma(tk, s)Wa((NT0
ΛΛ

′

N1H +KT0
)‖φ‖B +NT0

k)ds

+ΛN1

∫ tk

0

[α(s)Ω((NT0
ΛΛ

′

N1H +KT0
)‖φ‖B +NT0

k)

+β(s)W(

∫ s

0

m
E
(s, τ)W

E
(NT0

ΛΛ
′

N1H +KT0
)‖φ‖B +NT0

k)dτ)]ds (43)

Dividing the above inequality by k and taking k → ∞, we conclude

1 < NT0
[ΛLF1

+ Λ2N1T0LF2
+ Λ2N1N2T

2
0LF2

+N1Λ
∑

0<ti<t

K1
i ]

+(ΛLF1
+ Λ2N1T0LF2

+ Λ2N1N2T
2
0LF2

)

×

∫ T0

0

ma(T0, s) lim
k→∞

sup
Wa((NT0

ΛΛ
′

N1H +KT0
)‖φ‖B +NT0

k)

k
ds

+ΛN1

∫ T0

0

[α(s) lim
k→∞

sup
Ω((NT0

ΛΛ
′

N1H +KT0
)‖φ‖B +NT0

k)

k
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+β(s) lim
k→∞

sup
W(

∫ T0

0
m

E
(T0, τ)WE

(NT0
ΛΛ

′

N1H +KT0
)‖φ‖B +NT0

k)dτ)

k
]ds

≤ NT0
[ΛLF1

+ Λ2N1T0LF2
+ Λ2N1N2T

2
0LF2

+N1Λ
∑

0<ti<t

K1
i ]

+(ΛLF1
+ Λ2N1T0LF2

+ Λ2N1N2T
2
0LF2

)×

∫ T0

0

ma(T0, s) lim
τ→∞

sup
Wa(τ)

τ
ds

+ΛN1

∫ T0

0

[α(s) lim
τ→∞

sup
Ω(τ)

τ
+ β(s) lim

τ→∞

sup
W(τ)

τ
]ds (44)

which gives a contradiction with the inequality (42). Hence, we obtain that Π(Bk) ⊂ Bk.
As in the proof of Theorem 3.1, we conclude that there exists at least one mild solution
for the system (6)-(8).

4 Application

Consider the following first order impulsive Sobolev type integro-differential equation
with unbounded delay in a Banach space (X, ‖ · ‖)

d

dt
[x(t, u) + xuu(t, u)− F (t, x(t− k, u),

∫ t

0

g1(t, s, x(s− k, u))ds)]

=
∂2

∂u2
[x(t, u) +

∫ t

0

f(t− s, u)x(s, u)ds]

+

∫ t

0

a(t, u, s− t)G(x(s, u),

∫ s

0

E(s, τ, xτ )dτ)ds, t ∈ [0, T0], u ∈ [0, π], (45)

x(t, 0) = x(t, π) = 0, t ∈ [0, T0], (46)

x(τ, u) = φ(τ, u), τ ≤ 0, 0 ≤ u ≤ π, (47)

∆x(ti)(u) =

∫ t

−∞

ci(ti − s)x(s, u)ds, (48)

where φ ∈ C0 × L2(h,X) (B-Phase space) and 0 < t1 < t2 < · · · < tm < b are fixed
numbers.

The functions f, a,G,E, ci, F satisfy the following conditions:

(A1) The operator f(t), t ≥ 0 is bounded and ‖ f(t, u)‖ ≤ N2;

(A2) a(t, u, τ) is continuous function on [0, T0]× [0, π]× (−∞, 0] with
∫ 0

−∞

a(t, u, τ)dτ =
n(t, u) < ∞;

(A3) G is a continuous function, satisfying G(x1, x2) ≤ Ω1(‖ x1‖) + Ω2(‖ x2‖), where
Ω1(·) and Ω2(·) are continuous, increasing and positive functions on [0,∞);

(A4) The function E(·) is a continuous function, satisfying 0 ≤ E(t, s, u) ≤
mE(t, s)ω(‖ u‖), where ω is a positive increasing continuous function on
[0,∞) and mE is differentiable a.e., with respect to the first variable with
∫ t

0
mE(t, s)ds,

∫ t

0
∂mE(t,s)

∂t
ds are bounded on [0, T0] and

∂mE(t,s)
∂t

≥ 0;

(A5) The functions ci ∈ C([0,∞);R) and K3
i = (

∫ 0

−∞

(ci(s))
2

h(s) ds)1/2 < 0, ∀ i = 1, · · · ,m;



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (3) (2015) 272–289 287

(A6) F is an appropriate Lipschitz continuous function satisfying assumption (E5).

We define the operators A : D(A) ⊂ X → X and E : D(E) ⊂ X → X such that

Ax = x′′, Ex = x+ x′′,

where D(A) and D(B) are defined by

{x ∈ X : x, xu are absolutely continuous, xuu ∈ X, x(0) = x(π) = 0}. (49)

Then, we get

Ax =

∞

∑

n=1

n2 < x, xn > xn, x ∈ D(A),

Ez =

∞

∑

n=1

(1 + n2) < x, xn > xn, x ∈ D(E), (50)

with xn(u) =
√

2/π sin(nu), n = 1, · · · , is the orthogonal set of vectors of A.
Moreover, x ∈ X , we get

E−1z =

∞

∑

n=1

1

1 + n2
< xn, x > xn,

AE−1 =

∞

∑

n=1

n2

1 + n2
< xn, x > xn,

R(t)x =

∞

∑

n=1

exp(
n2t

1 + n2
) < xn, x > xn. (51)

Clearly, AE−1 is the infinitesimal generator of a strongly continuous resolvent operator
R(t) on Y . Applying Theorem 3.1, we conclude that there exists at least one mild solution
for the system (45)-(48).

5 Conclusion

The existence of mild solution for an impulsive neutral integro-differential equation of
Sobolev type was investigated. The sufficient condition for ensuring the existence of mild
solution was provided by using Darbo-Sadovskii fixed point theorem, analytic semigroup
and Hausdorff measure of noncompactness without assuming Lipschitz continuity of non-
linear part G and compactness of semigroup. An example was studied for explaining the
feasibility of the discussed results.
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[10] Józef Banas and Kazimierz Goebel. Measure of Noncompactness in Banach Spaces. Lecture
Notes in Pure and Applied Mathematics. Marcel Dekker, New York, USA, 1980.

[11] Prüss, J. Evolutionary Integral Equations and Applications. In: Monographs Math., Vol.
87. Birkhauser-Verlag, 1993.

[12] Benchohra, M., Henderson, J. and Ntouyas, S. K. Impulsive differential equations and
inclusions. Contemporary Mathematics and Its Applications, Vol.2. Hindawi Publishing
Corporation, New York, 2006.

[13] Agarwal, R. P., Benchohra, M. and Seba, D. On the application of measure of noncom-
pactness to the existence of solutions for fractional differential equations. Results Math. 55
(2009) 221–230.

[14] Ye, R. Existence of solutions for impulsive partial neutral functional differential equations
with infinite delay. Nonlinear Analysis: TMA 73 (2010) 155–162.

[15] Ye, R.S, Dong, Q. and Li G. Existence of solutions of nonlinear abstract neutral integrod-
ifferential equations with infinite delay. Nonlinear Funct. Anal. Appl. 17 (2012) 405–420.

[16] Agarwal, R., Meehan, M. and O’ Regan, D. Fixed point theory and applications. In:
Cambridge Tracts in Mathematics. Cambridge University Press, New York, 2001 178–179.
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Abstract: The extended Kalman filter is extensively used in the nonlinear state
estimation systems. As long as the system characteristics are correctly known, the
extended Kalman filter gives the best performance. However, when the system in-
formation is partially known or incorrect, the extended Kalman filter (EKF) may
diverge or give the biased estimates. To overcome this problem we introduced the
new Riccati difference equation (RDE) which is used to study and examine the per-
formance analysis of extended Kalman filter. We consider the special case of tracking
a target with cluster, but with a probability arrival of small value. Finally the con-
vergence analysis and stabilizing solution of Riccati difference equations arising from
the standard extended Kalman filter is studied. Simulations results for convergence
of EKF for the class of nonlinear filters are done through MATLAB.

Keywords: convergence; extended Kalman filter; Riccati difference equations; feasi-
bility and stabilizing solution.
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1 Introduction

Several recent papers have been devoted to a study of nonlinear Riccati difference equa-
tions. The family of Kalman filters have been applied for state as well as parameter esti-
mation for numerous linear as well as nonlinear systems. Though the standard Kalman
filter is considered in an optimal estimator (in case of linear systems) with Gaussian noise
characters, its nonlinear (extended Kalman filter) suboptimal counterpart is known to
diverge under the influences of severe nonlinearities and uncertainties [4,7]. As a solu-
tion to this problem robust form of the EKF have been formulated for a wide class of
uncertainities [13] in the form of new RDE.
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The paper is organized as follows. In Section 2, we introduced the new Riccati dif-
ference equation and algebraic Riccati equation, which are used to arrive the feasible
solutions. Also we introduced some lemmas and assumptions which are useful for ar-
riving the convergence analysis. Section 3 provides the conditions needed to ensure the
convergence analysis and stabilizing the solutions of the new RDE with the initial condi-
tions. Section 4 provides the simulation results for convergence of the EKF for the class
of nonlinear systems through MATLAB [12]. Conclusions are made in Section 5.

2 Preliminaries

Consider the following linear discrete-time system [5, 10]

uk+1 = Axk +Bwk k ∈ N, (1)

vk = Cxk +Duk k ∈ N, (2)

zk = Lxk, (3)

with the initial condition x0 and k = 0, 1, 2, . . . , N , where xk ∈ Rn is the system state,
wk ∈ Rq is the noise, vk ∈ Rm is the output measurements, uk ∈ Rm is the input
measurements, zk ∈ Rp is a linear combination of the state variable to be estimated. A,
B, C, D and L are known real constant matrices with appropriate dimensions. Time
step k is defined as Zk = {z1, z2, z3, ..., zk}, often this is referred to as the measurement.

It is worth noting that an estimator zk is called an a priori filter if ẑk is obtained with
the output measurements [15] {v0, v1, . . . , vk−1} , while ẑk is referred to as a posteriori
filter. This ẑk is obtained by the measurements {v0, v1, . . . , vk} .

Now we introduce the following new Riccati difference equation (RDE)

Pk+1 = APkA
T −

(

APkC
T +BDT

) (

CPkC
T +R

)

−1 (
CPkA

T +DBT
)

, (4)

and the Algebraic Riccati Equation (ARE) [14],

P = APAT −
(

APCT +BDT
) (

CPCT +R
)

−1 (
CPAT +DBT

)

. (5)

It is clear that the existence of filter is related to the RDE (4) or ARE (5), and the
fulfillment of a suitable matrix inequality (feasibility condition) [1], [3]. Now, we adopt
the definition of feasible solution [6]. The feasiblility and convergence analysis problem
studied in this paper is stated as follows: Given an arbitrarily large N , find the suitable
conditions on the initial state P0 such that the solution Pk is feasible at every step
k ∈ [0, N ] and converges to the stabilizing solution Ps as N → ∞ [8],[9]. We end this
section by giving two preliminary results which play an important role in deriving the
main results of this paper. The first is an extension of a comparison result of new RDE
[16].

Lemma 2.1 Consider the following Riccati difference equation

Pk+1 = APkA
T −

(

APkC
T +BDT

) (

CPkC
T +R

)

−1 (
CPkA

T +DBT
)

+BBT .

Let P 1
k and P 2

k be solutions of (4) with different initial conditions P 1
0 = P̄ 1

0 ≥ 0 and

P 2
0 = P̄ 2

0 ≥ 0, respectively. Then the difference between the two solutions P̃k = P 2
k − P 1

k

satisfies the following equation

P̃k+1 = ÃkP̃kÃ
T
k − ÃkP̃kC

T
(

CP̃kC
T + R̃k

)

−1

CP̃kÃ
T
k ,
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where Ãk = A−
(

AP 1
KCT +BDT

) (

CP 1
kC

T +R
)

−1
C and R̃k = CP 1

kC
T +R.

In order to extend the above lemma, we need the following assumption.

Assumption 2.1 The matrix Ā = A−BDT
(

DDT
)

−1
C is invertible.

Lemma 2.2 Consider Riccati difference equation (4). Let P 1
k and P 2

k be the two
solutions of (4) with different initial conditions P 2

0 > P 1
0 > 0. Then, under Assumption

2.1, when P 2
k is feasible, it results that P 2

k > P 1
k > 0 and P 1

k is feasible too. Furthermore,
if P 2

0 > P 1
0 , then P 2

k > P 1
k .

3 Convergence Analysis of Riccati Difference Equation

It is well known from filtering and control theory that the Kalman recursions lead to a
recursive formula for the covariance matrix analysis [2]. This result is obtained by elim-
inating the Kalman gain from the recursion formula. This recursion formula is referred
to as the Riccati difference equation [8]. The issue of the speed of convergence is an
important one. So we introduced the following Lyapunov equation

ÃTY Ã− Y = −M
−
, (6)

where Ã = A− (APsC
T +BDT )(CPsC

T +R)−1C . Now we can formulate Kalman-like
recursions for a general system as

Mk = Ã−T
(

G+ CT R̃−1C
)

Ã−1 −GK , (7)

Gk = −P−1
s − P−1

s

(

LTL− P−1
s

)

−1
P−1
s , (8)

Rk = CPsC
T +R, (9)

where k is the Kalman gain [5]. The following theorem establishes the relationship
between the initial state P0 and feasibile solution to RDE (4).

Theorem 3.1 Consider the Riccati difference equation (4). Let Assumption 2.1
hold, and let Y be the solution to the Lyapunov equation (6). Then the solution Pk of
RDE (4) is feasible over [0 ∞) if for some sufficiently small ǫ > 0, the initial condition
satisfies

0 < P0 < (Gk − Y +Mk + I)
−1

+ Ps. (10)

Proof. The procedure of the proof is classified into three cases.
Case (i) P0 < Ps. Ps is a constant feasible solution of (4), then the feasibility of Pk

follows from Lemma 2.2 directly.
Case (ii) P0 > Ps. Let’s define Xk = Pk −Ps. Then, applying Lemma 2.1 to (4) and

(5), immediately we obtain that Xk satisfies the following

Xk+1 = ÂXkÂ
T − ÂXkC

(

CXkC
T + R̂

)

−1

CXkÂ
T

= Â
(

X−1
k + CT R̂−1C

)

−1

ÂT ,

(11)

where X0 = p0−Ps, Â = A−
(

APsC
T +BDT

) (

CPsC
T +R

)

−1
C and R̂ = CPsC

T +R.

Now let Zk = X−1
k − Gk, where Gk is defined by (8). It is worth noting that Gk ≥ 0,
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since Ps is feasible. Note that Â is invertible as Ā is invertible and Ps is feasible.
Then by (11), we have Zk+1 = Â−TZkÂ

−1 + Mk, where Mk is defined by (7) and

Z0 = (P0 − Ps)
−1

−Gk. Since Ps is feasible and Xk > 0, then according to Lemma 2.2,
it is clear that the feasibility of Pk is equivalent to the positive definiteness of Zk, which

follows from Zk = P − s−1
[

(

P − s−1 − P−1
k

)

−1
−
(

P−1
s − LTL

)

−1
]

P−1
s .

Now consider the following Lyapunov equation [11]

Ẑk+1 = Â−T Ẑk+1Â
−1 +M

−
(12)

with Ẑ0 = Z0. By definition Mk ≥ M
−
, so that Zk ≥ Ẑk. Then Ẑk > 0 is sufficient to

guarantee the positivity of Zk. Now we compute (12) as follows

Zk ≥ Ẑk =
(

Â−k
)T



Z0 +

k
∑

j=1

(

Âj
)T

M
−
Âj



 Â−k

≥
(

Â−k
)T



Z0 +

∞

∑

j=1

(

Âj
)T

M
−
Âj



 Â−k,

(13)

from (6), we deduce the value of Y ,

Y =
∞

∑

j=0

(

Âj
)T

M
−
Âj

= M
−
+

∞

∑

j=1

(

Âj
)T

M
−
Âj .

(14)

Now comparing (13) and (14), we have

Zk ≥ Ẑk ≥
(

Â−k
)T

(Z0 + Y −M
−
) Â−k. (15)

So, if Z0 + Y −M
−
> 0, then Ẑk > 0 and in turn Zk > 0. Here Z0 + Y −M

−
> 0. This

is rewritten as
(P0 − Ps)

−1
−Gk + Y −M

−
> 0. (16)

Since −Y +M
−
≥ 0 and Gk ≥ 0, then (10) implies (16). Thus the proof of feasibility for

the case of P0 > Ps is completed.
Case (iii). P0−Ps is not a definite matrix. Initially we need to study the convergence

of the solution of the RDE (4). It is easy to know that (4) satisfies the following matrix
recursions

Pk+1 = ĀS−1
k ĀT +B

[

I −DT
(

DDT
)

−1
D
]

BT ,

Sk = P−1
k + CTR−1C,

(17)

so Sk satisfies the following RDE

Sk =
{

ĀS−1
k ĀT +B

[

I −DT
(

DDT
)

−1
D
]

BT
}

−1

+ CTR−1C, (18)
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and the associated ARE is

S =
{

ĀS−1ĀT +B
[

I −DT
(

DDT
)

−1
D
]

BT
}

−1

+ CTR−1C. (19)

Under Assumptions 2.1 and 19, we concluded that both the stabilizing solution Ss and
antistabilizing solution Sa provides Ss − Sa > 0. This implies that there exists a P̄0

satisfying (10) and such that P̄0 > P0 and P̄0 > Ps. Hence P0 − Ps is not a definite
matrix.

The following theorem provides a sufficient condition for ensuring convergence as well
as feasibility of the solution of the RDE (4) over [0, ∞) .

Theorem 3.2 Consider the Riccati difference equation (4). Let Assumption 2.1 hold,
then the solution Pk of RDE (4) is feasible over [0 ∞) and converges to the stabilizing
solution Ps of (5) as k → ∞ if Ps is feasible and for some sufficiently small ǫ > 0, then
the initial condition satisfies

0 < P0 < (Gk − Y +M
−
+ ǫI)

−1
+ Ps, (20)

where G, Y, and M are defined as in Theorem 3.1.

Proof. Initially, it is noted that Pk is feasible over [0 ∞) from Theorem 3.1.
Consider (4), (5), (18) and (19), and the study of convergence of Pk is equivalent to the
study of the convergence of Sk to Ss. So we focus on the convergence of Sk as follows,
let U = {Sa − Sa}

−1
, then from (19), we have

U = ÃTUÃ+ S−1
s − PsÂ

TP−1
s ÂPs. (21)

Next, let W = Ps

[

Gk − Y +M
−
+ P−1

s

]

Ps, then from (6), we have

W = ÃTUÃ+ S−1
s − PsÂ

TP−1
s ÂPs +N, (22)

where

N = PsC
T R̂−1CPs + Ps

(

Gk − ÂTGkÂ
)

Ps − PsÂ
TM

−
ÂPs = PsÂ

TM+ÂPs ≥ 0.

Comparing (21) and (22), we have W ≥ U. Now consider (17) and (20), and we obtain

S0 = P−1
0 + CTR−1C

>
[

(Gk − Y +M
−
+ ǫI)

−1
+ Ps

]

−1

+ CTR−1C

= Ss − P−1
s

[

Gk − Y +M
−
+ ǫI + P−1

s

]

−1
P−1
s

≥ S − s−W−1

≥ Ss − U−1 = Sa.

(23)

From (23), we have S0 > Sa. This implies that lim
k→∞

Sk = Ss. It shows that Pk converges

to P , and remains feasible at every step. Hence the proof.
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4 Simulation Results

Example 4.1

Matrix States Initial Estimations

Initial States

[

2 0
0 2.04

]

Arbitrary Matrix P

[

0.6 1
1 0.4

]

Arbitrary Matrix R

[

0.9 0
0 1.2

]

Table 1: Initial values for Figure 1.

Figure 1: Convergence analysis for Table 1.

Example 4.2

Matrix States Initial Estimations

Initial States

[

1.7 0
0 1.03

]

Arbitrary Matrix P

[

0.2 1
1 0.7

]

Arbitrary Matrix R

[

1.2 0
0 1.9

]

Table 2: Initial Values for Figure 2.
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Figure 2: Convergence analysis for Table 2.

Example 4.3

Matrix States Initial Estimations

Initial States

[

0.4 0
0 0.9

]

Arbitrary Matrix P

[

1.7 1
1 2.4

]

Arbitrary Matrix R

[

1.4 0
0 2.1

]

Table 3: Initial Values for Figure 3.

Figure 3: Convergence analysis for Table 3.

5 Conclusion

In this paper we classified the relationship between the initial state P0 and the feasible
solution through a new theorem. The estimation performance of the EKF is improved
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when we introduced the new RDE corresponding to ARE. Moreover, the convergence
analysis is derived with the proposed RDE with good initial conditions alongwith a
small ǫ. Furthermore, an additional theorem is formulated to ensure the convergence as
well as feasible solutions of the new RDE. Simulation results show the performance of
the proposed theorem even for the bad initializations.
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Abstract: In this paper, we study the existence of even homoclinic solutions for a
dynamical system

ẍ(t) +Aẋ(t) + V
′(t, x(t)) = 0,

where A is a skew-symmetric constant matrix, t ∈ R, x ∈ R
N and V ∈ C1(R×R

N ,R),
V (t, x) = −K(t, x) + W (t, x). We assume that W (t, x) does not satisfy the global
Ambrosetti-Rabinowitz condition and that the norm of A is sufficiently small. For
the proof we use the mountain pass theorem.

Keywords: even homoclinic solution; dynamical system; mountain pass theorem;
condition (C); critical point.

Mathematics Subject Classification (2010): 34C37.

1 Introduction

The purpose of this work is to study the existence of even homoclinic solutions for the
following system

ẍ(t) +Aẋ(t) + V ′(t, x(t)) = 0, (DS)

where A is a skew-symmetric constant matrix, V ∈ C1(R × R
N ,R), V ′(t, x) = ∂V

∂x
(t, x)

and x = (x1, ..., xN ). We say that a solution x(t) of dynamical system (DS) is homoclinic
if x(t) → 0 as t → ±∞. In addition, x is called nontrivial if x 6≡ 0. The theory of
dynamical systems is a vast subject that can be studied from many different viewpoints.
Particularly the existence of homoclinic solutions for DS is among the very important

∗ Corresponding author: mailto:k_khachnaoui@yahoo.com

c© 2015 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua298

mailto: k_khachnaoui@yahoo.com
http://e-ndst.kiev.ua


NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (3) (2015) 298–312 299

problems which have been intensively studied. When A = 0, (DS) is just the following
second order non-autonomous Hamiltonian system:

ẍ(t) + V ′(t, x(t)) = 0. (HS)

If the potential V (t, x) is of type

V (t, x) = −
1

2
L(t)x.x+W (t, x), (1)

where L ∈ C(R,RN2

) is a symmetric matrix depending continuously on t and W ∈
C1(R × R

N ,R), then the existence of homoclinic solutions of (HS) has been intensively
studied by many mathematicians, see ( [1], [6], [7], [11], [12], [14], [15], [22]) and the
references therein. Assuming that L(t) andW (t, x) are T -periodic in t, T > 0, Rabinowitz
[17] showed the existence of homoclinic solutions as a limit of 2kT -periodic solutions
of (HS). By the same method many authors have studied the existence of homoclinic
solutions for the system (HS) via critical point theory and variational methods, see
( [6], [9], [10], [11], [19]) and the references therein. In 2005, Izydorek and Janczewska [10]
introduced a new type of potential V (t, x) with which they studied the existence of
homoclinic solutions for the system (HS), the potential V (t, x) is T -periodic in t and of
the form:

V (t, x) = −K(t, x) +W (t, x), (2)

where K, W ∈ C1(R× R
N ,R), which has been extended in the recent paper [19]. They

have proved the existence of homoclinic solutions as a limit of 2kT -periodic solutions of
(HS). If K(t, x) and W (t, x) are neither autonomous nor periodic in t, the problem of the
existence of homoclinic solutions of (HS) is quite different from the ones just described,
because of the lack of compactness of Sobolev embedding. In 2013, Benhassine and
Timoumi [5] studied the existence of even homoclinic orbits of the system (HS) when the
potential V (t, x) is of the form (2) and satisfies a kind of new superquadratic conditions,
in particular

(i) W ′(t, x).x > 2W (t, x) ≥ 0 for all (t, x) ∈ R× (RN \ {0}),
W (t, x) := 1

2W
′(t, x).x −W (t, x) → +∞ as |x| → +∞ uniformly in t ∈ R.

(ii) there exist constants b1 > 0 such that

K(t, x) ≥ b1|x|
2.

When the potential V (t, x) is of type (2), the existence of even homoclinic solutions of
(DS) has not been studied. Motivated by the papers ( [1], [3]- [11], [14]- [19], [21]), we
prove the existence of even homoclinic solutions for (DS), as the limit of solutions of
a sequence of boundary-value problems which are obtained by the minimax methods.
Here and in the following x.y denotes the inner product of x, y ∈ R

N and |.| denotes the
associated norm.

Our basic hypotheses on K and W are the following:
(H1) For all (t, x) ∈ R× R

N , V ′(t, x) → 0 as |x| → 0 uniformly in t ∈ R,

(H2) There exists a constant b1 > 0 such that

K(t, x) ≥ b1|x|
2, K(t, x) ≤ K ′(t, x).x ≤ 2K(t, x)

for all (t, x) ∈ R× R
N ,

(H3) W
′(t, x) = o(|x|) as |x| → 0 uniformly in t ∈ R and there exists some constant C0
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such that |W ′(t,x)|
|x|

≤ C0 for all (t, x) ∈ R× R
N ,

(H4) W
′(t, x).x > 2W (t, x) ≥ 0 for all (t, x) ∈ R× (RN \ {0}),

W (t, x) := 1
2W

′(t, x).x −W (t, x) → +∞ as |x| → +∞ uniformly in t ∈ R and for any

fixed 0 < r1 < r2, inf
t∈R,r1≤|x|≤r2

W (t, x)

|x|2
6= 0,

(H5) There exists constant ξ0 > 0 such that

lim inf
|x|→+∞

W (t, x)

|x|2
>

2π2 + π
2 b̄1ξ0

ξ20
+M1

uniformly in t ∈ [−ξ0, ξ0], where M1 = sup
t∈[−ξ0,ξ0],|x|=1

K(t, x), b1 = min{1, 2b1} and b1 is

defined in (H2).
(H6) ‖A‖ ≤ 1

4b1.

Now we state our main results.

Theorem 1.1 Assume that (H1)–(H6) hold, then the system (DS) has at least one

even homoclinic solution x ∈ H1(R,RN ) such that ẋ(t) → 0 as |t| → +∞.

Remark 1.1 From (H5), we see that there exist a1 > 0 and R > 0 such that

W (t, x)

|x|2
≥

2π2 + π
2 b̄1ξ0 + a1

ξ20
+M1,

for all |x| > R and t ∈ [−ξ0, ξ0]. Let M3 = max
t∈[−ξ0,ξ0],|x|≤R

W (t, x); we have

W (t, x) ≥ (
2π2 + π

2 b̄1ξ0 + a1

ξ20
+M1)(|x|

2 −R2)−M3 (3)

for all x ∈ R
N and t ∈ [−ξ0, ξ0].

Moreover, W ′(t, x) = o(|x|) as |x| → 0 uniformly in t ∈ R, which implies that for any
ǫ > 0 there exists ρ0 > 0 such that

|W ′(t, x)| ≤ ǫ|x|, for (t, x) ∈ R× R
N , |x| ≤ ρ0. (4)

Now let us consider the following assumption:
(H7) There exist x0 ∈ R

N and ξ0 > 0 such that
∫ ξ0

−ξ0

(K(t, x0)−W (t, x0))dt < 0.

Our second result deals with the case of periodicity.

Theorem 1.2 Assume that V is T-periodic in t, T > 0 and (H1)-(H4), (H6) and

(H7) hold, then the system (DS) has at least one even homoclinic solution x ∈ H1(R,RN )
such that ẋ(t) → 0 as |t| → +∞.

Example 1.1 Consider the functions

K(t, x) = |x|2 + |x|
3

2 , W (t, x) = (e−t2 + 2π)|x|2
(

1−
1

ln(e + |x|)

)

.

A straightforward computation shows that W and K satisfy the assumptions of Theorem
1.1, but W does not satisfy the global Ambrosetti-Rabinowitz condition, and K cannot
be written in the form 1

2 (L(t)x, x) and does not satisfy the corresponding results in
( [1], [3], [6]- [10], [12], [14], [17], [19], [21], [22]).
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2 Proof of the Main Results.

By the idea of [11], we approximate an even homoclinic solution of (DS) by a solution of
the following problem:

{

ẍ(t) +Aẋ(t)−K ′(t, x(t)) +W ′(t, x(t)) = 0 for t ∈]− ξ, ξ[,
x(−t) = x(t) for t ∈]− ξ, ξ[, x(−ξ) = x(ξ) = 0,

(5)

where ξ is a positive constant. The set

H1
0 ([−ξ, ξ]) =

{

x : [−ξ, ξ] → R
N/x is absolutely continuous,

x(−ξ) = x(ξ) = 0, ẋ ∈ L2([−ξ, ξ],RN )

}

is a Hilbert space with the norm

‖x‖ =

(

∫ ξ

−ξ

(|x(t)|2 + |ẋ(t)|2)dt

)
1

2

and the associated inner product

〈x, y〉 =

∫ ξ

−ξ

(x(t).y(t) + ẋ(t).ẏ(t))dt.

Consider the functional Iξ : H1
0 ([−ξ, ξ]) → R defined by

Iξ(x) =

∫ ξ

−ξ

[

1

2
|ẋ(t)|2 +

1

2
(Ax(t).ẋ(t)) +K(t, x(t))−W (t, x(t))

]

dt.

It is easy to check that Iξ ∈ C1(H1
0 ([−ξ, ξ]),R) and by using the skew-symmetry of A,

we have

I ′ξ(x)y =

∫ ξ

−ξ

[(ẋ(t).ẏ(t)− (Aẋ(t).y(t)) +K ′(t, x(t)).y(t) −W ′(t, x(t)).y(t)] dt. (6)

Moreover, the critical points of Iξ in H1
0 ([−ξ, ξ]) are the classical solutions of (DS) in

[−ξ, ξ] satisfying x(ξ) = x(−ξ) = 0. We will obtain a critical point of Iξ by using the
Mountain Pass Theorem:

Lemma 2.1 ( [16]) Let H be a real Banach space and I ∈ C1(H,R) satisfying the

Palais-Smale condition. If I satisfies the following conditions:

(i) I(0) = 0,

(ii) there exist constants ρ, α > 0 such that I
|∂Bρ(0) ≥ α,

(iii) there exists e ∈ H\Bρ(0) such that I(e) ≤ 0.

Then I possesses a critical value c ≥ α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where Bρ(0) is the open ball in H centered in 0, with radius ρ, ∂Bρ(0) as its boundary

and

Γ = {g ∈ C([0, 1], H) : g(0) = 0, g(1) = e}.
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For a fixed ξ > 0, consider the subspace Eξ of H1
0 ([−ξ, ξ]) defined by

Eξ =
{

x ∈ H1
0 ([−ξ, ξ])|x(−t) = x(t), a.e. t ∈]− ξ, ξ[

}

.

We will proceed by successive lemmas.

Lemma 2.2 The critical points of Φξ on Eξ are exactly the solutions of problem (5),

where Φξ is the restriction of Iξ on Eξ.

Proof. Let

Fξ =
{

x ∈ H1
0 ([−ξ, ξ])/x(−t) = −x(t), a.e. t ∈]− ξ, ξ[

}

.

For every x ∈ H1
0 ([−ξ, ξ]), set

y(t) =
1

2
(x(t) + x(−t)) , z(t) =

1

2
(x(t)− x(−t)) ,

then y ∈ Eξ, z ∈ Fξ and x = y + z. So H1
0 ([−ξ, ξ]) = Eξ + Fξ. Furthermore, for all

y ∈ Eξ, z ∈ Fξ we have

〈y, z〉 =

∫ ξ

−ξ

(y(t).z(t) + ẏ(t).ż(t))dt =

∫

−ξ

ξ

(y(−t).z(−t) + ẏ(−t).ż(−t))d(−t)

=

∫ ξ

−ξ

(y(t).(−z(t)) + (−ẏ(t)).ż(t))dt = −〈y, z〉,

which implies that 〈y, z〉 = 0 and then Eξ⊥Fξ. Hence H1
0 ([−ξ, ξ]) = Eξ ⊕ Fξ. If x is

a critical point of Φξ, for every z ∈ Eξ ⊂ C0([−ξ, ξ],RN ) (The space of continuous
functions z on [−ξ, ξ] such that z(t) → 0 as |t| → +∞), then by (6) we have

∫ ξ

−ξ

[ẋ(t).ż(t)−Aẋ(t).z(t)]dt =

∫ ξ

−ξ

(ẋ(t) +Ax(t)).ż(t)dt

= −

∫ ξ

ξ

(K ′(t, x(t)) −W ′(t, x(t))).z(t))dt

which implies that K ′(t, x(t)) −W ′(t, x(t)) is the weak derivative of ẋ(t) + Ax(t). Since
K,W ∈ C1(R×R

N ,R) and Eξ ⊂ C0([−ξ, ξ],RN ), we see that ẋ(t)+Ax(t) is continuous,
which yields that ẋ(t) is continuous and x(t) ∈ C2(R,RN ); i.e x ∈ Eξ is a classical
solutions of (5) if and only if it is a critical point of Φξ on H1

0 ([−ξ, ξ]). The proof of
Lemma 2.2 is complete.

Lemma 2.3 Assume that (H2) holds. Then, for every t ∈ [−ξ0, ξ0] and x ∈ R
N , the

following inequality holds:

K(t, x) ≤ M1|x|
2 +M2, (7)

where M1 is defined in (H5) and M2 = sup
t∈[−ξ0,ξ0],|x|≤1

K(t, x).
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Proof. To prove this lemma it suffices to show that for every x ∈ R
N and

t ∈ [−ξ0, ξ0] the function (0,+∞) → R, s 7→ K(t, s−1x)s2 is nondecreasing; which is an
immediate consequence of (H2). The proof of Lemma 2.3 is complete.
By Sobolev’s embedding theorem, H1(R,RN ) is continuously embedded into Lp(R,RN )
for p ∈ [2,+∞]. Thus there exists γp > 0 such that

‖x‖Lp(R,RN) ≤ γp‖x‖H1(R,RN ), ∀ p ∈ [2,+∞], ∀ x ∈ H1(R,RN ).

Since x ∈ H1([−ξ, ξ]) can be regarded as belonging to H1(R,RN ) if one extends it by
zero in R\[−ξ, ξ], then we have

‖x‖Lp([−ξ,ξ],RN) ≤ γp‖x‖, ∀ p ∈ [2,+∞], ∀ x ∈ H1
0 ([−ξ, ξ]), (8)

where γp is independent of ξ > 0.

Proposition 2.1 Suppose that the conditions (H1) - (H6) or (H1) - (H4), (H6) and
(H7) are satisfied, then for all ξ ≥ ξ0, the problem (5) possesses a nontrivial solution.

Proof. Step 1. It is clear that Φξ(0) = 0. As shown in [2], a deformation lemma
can be proved with condition (C) replacing the usual (PS) condition, and it turns out
that the Mountain Pass Theorem in [16] holds true under condition (C), i.e., for every
sequence (yj) ⊂ Eξ, (yj) has a convergent subsequence if Φξ(yj) is bounded and (1 +

‖yj‖)
∥

∥

∥
Φ′

ξ(yj)
∥

∥

∥

E∗

ξ

→ 0 as j → +∞, where E∗ is the dual space of E. Let (yj) ⊂ Eξ be

such that Φξ(yj) is bounded and (1 + ‖yj‖)
∥

∥

∥
Φ′

ξ(yj)
∥

∥

∥

E∗

ξ

→ 0 as j → +∞. Observe that

for j large, it follows from (H2) and (H4) that there exists a constant M such that

M ≥ Φξ(yj)−
1

2
Φ′

ξ(yj)yj =

∫ ξ

−ξ

(
1

2
W ′(t, yj).yj −W (t, yj))dt+

∫ ξ

−ξ

(K(t, yj)−
1

2
K ′(t, yj).yj)dt

≥

∫ ξ

−ξ

W (t, yj(t))dt. (9)

By negation, if (yj) is not bounded, passing to a subsequence if necessary we may assume
that ‖yj‖ → +∞ as j → +∞. Set zj =

yj

‖yj‖
, then ‖zj‖ = 1 and by (8) one has

‖zj‖Lp([−ξ,ξ],RN) ≤ γp‖zj‖ = γp, ∀p ∈ [2,+∞]. (10)

By (H2), (H4) and (H6) we have

2M ≥ 2Φξ(yj) =

∫ ξ

−ξ

|ẏj(t)|
2dt−

∫ ξ

−ξ

(Aẏj(t).yj(t))dt + 2

∫ ξ

−ξ

K(t, yj(t))dt

− 2

∫ ξ

−ξ

W (t, yj(t))dt ≥ b1‖yj‖
2 − ‖A‖‖yj‖

2 −

∫ ξ

−ξ

W ′(t, yj(t)).yj(t)dt

≥ ‖yj‖
2

(

b1 −
b1

4
−

∫ ξ

−ξ

W ′(t, yj(t)).yj(t)

‖yj‖2
dt

)

,
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where b1 = min{1, 2b1} > 0. Thus implies that

lim
j→+∞

∫ ξ

−ξ

W ′(t, yj(t)).yj(t)

‖yj‖2
dt ≥

3

4
b1. (11)

Set

f(r) := inf
{

W (t, x)| t ∈ [−ξ, ξ] and x ∈ R
N with |x| ≥ r

}

for r ≥ 0. By (H4) one has

f(r) → +∞ as r → +∞.

For 0 ≤ a ≤ b let

Ωj(a, b) = {t ∈ [−ξ, ξ] | a < yj(t) ≤ b}

and

Ca
b = inf

{

W (t, x)

|x|2
, t ∈ [−ξ, ξ] and a < |x| ≤ b

}

.

Obviously, we have

W (t, yj(t)) ≥ Ca
b |yj(t)|

2, for all t ∈ Ωj(a, b). (12)

By (9) and (12) it follows

M ≥

∫ ξ

−ξ

W (t, yj)dt =

∫

Ωj(0,a)

W (t, yj)dt+

∫

Ωj(a,b)

W (t, yj)dt+

∫

Ωj(b,∞)

W (t, yj(t))dt

≥

∫

Ωj(0,a)

W (t, yj)dt+ Ca
b

∫

Ωj(a,b)

|yj |
2dt+ f(b)meas(Ωj(b,∞)), (13)

which implies that

meas(Ωj(b,∞)) ≤
M

f(b)
→ 0 as b → +∞ uniformly in j. (14)

For any fixed 0 < a < b and by (8), (10) and (14) we have

∫

Ωj(b,∞)

|zj|
2dt ≤ ‖zj‖

2
L∞([−ξ,ξ])meas(Ωj(b,∞)) (15)

≤ γ2
∞

meas(Ωj(b,∞)) → 0

as b → +∞ uniformly in j. Moreover, by (13) we obtain

∫

Ωj(a,b)

|zj|
2dt =

1

‖yj‖2

∫

Ωj(a,b)

|yj|
2dt ≤

M

Ca
b ‖yj‖

2
→ 0 (16)

as j → +∞. Let 0 < ε < b1
4 , by (H3) there exist aε > 0 such that

|W ′(t, x)| ≤
ε

γ2
2

|x| for all |x| ≤ aε.
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Consequently,

∫

Ωj(0,aε)

|W ′(t, yj)||zj |
2

|yj |
dt ≤

ε

γ2
2

∫

Ωj(0,aε)

|zj|
2dt ≤ ε. (17)

By (15) we can take bε large such that
∫

Ωj(bε,∞)

|zj |
2dt ≤

ε

C0
.

Hence, by (H3) we obtain

∫

Ωj(bε,∞)

|W ′(t, yj)||zj |
2

|yj |
dt ≤ C0

∫

Ωj(bε,∞)

|zj|
2dt ≤ ε. (18)

By (16) there is j0 such that

∫

Ωj(aε,bε)

|W ′(t, yj)||zj |
2

|yj |
dt ≤ C0

∫

Ωj(aε,bε)

|zj|
2dt ≤ ε, (19)

for all j ≥ j0. Therefore, combining (17)-(19) we have

∫ ξ

−ξ

W ′(t, yj).yj
‖yj‖2

dt ≤

∫

[−ξ,ξ]\{t∈[−ξ,ξ]/|yj(t)|=0}

|W ′(t, yj)||zj |
2

|yj |
dt ≤ 3ε <

3

4
b1,

which contradicts (11). Hence, (yj) is bounded in Eξ.Going if necessary to a subsequence,
we can assume that there exists y ∈ Eξ such that yj ⇀ y as j → +∞ in Eξ, which implies
that yj → y as j → +∞ uniformly on [−ξ, ξ]. Hence (Φ′

ξ(yj) − Φ′

ξ(y))(yj − y) → 0,

‖yj − y‖L2([−ξ,ξ],RN) → 0 and

∫ ξ

−ξ

(V ′(t, yj(t)) − V ′(t, y(t)) .(yj(t) − y(t))dt → 0 and by

the Hölder inequality, we have
∣

∣

∣

∣

∣

∫ ξ

−ξ

(Aẏj(t)−Aẏ(t)).(yj(t)− y(t))dt

∣

∣

∣

∣

∣

≤ ‖A‖‖ẏj − ẏ‖L2‖yj − y‖L2 → 0

as j → +∞. On the other hand, an easy computation shows that

(Φ′

ξ(yj)− Φ′

ξ(y))(yj − y)

= ‖ẏj − ẏ‖2L2([−ξ,ξ],RN ) −

∫ ξ

−ξ

(Aẏj(t)−Aẏ(t).yj(t)− y(t))dt

−

∫ ξ

−ξ

(V ′(t, yj(t))) − V ′(t, y(t))).(yj(t)− y(t))dt.

and so ‖ẏj − ẏ‖L2([−ξ,ξ],RN) → 0. Consequently, ‖yj − y‖ → 0 as j → +∞. Hence, Φξ

satisfies condition (C).
Step 2. Now, let us show that Φξ satisfies assumption (ii) of Lemma 2.1. By (H3)

there exists a constant ρ0 > 0 such that

|W ′(t, x)| ≤
b1

2γ2
2

|x|, ∀ t ∈ R, ∀ |x| ≤ ρ0.
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It follows that

|W (t, x)| =

∣

∣

∣

∣

∫ 1

0

W ′(t, sx).xds

∣

∣

∣

∣

≤

∫ 1

0

|W ′(t, sx).x|ds

≤
b1

2γ2
2

∫ 1

0

|x|2sds =
b1

4γ2
2

|x|2, ∀ t ∈ R, ∀ |x| ≤ ρ0. (20)

Let ρ = ρ0

γ
∞

and S = {x ∈ Eξ/‖x‖ = ρ}. By (8), we have ‖x‖L∞([−ξ,ξ],RN ) ≤ ρ0, for all

x ∈ S, which together with (20), (H2) and (H6) implies that

Φξ(x) =
1

2

∫ ξ

−ξ

|ẋ(t)|2dt−
1

2

∫ ξ

−ξ

(Aẋ(t).x(t))dt +

∫ ξ

−ξ

K(t, x(t))dt −

∫ ξ

−ξ

W (t, x(t))dt

≥

(

b1

2
−

b1

8
−

b1

4

)

‖x‖2 =
b1

8
ρ2 := α, ∀ x ∈ S.

Step 3. It remains to prove that Φξ satisfies assumption(iii) of Lemma 2.1. If (H5)
holds, let

e(t) =

{

m| sin(ωt)|e1, if t ∈ [−ξ0, ξ0],
0, if t ∈ [−ξ, ξ]\[−ξ0, ξ0],

where ω = 2π
ξ0
, e1 = (1, 0, ..., 0) and m ∈ R\ {0}. By the Hölder inequality, (H6), Remark

1.1 and Lemma 2.3 we have

Φξ(e) =
1

2

∫ ξ

−ξ

|ė(t)|2dt+
1

2

∫ ξ

−ξ

(Ae(t).ė(t))dt+

∫ ξ

−ξ

K(t, e(t))dt−

∫ ξ

−ξ

W (t, e(t))dt

=
1

2
m2ω2

∫ ξ0

−ξ0

| cos(ωt)|2dt+
1

2
m2ω

∫ ξ0

−ξ0

(A| sin(ωt)|e1.| cos(ωt)|e1)dt

+

∫ ξ0

−ξ0

K(t,m| sin(ωt)|e1)dt−

∫ ξ0

−ξ0

W (t,m| sin(ωt)|e1)dt

≤
1

2
m2ω2

∫ ξ0

−ξ0

| cos(ωt)|2dt+m2ω ‖A‖ξ0 +M1m
2

∫ ξ0

−ξ0

| sin(ωt)|2dt+ 2ξ0M2

− (
2π2 + π

2 b̄1ξ0 + a1

ξ20
+M1)m

2

∫ ξ0

−ξ0

| sin(ωt)|2dt

+ 2ξ0

(

R2(
2π2 + π

2 b̄1ξ0 + a1

ξ20
+M1) +M3

)

≤ m2(−
πb̄1

2
−

2a1
ξ0

) + 2ξ0

(

M2 +R2(
2π2 + π

2 b̄1ξ0 + a1

ξ20
+M1) +M3

)

→ −∞

as m → ∞. If (H7) holds, set g(s) = s−2W (t, sx0) for s > 0. Then it follows from (H4)
that

g′(s) = s−3[−2W (t, sx0) +W ′(t, sx0).sx0] > 0, for t ∈ R, s > 0.

Integrating the above from 1 to λ > 1, we obtain

W (t, λx0) ≥ λ2W (t, x0), for t ∈ R, λ > 1. (21)
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By (H2), it is easy to show that

K(t, λx0) ≤ λ2K(t, x0), for t ∈ R, λ > 1. (22)

From (21) and (22) we have

Φξ(λx0) =

∫ ξ

−ξ

[K(t, λx0)−W (t, λx0)]dt

≤ λ2

(

∫ ξ

−ξ

K(t, x0)dt−

∫ ξ

−ξ

W (t, x0)dt

)

. (23)

Choose σ > 1 such that |σx0|
√
2ξ0 > ρ and let

e(t) =

{

σx0, if t ∈ [−ξ0, ξ0],

0, if t ∈ [−ξ, ξ]\[−ξ0, ξ0].

By (23) and (H7) we have

Φξ(e) =

∫ ξ

−ξ

(K(t, e(t))−W (t, e(t)))dt

=

∫ ξ0

−ξ0

(K(t, σx0)−W (t, σx0))dt

≤ σ2

∫ ξ0

−ξ0

(K(t, x0)−W (t, x0))dt < 0.

All the assumptions of Lemma 2.1 are satisfied, so for all ξ ≥ ξ0, Φξ possesses a critical
value cξ ≥ α > 0 defined by

cξ ≡ inf
g∈Γξ

max
s∈[0,1]

Φξ(g(s)),

where
Γξ = {g(t) ∈ C([0, 1], Eξ)/g(0) = 0, g(1) = e} .

Hence, for every ξ > 0, there exists xξ ∈ Eξ such that

Φξ(xξ) = cξ, Φ′

ξ(xξ) = 0.

Since cξ > 0, xξ is nontrivial. The proof of Proposition 2.1 is complete.
Take a sequence (ξn)n∈N with ξ0 ≤ ξ1 ≤ ξ2 ≤ ... → ∞ and consider problem (5) on

Eξn , i.e.

{

ẍ(t) +Aẋ(t)−K ′(t, x(t)) +W ′(t, x(t)) = 0, for t ∈]− ξn, ξn[,
x(−t) = x(t), for t ∈]− ξn, ξn[, x(−ξn) = x(ξn) = 0.

(24)

Then by Proposition 2.1, for each n ∈ N, (24) possesses a nontrivial solution xn. Let
C

p

loc(R,R
N ) (p ∈ N) denote the space of Cp functions under the topology of almost uni-

formly convergence of functions and all derivatives up to order p. We have the following
result.
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Lemma 2.4 The sequence (xn) possesses a subsequence also denoted by (xn) which

converges to a C2 function x in C2
loc(R,R

N ).

Proof. Let q > k, as any function in Eξk can be regarded as belonging to Eξq if one
extends it by zero in [−ξq, ξq]\[−ξk, ξk], we have Γξk ⊂ Γξq which implies cξq ≤ cξk . Thus
cξn ≤ cξ0 for any n ∈ N.

As Φξn(xn) ≤ cξ0 and (1+ ‖xn‖)
∥

∥

∥
Φ′

ξn
(xn)

∥

∥

∥
= 0, just as in the proof of condition (C)

in Proposition 2.1, it is easy to prove that (xn) is bounded uniformly in n. Therefore,
there is a constant C1 > 0 such that:

‖xn‖ ≤ C1, ∀n ∈ N. (25)

Arguing as in Theorem 2.1 in [11], we conclude from the fact

|xn(t2)− xn(t1)| ≤

∫ t2

t1

|ẋ(t)|dt ≤ (t2 − t1)
1/2

(
∫ t2

t1

|ẋ(t)|2dt

)1/2

that the sequence (xn) is equicontinuous on every interval [−ξn, ξn]. By (25) and Arzela-
Ascoli theorem, the sequence (xn) has a uniformly convergent subsequence on each
[−ξn, ξn].

Let (x1
nk
) be a subsequence of (xn) that converges on [−ξ1, ξ1]. Then (x1

nk
) is equicon-

tinuous and uniformly bounded on [−ξ2, ξ2]. So we can choose a subsequence (x2
nk
) of

(x1
nk
) that converges uniformly on [−ξ2, ξ2]. Repeat this procedure for all n and take

the diagonal sequence (xk
nk
). It is obvious that (xk

nk
)k is a subsequence of (xi

nk
) for any

1 ≤ i ≤ k. Hence, it converges uniformly to a function x(t) on any bounded interval.
In the following, for simplicity, we denote the subsequence (xk

nk
) also by (xn). As (xn)

satisfies

ẍn(t) +Aẋn(t) + V ′(t, xn(t)) = 0, (26)

we conclude that the sequence (ẍn) and then also (ẋn) converge uniformly on any
bounded intervals. It is easy to see that

xn(t) =

∫ t

−ξn

(t− s)ẍn(s)ds,

then x ∈ C2(R,RN ) and ẍn → ẍ uniformly on any bounded intervals. Hence, by passing
to the limit in (26) we conclude that x solves (DS). As xn is even, the same is true for
their limit x. The proof of Lemma 2.4 is complete.

Proof of Theorem 1.1. We have shown that x satisfies (DS). It remains to prove
that x is nontrivial and homoclinic to 0.

Step 1. Let us show that x is nontrivial. Consider the function Ψ defined by Ψ(0) = 0
and for s > 0

Ψ(s) = max
t∈R,0<|x|≤s

W ′(t, x).x

|x|2
.

Then Ψ is a continuous, nondecreasing function and Ψ(s) ≥ 0 for s ≥ 0. The definition
of Ψ implies that

∫ ξn

−ξn

W ′(t, xn(t)).xn(t)dt ≤ Ψ(‖xn‖L∞([−ξn,ξn],RN ))‖xn‖
2, (27)
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for every n ∈ N. Since Φ′

ξn
(xn).xn = 0, we have

∫ ξn

−ξn

W ′(t, xn(t)).xn(t)dt =

∫ ξn

−ξn

|ẋn(t)|
2dt−

∫ ξn

−ξn

(Aẋn(t).xn(t))dt +

∫ ξn

−ξn

K ′(t, xn(t)).xn(t)dt. (28)

From (27), (28), (H2) and (H6), we obtain

Ψ(‖xn‖L∞([−ξn,ξn],RN))‖xn‖
2 ≥

∫ ξn

−ξn

|ẋn(t)|
2dt−

∫ ξn

−ξn

(Aẋn(t).xn(t))dt

+

∫ ξn

−ξn

K ′(t, xn(t)).xn(t)dt

≥

∫ ξn

−ξn

|ẋn(t)|
2dt+ b1

∫ ξn

−ξn

|xn(t)|
2dt− ‖A‖‖xn‖

2

≥ (min{1, b1} − ‖A‖)‖xn‖
2.

Since ‖xn‖ > 0, it follows that

Ψ(‖xn‖L∞([−ξn,ξn],RN )) ≥ (min{1, b1} − ‖A‖) > 0.

If ‖xn‖L∞([−ξn,ξn],RN ) → 0 as n → ∞, we would have Ψ(0) ≥ (min{1, b1} − ‖A‖) > 0, a
contradiction. Passing to a subsequence of (xn) if necessary, there is a constant C3 > 0
such that

‖xn‖L∞([−ξn,ξn],RN ) ≥ C3 (29)

for every n ∈ N. Now, suppose x ≡ 0 and let xn be the function defined in Lemma 2.4,
extended by 0 in R \ [−ξn, ξn]. For A > 0 we have

‖xn‖
2 =

∫ ξn

−ξn

(|ẋn(t)|
2 + |xn(t)|

2)dt

=

∫

R

(|ẋn(t)|
2 + |xn(t)|

2)dt

=

∫ A

−A

(|ẋn(t)|
2 + |xn(t)|

2)dt+

∫

R\[−A,A]

(|ẋn(t)|
2 + |xn(t)|

2)dt → 0 as A, n → ∞.

which is in contradiction with (29). Hence x is nontrivial.
Step 2. We prove that x(t) → 0 as |t| → +∞. By the argument of Lemma 2.4, for

each i ∈ N there is ni ∈ N such that for all n ≥ ni we have

∫ ξi

−ξi

(|xn(t)|
2 + |ẋn(t)|

2)dt ≤ ‖xn‖
2 ≤ C2

1 .

Letting n → +∞, we obtain

∫ ξi

−ξi

(|x(t)|2 + |ẋ(t)|2)dt ≤ C2
1 .
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As i → +∞, we have
∫ +∞

−∞

(|x(t)|2 + |ẋ(t)|2)dt ≤ C2
1 .

Hence, we get
∫

|t|≥r

(|x(t)|2 + |ẋ(t)|2)dt → 0 as r → +∞. (30)

By Corollary 2.2 in [19], we have

|x(t)|2 ≤

∫ t+1

t−1

(|x(s)|2 + |ẋ(s)|2)ds (31)

for every t ∈ R. By (30) and (31) we conclude that

x(t) → 0 as |t| → ∞.

Step 3. We have to show that ẋ(t) → 0 as |t| → ∞. By Corollary 2.2 in [19] we
have

|ẋ(t)|2 ≤

∫ t+1

t−1

(|x(s)|2 + |ẋ(s)|2)ds+

∫ t+1

t−1

|ẍ(s)|2ds,

for every t ∈ R. Since x ∈ H1(R,RN ), we get

∫ t+1

t−1

(|x(s)|2 + |ẋ(s)|2)ds → 0 as |t| → ∞.

Hence, it suffices to prove that

∫ t+1

t−1

|ẍ(s)|2ds → 0 as |t| → ∞. (32)

By (DS), we have

∫ t+1

t−1

|ẍ(s)|2ds =

∫ t+1

t−1

|Aẋ(s) + V ′(t, x(s))|2ds

≤ ‖A‖2
∫ t+1

t−1

|ẋ(s)|2ds+

∫ t+1

t−1

|V ′(t, x(s))|2ds

+ 2‖A‖

(
∫ t+1

t−1

|ẋ(s)|2ds

)

1

2
(
∫ t+1

t−1

|V ′(t, x(s))|2ds

)

1

2

.

Since

∫ t+1

t−1

|ẋ(s)|2ds → 0 as |t| → ∞, x(t) → 0 as |t| → ∞ and V ′(t, x) → 0 as |x| → 0

uniformly in t ∈ R, then (32) follows. The proof of Theorem 1.1 is complete.
Proof of Theorem 1.2. Let

H1
nT (R,R

N ) =
{

x : R → R
N , 2nT − periodic, x, ẋ ∈ L2([−nT, nT ],RN) and

x(−nT ) = x(nT ) = 0
}

. Consider the family of functionals (Φn)n≥1 defined on EnT by

Φn(x) =

∫ nT

−nT

[

1

2
|ẋ(t)|2 +

1

2
(Ax(t).ẋ(t)) +K(t, x(t)) −W (t, x(t))

]

dt, (33)
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where
EnT =

{

x ∈ H1
nT (R,R

N )/x(−t) = x(t), a.e.t ∈ R
}

.

Arguing as in the proof of Theorem 1.1, we prove that assumptions (H1)-(H4), (H6) and
(H7) imply that for every positive integer n, the problem

{

ẍ(t) +Aẋ(t)−K ′(t, x(t)) +W ′(t, x(t)) = 0, for t ∈]− nT, nT [,
x(−t) = x(t), for t ∈]− nT, nT [, x(−nT ) = x(nT ) = 0,

(34)

possesses a solution xn. Moreover, the sequence (xn) converges uniformly on any bounded
interval to a homoclinic solution x ∈ H1(R,RN ) satisfying ẋ(t) → 0 as |t| → +∞. It
remains to prove that x(t) 6≡ 0. In the same way as in the proof of Theorem 1.1 it is easy
to prove that there is a constant C4 > 0 such that

‖xn‖L∞([−nT,nT ],RN ) ≥ C4 (35)

for every n ∈ N. Moreover, for all j ∈ N, t 7→ xj
n(t) = xn(t+ jT ) is also a 2nT-periodic

solution of problem (34). Hence, if the maximum of |xn| occurs in θn ∈ [−nT, nT ] then
the maximum of |xj

n| occurs in τ jn = θn − jT. Then there exists a jn ∈ Z such that
τ jnn ∈ [−T, T ]. Consequently,

‖xjn
n ‖L∞([−nT,nT ],RN ) = max

t∈[−T,T ]
|xjn

n (t)|.

Suppose contrary to our claim, that x ≡ 0. Then

‖xjn
n ‖L∞([−nT,nT ],RN ) = max

t∈[−T,T ]
|xjn

n (t)| → 0,

which contradicts (35). Then the proof of Theorem 1.2 is complete.
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Abstract: In the present paper, the general 4-D continuous-time system is consid-
ered and the estimate of the upper bound of such a system is investigated, using the
multivariable functions analysis. Especially, sufficient conditions for this system to
be contained in a four-dimensional ellipsoidal surface are obtained. The results ob-
tained in this investigation generalize all the existing results in the relevant literature
concerning the finding of an upper bound for the fourth order dynamical system.
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1 Introduction

Since Lorenz discovered chaos in a simple system of three autonomous ordinary differen-
tial equations in order to describe the simplified Rayleigh–Benard problem in 1963 [12],
the analysis of dynamics of 3-D chaotic and 4-D hyperchaotic systems has been a focal
point of renewed interest for many researchers [2, 3, 5, 6, 8, 13, 15, 17, 19, 21, 22, 26, 27].
Hyperchaos is characterized as a chaotic system with more than one positive exponent,
this implies that its dynamics are expended in several different directions simultane-
ously. Thus, hyperchaotic systems have more complex dynamical behaviors than ordi-
nary chaotic systems. As we know, there are many hyperchaotic systems discovered in
the four-dimensional social and economical systems. Typical examples are 4-D hyper-
chaotic Chua’s circuit [1], 4-D hyperchaotic Rôsslor system [18] and 4-D hyperchaotic
Lorenz-Haken system [14]. Since hyperchaotic system has the theoretical and practi-
cal applications in technological fields, such as secure communications, lasers, nonlinear
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circuits, neural networks, generation, control, synchronization, it has recently become a
central topic in nonlinear sciences research.

The estimate of the bound for a chaotic system is of great importance for chaos
control, chaos synchronization, and their applications [4], where the concepts of ultimate
bound and attractive set of system serve as excellent tools for analysis of the qualitative
behavior of a chaotic system. Such an estimation is quite difficult to achieve technically.
Notwithstanding the difficulty, during the past 40 years or so, many good and interesting
results on this topic have been obtained for some 3-D continuous-time systems [7, 9, 10,
16, 24].

In recent years, the study of the boundedeness of 4-D dynamical systems have at-
tracted the attention of many engineers, physicists and mathematicians. For example
in [11], the ultimate bound and positively invariant set for the 4-D hyperchaotic Lorenz-
Haken system were investigated. In [20] the estimation of the bounds for the 4-D hy-
perchaotic Lorenz-Stenflo system was also obtained. Recently, the boundedness of the
generalized 4-D hyperchaotic model containing Lorenz-Stenflo and Lorenz-Haken sys-
tems was done in [23] and the boundedness of a kind of hyperchaotic systems that have
wide applications in the secure communications was also investigated in [25]. In the
present paper, by using the multivariable functions analysis, we generalize all the exist-
ing results in the relevant literature concerning the finding of an upper bound for the
general 4-D continuous-time system. In particular, we find sufficient conditions for this
system to be contained in a four-dimensional ellipsoidal set.

Let us consider the general 4-D continuous-time autonomous system















x
′

= f (x, y, z, w, δ) ,
y′ = g (x, y, z, w, δ) ,
z′ = h (x, y, z, w, δ) ,
w′ = k (x, y, z, w, δ) ,

(1)

where f , g, h and k are real functions and δ ∈ R
m is the bifurcation parameter. As-

sume that system (1) has at least one equilibrium point, so bounded orbits are possible.
Without loss of generality we can assume that the origin is an equilibrium point, i.e.,
f (0, 0, 0, 0, δ) = g (0, 0, 0, 0, δ) = h (0, 0, , 0, δ) = k (0, 0, 0, 0, δ) = 0.

2 The Estimate of the Bound for the General 4-D Dynamical System

To study the estimate of the bound for the general system (1), we define the following
Lyapunov function

V (x, y, z, w) =

(x− α (x, y, z, w))
2
+ (y − β (x, y, z, w))

2
+ (z − γ (x, y, z, w))

2
+ (w − θ (x, y, z, w))

2

2
,

(2)
where (α (x, y, z, w) , β (x, y, z, w) , γ (x, y, z, w) , θ (x, y, z, w)) ∈ R

4 are real functions, in
which the derivative of (2) along the orbits of system (1) is given by

dV

dt
= (x− α) (x′ − α′) + (y − β) (y′ − β′) + (z − γ) (z′ − γ′) + (w − θ) (w′ − θ′) , (3)
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where










































α
′

=
∂α

∂x
x′ +

∂α

∂y
y′ +

∂α

∂z
z′ +

∂α

∂w
w′ = ψ1f + ψ2g + ψ3h+ ψ4k,

β′ =
∂β

∂x
x′ +

∂β

∂y
y′ +

∂β

∂z
z′ +

∂β

∂w
w′ = µ1f + µ2g + µ3h+ µ4k,

γ′ =
∂γ

∂x
x′ +

∂γ

∂y
y′ +

∂γ

∂z
z′ +

∂γ

∂w
w′ = ξ1f + ξ2g + µξ3h+ ξ4k,

θ′ =
∂θ

∂x
x′ +

∂θ

∂y
y′ +

∂θ

∂z
z′ +

∂θ

∂w
w′ = ζ1f + ζ2g + ζ3h+ ζ4k.

(4)

Therefore, we have

dV

dt
= c1 (x, y, z, w)x− ωx2 + c2 (x, y, z, w) y − ϕy2 + c3 (x, y, z, w) z − φz2+

c4 (x, y, z, w)w − ηw2 + c5 (x, y, z, w) , (5)

where














































c1 (x, y, z, w) = f − ψ1f − ψ2g − ψ3h− ψ4k + ωx,

c2 (x, y, z, w) = g − µ1f − µ2g − µ3h− µ4k + ϕy,

c3 (x, y, z, w) = h− ξ1f − ξ2g − µξ3h− ξ4k + φz,

c4 (x, y, z, w) = k − ζ1f − ζ2g − ζ3h− ζ4k + ηw,

c5 (x, y, z, w) = c6 (x, y, z, w) + c7 (x, y, z, w) ,
c6 (x, y, z, w) = −αf − βg − γh− θk + α (ψ1f + ψ2g + ψ3h+ ψ4k) ,

c7 (x, y, z, w) = β (µ1f + µ2g + µ3h+ µ4k)+
γ (ξ1f + ξ2g + ξ3h+ ξ4k) + θ (ζ1f + ζ2g + ζ3h+ ζ4k) .

(6)

Assume that the equation (5) has the form

dV

dt
= −ω (x− α1)

2
− ϕ (y − β1)

2
− φ (z − γ1)

2
− η (w − θ1)

2
+ r, (7)

where ω, ϕ, φ, η and r are strictly positive constants, α1, β1, γ1, θ1 are unknown constants

and it should be determined in which the equation
dV

dt
= 0 determines an ellipsoid in

R
4.
Equation (7) is equivalent to

dV

dt
=−ωx2+2ωα1x−ϕy

2+2ϕβ1y−φz
2+2φγ1z−ηw

2+2ηθ1w−ωα
2
1−ϕβ

2
1−φγ

2
1−ηθ

2
1+r.

(8)
By identification with (5) we get



















































α1 =
c1 (x, y, z, w)

2ω
,

β1 =
c2 (x, y, z, w)

2ϕ
,

γ1 =
c3 (x, y, z, w)

2φ
,

θ1 =
c4 (x, y, z, w)

2η
,

r = ωα2
1 + ϕβ2

1 + φγ21 + ηθ21 + c5 (x, y, z, w) .

(9)
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Since α1, β1, γ1, θ1 and r are real constants, the functions {ci (x, y, z, w) , i = 1, 2, 3, 4, 5}
are also constants, i.e.,

∂ci (x, y, z, w)

∂x
=
∂ci (x, y, z, w)

∂y
=
∂ci (x, y, z, w)

∂z
=
∂ci (x, y, z, w)

∂w
= 0, i = 1, 5. (10)

Now, putting

H(x, y, z, w) =
(x− α1)

2

r
ω

+
(y − β1)

2

r
ϕ

+
(z − γ1)

2

r
φ

+
(w − θ1)

2

r
η

− 1. (11)

In order to prove the boundedness of the system (1), we assume that it is bounded and
then we will find its bound, i.e., assume that

{

c5 (x, y, z, w) + ωα2
1 + ϕβ2

1 + φγ21 + ηθ21 > 0,

ω > 0, ϕ > 0, φ > 0, η > 0,
(12)

therefore, the equation
dV

dt
= 0, that means, the surface

Γ =
{

(x, y, z, w) ∈ R
4 : H(x, y, z, w) = 0, ω, ϕ, φ, η, r > 0

}

(13)

is an ellipsoid in four-dimensional space. If the system (1) is bounded, then the function
(2) can reach its maximum value on Γ. Denote the maximum point as (x0, y0, z0, w0). In
order to find it, we define the function F by

F (x, y, z, w) = G (x, y, z, w) + λH (x, y, z, w) , (14)

where
G (x, y, z, w) = x2 + y2 + z2 + w2 (15)

and λ ∈ R is a finite parameter. It is clear that max
(x,y,z,w)∈Γ

G = max
(x,y,z,w)∈Γ

F and let







































∂F (x, y, z, w)

∂x
= 2r−1 ((ωλ+ r) x− ωλα1) = 0,

∂F (x, y, z, w)

∂y
= 2r−1 ((ϕλ+ r) y − ϕλβ1) = 0,

∂F (x, y, z, w)

∂z
= 2r−1 ((φλ + r) z − φλγ1) = 0,

∂F (x, y, z, w)

∂w
= 2r−1 ((ηλ+ r)w − ηλθ1) = 0.

. (16)

In the sequel, we can separate some cases to discuss the upper bounds of the system
(1).

(i) If λ 6=
−r

ω
, λ 6=

−r

ϕ
, λ 6=

−r

φ
and λ 6=

−r

η
, we get

(x0, y0, z0, w0) =

(

ωλα1

r + ωλ
,
ϕλβ1

r + ϕλ
,
φλγ1

r + φλ
,
ηλθ1

r + ηλ

)

(17)

and

max
(x,y,z,w)∈Γ

G =
ω2λ2α2

1

(r + ωλ)
2 +

ϕ2λ2β2
1

(r + ϕλ)
2 +

φ2λ2γ21

(r + φλ)
2 +

η2λ2θ21

(r + ηλ)
2 . (18)
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In this case, there exists parametrized family (in λ) of bounds given by (18) of the system
(1).

(ii) If λ =
−r

ω
, (ω 6= ϕ, ω 6= φ, ω 6= η), λ 6=

−r

ϕ
, λ 6=

−r

φ
, λ 6=

−r

η
, we obtain

(x0, y0, z0, w0) =

(

±

√

r

ω

(

1−
ξ1

ξ2

)

+ α1,
−ϕβ1
ω − ϕ

,
−φγ1
ω − φ

,
−ηθ1
ω − η

)

, (19)

where










ξ1 = ω2
[

ϕβ2
1 (ω − φ)

2
(ω − η)

2
+ φγ21 (ω − ϕ)

2
(ω − η)

2
+ ηθ21 (ω − ϕ)

2
(ω − φ)

2
]

ξ2 = r (ω − ϕ)2 (ω − φ)2 (ω − η)2

ξ2 ≥ ξ1.
(20)

The last condition of (20) confirms that the value x0 in (19) is well defined. In this case,
we have

max
(x,y,z,w)∈Γ

G =

(
√

r

ω

(

1−
ξ1

ξ2

)

+ α1

)2

+
ϕ2β2

1

(ω − ϕ)2
+

φ2γ21

(ω − φ)2
+

η2θ21

(ω − η)2
. (21)

(iii) If λ =
−r

ϕ
, (ϕ 6= ω, ϕ 6= φ, ϕ 6= η), λ 6=

−r

ω
, λ 6=

−r

φ
, λ 6=

−r

η
, we have

(x0, y0, z0, w0) =

(

−α1ω

ϕ− ω
,±

√

r

ϕ

(

1−
ξ3

ξ4

)

+ β1,
−φγ1
ϕ− φ

,
−ηθ1
ϕ− η

)

, (22)

where










ξ3 = ϕ2
[

ωα2
1 (ϕ− φ)

2
(ϕ− η)

2
+ φγ21 (ϕ− ω)

2
(ϕ− η)

2
+ ηθ21 (ϕ− ω)

2
(ϕ− φ)

2
]

,

ξ4 = r (ϕ− ω)
2
(ϕ− φ)

2
(ϕ− η)

2
,

ξ4 ≥ ξ3.
(23)

By the last condition of (23), we can confirm that the value y0 in (22) is well defined. In
this case, we get

max
(x,y,z,w)∈Γ

G =
α2
1ω

2

(ϕ− ω)
2 +

(
√

r

ϕ

(

1−
ξ3

ξ4

)

+ β1

)2

+
φ2γ21

(ϕ− φ)
2 +

η2θ21

(ϕ− η)
2 . (24)

(iv) If λ =
−r

φ
, (φ 6= ω, φ 6= ϕ, φ 6= η), λ 6=

−r

ω
, λ 6=

−r

ϕ
, λ 6=

−r

η
, we obtain

(x0, y0, z0, w0) =

(

−α1ω

φ− ω
,
−ϕβ1
φ− ϕ

,±

√

r

φ

(

1−
ξ5

ξ6

)

+ γ1,
−ηθ1
φ− η

)

, (25)

where










ξ5 = φ2
[

ωα2
1 (φ− ϕ)

2
(φ− η)

2
+ ϕβ2

1 (φ− ω)
2
(φ− η)

2
+ ηθ21 (φ− ω)

2
(φ− ϕ)

2
]

,

ξ6 = r (φ− ω)
2
(φ− ϕ)

2
(φ− η)

2
,

ξ6 ≥ ξ5.
(26)
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Also, the last condition of (26) confirms that the value z0 in (25) is well defined. In this
case, we have

max
(x,y,z,w)∈Γ

G =
α2
1ω

2

(φ− ω)
2 +

ϕ2β2
1

(φ− ϕ)
2 +

(
√

r

φ

(

1−
ξ5

ξ6

)

+ γ1

)2

+
η2θ21

(φ− η)
2 . (27)

(v) If λ =
−r

η
, (η 6= ω, η 6= ϕ, η 6= φ), λ 6=

−r

ω
, λ 6=

−r

ϕ
, λ 6=

−r

φ
, we get

(x0, y0, z0, w0) =

(

−α1ω

η − ω
,
−ϕβ1
η − ϕ

,
−φγ1
η − φ

,±

√

r

η

(

1−
ξ7

ξ8

)

+ θ1

)

, (28)

where










ξ7 = η2
[

ωα2
1 (η − ϕ)

2
(η − φ)

2
+ ϕβ2

1 (η − ω)
2
(η − φ)

2
+ φγ21 (η − ω)

2
(η − ϕ)

2
]

,

ξ8 = r (η − ω)
2
(η − ϕ)

2
(η − φ)

2
,

ξ8 ≥ ξ7.
(29)

The last condition of (29) confirms that the value w0 in (28) is well defined. In this case,
we obtain

max
(x,y,z,w)∈Γ

G =
α2
1ω

2

(η − ω)
2 +

ϕ2β2
1

(η − ϕ)
2 +

φ2γ21

(η − φ)
2 +

(
√

r

η

(

1−
ξ7

ξ8

)

+ θ1

)2

. (30)

Finally, the other possible cases can be treated using the same technique.

Theorem 2.1 Assume that conditions (9), (10) and (12) hold, then the general 4-
D continuous-time autonomous system (1) is bounded, i.e., it is contained in the 4-D
ellipsoid (13).

Also, similar results can be found using the cases discussed above.

3 Example

We consider the Lorenz-Stenflo system studied in [20] and given by















x
′

= ay − ax+ dw,

y′ = cx− xz − y,

z′ = xy − bz,

w
′

= −x− aw.

(31)

We choose the Lyapunov function V (x, y, z, w) = λx2 + y2 + (z − λa− c)
2
+ λdw2 as

in [20]. Suppose that λ and d are strictly positive and denote
√
λx = x̃,

√
λdw = w̃ ,

thus we get V (x̃, y, z, w̃) = x̃2 + y2 + (z − λa− c)
2
+ w̃2 i.e., α = β = θ = 0, γ = λa+ c

and the system (31) becomes


















x̃
′

= −ax̃+
√
λay +

√
dw̃,

y′ = c
√

λ
x̃− y − 1

√

λ
x̃z,

z′ = −bz + 1
√

λ
x̃y,

w̃
′

= −
√
dx̃− aw̃,

(32)
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i.e., f (x̃, y, z, w̃) = −ax̃+
√
λay+

√
dw̃, g (x̃, y, z, w̃) = c

√

λ
x̃− y− 1

√

λ
x̃z, h (x̃, y, z, w̃) =

−bz + 1
√

λ
x̃y, k (x̃, y, z, w̃) = −

√
dx̃ − aw̃. Thus, we have ω = a > 0, ϕ = 1 > 0,

φ = b > 0, η = a > 0, α1 = β1 = θ1 = 0, γ1 =
λa+ c

2
and r = b

(

λa+ c

2

)2

. Then, we

get
1

2

dV

dt
= −ax̃2 − y2 − b

(

z − λa+c
2

)2
− aw̃2 + b

(

λa+c
2

)2
, i.e.,

1

2

dV

dt
= −aλx2 − y2 −

bz2 − aλdw2 + (λa+ c) bz which is the same as in [20]. Also, it is easy to verify that all
conditions of Theorem 2.1 hold for this case. The 4-D ellipsoid Γ is given by

Γ =















(x, y, z, w) ∈ R
4 : x̃2

b

a

(
λa+c

2

)
2
+ y2

b

(
λa+c

2

)
2 +

(
z−

λa+c
2

)
2

(
λa+c

2

)
2 + w̃2

b

a

(
λa+c

2

)
2
= 1,

a > 0, b > 0, c > 0, d > 0, λ > 0















(33)
i.e.,

Γ =







(x, y, z, w) ∈ R
4 : λax2 + y2 + b

(

z −
λa+ c

2

)2

+ λadw2 =
b (λa+ c)

2

4
,

a > 0, b > 0, c > 0, d > 0, λ > 0







(34)
which is also the same as in [20]. Finally, we have the result shown in [20] that confirms
that if a > 0, b > 0, c > 0, d > 0, λ > 0, then the Lorenz-Stenflo system is contained in
the following set

Ωλ =
{

(x, y, z, w) ∈ R
4 : λx2 + y2 + (z − λa− c)2 + λdw2 ≤ R2

}

, (35)

where

R2 =























(λa+ c)2 b2

4 (b− 1)
, if a ≥ 1, b ≥ 2,

(λa+ c)2 , if a > b
2 , b < 2,

(λa+ c)2 b2

4a (b− a)
, if 0 < a < 1, b ≥ 2.

(36)

4 Conclusion

In this paper, based on the multivariable functions analysis, a generalization of all the ex-
isting results in the relevant literature for the upper bound of the general 4-D continuous-
time system is investigated. Especially, sufficient conditions for this system to be con-
tained in a four-dimensional ellipsoidal surface are determined.

The strategy presented in this work is sufficiently general, so it would be possible to
apply the present method to consider other systems with high order and more complicated
nonlinearity, which will be the topic for further papers.
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Abstract: In this paper we study the approximate controllability of semilinear
stochastic control system with nonlocal conditions in a Hilbert space. Nonlocal ini-
tial condition is a generalization of the classical initial condition and is motivated
by physical phenomena. The results are obtained by using Sadovskii’s fixed point
theorem. At the end, an example is given to show the effectiveness of the result.
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1 Introduction

Controllability concepts play a vital role in deterministic control theory. It is well known
that controllability of deterministic equation is widely used in many fields of science and
technology. Kalman [23] introduced the concept of controllability for finite dimensional
deterministic linear control systems. The basic concepts of control theory in finite and
infinite dimensional spaces have been introduced in [31] and [24] respectively. However,
in many cases, some kind of randomness can appear in the problem, so that the system
should be modelled by a stochastic form. Only few authors have studied the extensions
of deterministic controllability concepts to stochastic control systems. Klamka et al. [11]-
[12] studied the controllability of linear stochastic systems in finite dimensional spaces
with delay and without delay in control as well as in state using Rank theorem. In [17]-
[22], Mahmudov et al. established results for controllability of linear and semilinear
stochastic systems in Hilbert space. Instead of this, Sakthivel, Balachandran, Dauer and
Bashirov et al. studied the approximate controllability of nonlinear stochastic systems
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in [25], [14], [13] and [1]. Shen and Sun [16] studied the controllability of stochastic first
order nonlinear systems with delay in control in finite dimensional as well as in infinite
dimensional spaces. In [26], Sakthivel et al. studied the approximate controllability of
second order stochastic system with impulsive effects using Banach fixed point theorem.
In [2]- [5] Anurag et al. obtained some sufficient conditions for controllability of integer
and fractional order stochastic systems with delay in control and state term using different
fixed point theorems.

On the other hand, Byszewski et al. [15] introduced nonlocal conditions into the
initial value problems and argued that the corresponding models more accurately describe
the phenomena since more information was taken into account at the oneset of the
experiment, thereby reducing the ill effects incurred by a single initial measurement.
Also, it has a better effect on the solution and is more precise for physical measurements
than classical condition x(0) = x0 alone. In [32], Y.K.Chang et al. obtained sufficient
conditions for controllability of semilinear differential systems with nonlocal conditions
in Banach spaces using Sadovskii fixed-point theorem.

Kumar [28]- [29] studied on the controllability of second order and fractional or-
der systems with delays in Banach spaces using Sadovskii’s Fixed point theorem. Also
Farahi et al. [30] studied on the approximate controllability of fractional neutral stochas-
tic evolution equations with nonlocal conditions using Sadovskii’s fixed point theorem.
Sanjukta [27] studied approximate controllability of a functional differential equation
with deviated argument using fixed point theory.

Up to now, to the best of our knowledge , there are no results on the approximate
controllability of semilinear stochastic control systems with nonlocal conditions using
Sadovskii’s fixed point theorem in the literature. So, the present paper is devoted to the
study of approximate controllability of the semilinear stochastic control systems with
nonlocal conditions using Sadovskii’s fixed point theorem.

2 Problem Formulation and Preliminaries

Let (Ω,ℑ, P ) be a complete space equipped with a normal filtration ℑt, t ∈ J = [0, b]. Let
H,U and E be the separable Hilbert spaces and ω be a Q-Weiner process on (Ω,ℑb, P )
with the covariance operator Q such that trQ < ∞. We assume that there exists a
complete orthonormal system en in E, a bounded sequence of nonnegative real numbers
λn such that Qen = λnen, n = 1, 2, · · · and a sequence βn of independent Brownian
motions such that

w(t) =

∞

∑

n=1

√

λnβn(t)en, t ∈ J,

and ℑt = ℑt
ω, where ℑt

ω is the σ-algebra generated by ω. Let L2
0 = L2(Q

1/2E;H)
be the space of all Hilbert-Schmidt operators from Q1/2E to H with the norm ||ψ||2Q =

tr[ψQψ∗]. Let Lℑ

2 (J,H) be the space of all ℑt-adapted, H-valued measurable square
integrable processes on J × Ω.Let C([0, b];L2(ℑ, H)) be the Banach space of continuous
maps from [0, b] into L2(ℑ, H) satisfying the condition sup

t∈J

E||x(t)||2 <∞.

LetH2 = C2([0, b];H). NowH2 is the closed subspace of C([0, b];L2(ℑ, H)) consisting
of measurable and ℑt - adapted H valued processes φ ∈ C([0, b];L2(ℑ, H)) endowed with
the norm

||φ||H2
=

(

sup
t∈[0,b]

E||φ(t)||2H

)1/2

.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 15 (3) (2015) 321–333 323

In this paper, we consider a mathematical model given by the following nonlinear
second order stochastic differential equations with variable delay in control and with
nonlocal conditions of the form

dx(t) = [Ax(t) +Bu(t) + f(t, x(t))]dt + σ(t, x(t))dω(t), t ∈ J

x(0) = x0 + g(x),

}

(1)

where A : D(A) ⊂ H → H is a closed, linear and densely defined operator on H which
generates a compact semigroup {S(t) : t ∈ J} on H . B is a bounded linear operator
from the Hilbert space U into H . The control u ∈ L2

ℑ

([0, b], U); f : J × H → H ;
σ : J ×H → L0

2 are nonlinear suitable functions; x0 is ℑ0 measurable H valued random
variable independent of ω; g is continuous function from C(J,H) → H .

For simplicity of considerations, we generally assume that the set of admissible con-
trols is Uad = L2

ℑ

(J, U).

Definition 2.1 A stochastic process x ∈ H2 is a mild solution of (1) if for each
u ∈ L2

ℑ

([0, b], U), it satisfies the following integral equation:

x(t) = S(t)(x0 + g(x)) +

∫ t

0

S(t− s)[Bu(s) + f(s, x(s))]ds

+

∫ t

0

S(t− s)σ(s, x(s))dω(s).

Let us introduce the following operators and sets (see [15])
Lb ∈ L(Lℑ

2 (J × Ω, U), L2(Ω,ℑb, H)) is defined by

Lbu =

∫ b

0

S(b− s)Bu(s)ds,

where L(X,Y ) denotes the set of bounded linear operators from X to Y .
Then its adjoint operator L∗

b : L2(Ω,ℑb, H) → Lℑ

2 (J × Ω, U) is given by

L∗

bz = B∗S∗(b − t)E{z|ℑt}.

The set of all states reachable in time b from initial state x(0) = x0 ∈ L2(Ω,ℑ0, X), using
admissible controls is defined as

Rb(Uad) = {x(b;x0, u) ∈ L2(Ω,ℑb, H) : u ∈ Uad},

x(b;x0, u) = S(b)(x0 + g(x)) +

∫ b

0

S(b− s)Bu(s)ds+

∫ b

0

S(b− s)f(s, x(s))ds,

+

∫ T

0

S(T − s)σ(s, x(s)dω(s).

Let us introduce the linear controllability operator Πb
0 ∈

L(L2(Ω,ℑb, H), L2(Ω,ℑb, H)) as follows:

Πb
0{.} = Lb(Lb)

∗{.}

=

∫ b

0

S(b− t)BB∗S∗(b− t)E{.|ℑt}dt.
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The corresponding controllability operator for deterministic model is:

Γb
s = Lb(s)L

∗

b(s)

=

∫ b

s

S(b− t)BB∗S∗(b− t)dt.

Definition 2.2 The stochastic system (1) is approximately controllable on [0, b] if
ℜ(b) = L2(Ω,ℑb, H), where ℜ(b) = {x(b;u) : u ∈ L2(Ω,ℑb, H) : u ∈ Uad} and
L2
ℑ

([0, b], U) is the closed subspace of L2
ℑ

([0, b] × Ω, U), consisting of all ℑt adapted,
U valued stochastic processes.

Lemma 2.1 [6] Let G : J × Ω → L0
2 be a strongly measurable mapping such that

∫ b

0

E||G(t)||p
L0

2

<∞. Then

E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

G(s)dω(s)

∣

∣

∣

∣

∣

∣

∣

∣

p

≤ LG

∫ t

0

E||G(s)||p
L0

2

ds

for all t ∈ J and p ≥ 2, where LG is the constant involving p and b.

Lemma 2.2 (Sadovskii’s fixed point theorem [7]). Suppose that M is a nonempty,
closed, bounded and convex subset of a Banach space X and Γ : M ⊆ X → X is a
condensing operator. Then the operator Γ has a fixed point in M .

To prove our main results, we list the following basic assumptions of this paper:

(i) A is the infinitesimal generator of a compact semigroup {S(t) : t ≥ 0} on H .

(ii) The function f : J × H → H and σ : J × H → L0
2 satisfy linear growth and

Lipschitz conditions, i.e, there exist positive constants N1, N2,K1 and K2 such that

||f(t, x)− f(t, y)||2 ≤ N1||x− y||2, ||f(t, x)||2 ≤ N2(1 + ||x||2),

||σ(t, x) − σ(t, y)||2
L0

2

≤ K1||x− y||2, ||σ(t, x)||2
L0

2

≤ K2(1 + ||x||2).

(iii) The function g is continuous function and there exists some positive constants
Mg such that

||g(x)− g(y)||2 ≤Mg||x− y||2, ||g(x)||2 ≤Mg(1 + ||x||2)

for all x, y ∈ C(J,H).
(iv) For each 0 ≤ t < b, the operator α(αI + Γb

t)
−1 → 0 in the strong operator

topology as α → 0+, where

Γb
t =

∫ b

t

S(b− s)BB∗S∗(b− s)ds

is the controllability Grammian. Observe that the linear deterministic system corre-
sponding to (1)

dx′(t) = [Ax(t) +Bu(t)]dt, t ∈ J

x(0) = x0

}

(2)

is approximately controllable on [t, b] iff the operator α(αI + Γb
t)

−1 → 0 strongly as
α → 0+.

For simplicity, let us take MB = max{||B||}.
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3 Main Result

Let us recall two lemmas concerning approximate controllability, which will be used in
the proof.

The following lemma is required to define the control function.

Lemma 3.1 [19] For any xb ∈ L2(Ω,ℑb, H), there exists φ ∈ Lℑ

2 (J, L
0
2) such that

xb = Exb +

∫ b

0

φ(s)dω(s).

Now for any α > 0 and xb ∈ L2(Ω,ℑb, H), we define the control function in the
following form

uα(t, x) = B∗S∗(b− t)
[

(αI +Ψb
0)

−1
(

Exb − S(b)(x0 + g(x))
)

+

∫ t

0

(αI +Ψb
s)

−1φ(s)dw(s)
]

,

−B∗S∗(b − t)

∫ t

0

(αI +Ψb
s)

−1S(b− s)f(s, x(s))ds,

−B∗S∗(b − t)

∫ t

0

(αI +Ψb
s)

−1S(b− s)σ(s, x(s))dw(s).

Lemma 3.2 There exists a positive constant Mu such that for all x, y ∈ H2, we have

E||uα(t, x)− uα(t, y)||2 ≤
Mu

α2
||x− y||2, (3)

E||uα(t, x)||2 ≤
Mu

α2

(

1 + ||x||2
)

. (4)

Proof. Let x, y ∈ H2. From Holder’s inequality, Lemma 2.1 and the assumptions on
the data, we obtain

E||uα(t, x)− uα(t, y)||2 ≤ 3E

∣

∣

∣

∣

∣

∣

∣

∣

B∗S∗(b− t)(αI + ψ0
b)

−1
S(b)[g(x)− g(y)]

∣

∣

∣

∣

∣

∣

∣

∣

2

+3E

∣

∣

∣

∣

∣

∣

∣

∣

B∗S∗(b− t)

∫ t

0

(αI +Ψb
s)

−1S(b− s)[f(s, x(s)) − f(s, y(s))]ds

∣

∣

∣

∣

∣

∣

∣

∣

2

+3E

∣

∣

∣

∣

∣

∣

∣

∣

B∗S∗(b− t)

∫ t

0

(αI +Ψb
s)

−1S(b− s)[σ(s, x(s)) − σ(s, y(s))]dw(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

≤
3

α2
M2

BM
4

[

Mg||x−y||
2
H2

+b

∫ t

0

N1E||x(s)−y(s)||
2
Hds+LG

∫ t

0

K1E||x(s)−y(s)||
2
Hds

]

≤
3

α2
M2

BM
4

[

Mg + bN1b sup
s∈[0,b]

E||x(s) − y(s)||2H + LGK1b sup
s∈[0,b]

E||x(s) − y(s)||2H

]

≤
3

α2
M2

BM
4[Mg + b2N1 + LGK1b]||x− y||2H2

=
Mu

α2
||x− y||2H2

,

where Mu = 3M2
BM

4[Mg + b2N1 + LGK1b] and p, q are conjugate indices.
The proof of the second inequality can be verified in a similar manner by putting

uα(t, y) = 0. So, the proof of the lemma is completed.
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For any α > 0, define the operator Pα : H2 → H2 by

(Pαx)(t) = S(t)(x0 + g(x)) +

∫ t

0

S(t− s)[Buα(s, x) + f(s, x(s))]ds

+

∫ t

0

S(t− s)σ(s, x(s))dω(s).

To prove the approximate controllability, we first prove in Theorem 3.1, the existence
of a fixed point of the operator Pα defined above, using the Sadovskii’s fixed point
theorem. Second, in Theorem 3.2, we show that under certain assumptions the approx-
imate controllability of system (2) is implied by the approximate controllability of the
corresponding deterministic linear system.

Theorem 3.1 Assume hypothesis (i)− (iv) are satisfied. Then the system (1) has a
mild solution on [0, b] provided that

8M2Mg + 4M2

(

M2
Bb

2Mu

α2
+ b2N2 + LσK2b

)

< 1, (5)

3M2M2
BbMu

α2
+ 3M2bN1 + 3M2LG < 1.

Proof. The proof of this theorem is divided into several steps.
Step 1. For any x ∈ H2, Pα(x)(t) is continuous on J in the Lp sense.

Proof of Step 1: Let 0 ≤ t1 ≤ t2 ≤ b. Then for any fixed x ∈ H2, it follows from
Holder’s inequality, Lemma 2.1 and assumptions of the theorem that

E||(Pαx)(t2)− (Pαx)(t1)||
2

≤ 7

[

E||(S(t2)− S(t1))(x0 + g(x))||2 + E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t1

0

[S(t2 − s)− S(t1 − s)]f(s, x(s))ds

∣

∣

∣

∣

∣

∣

∣

∣

2

+E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t2

t1

S(t2 − s)f(s, x(s))ds

∣

∣

∣

∣

∣

∣

∣

∣

2

+ E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t1

0

[S(t2 − s)− S(t1 − s)]σ(s, x(s))dω(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

+E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t2

t1

S(t2 − s)σ(s, x(s))dω(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

+ E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t1

0

[S(t2 − s)− S(t1 − s)]Buα(s, x)ds

∣

∣

∣

∣

∣

∣

∣

∣

2

+E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t2

t1

S(t2 − s)Buα(s, x)ds

∣

∣

∣

∣

∣

∣

∣

∣

2]

≤ 7

[

2

(

E||(S(t2)− S(t1))x0||
2 + E||(S(t2)− S(t1))g(x)||

2

)

+t1

∫ t1

0

E||[S(t2 − s)− S(t1 − s])f(s, x(s))||2ds+M2(t2 − t1)

∫ t2

t1

E||f(s, x(s))||2ds

+LG

∫ t1

0

E||(S(t2 − s)− S(t1 − s))σ(s, x(s))||2ds+M2LG

∫ t2

t1

E||σ(s, x(s))||2ds

+t1

∫ t1

0

E||[S(t2 − s)− S(t1 − s])Buα(s, x)||2ds+ ||B||2M2(t2 − t1)

∫ t2

t1

E||uα(s, x)||2ds

]
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Hence using Lebesgue’s dominated convergence theorem, we conclude that the right hand
side of the above inequality tends to zero as t2 − t1 → 0. Thus we conclude Pα(x)(t) is
continuous from the right in [0, b). A similar argument shows that it is also continuous
from the left in (0, b]. Thus Pα(x)(t) is continuous on J in the Lp sense.

Step 2: For each positive integer q, let Bq = {x ∈ H2 : E||x(t)||2H ≤ q}, then the
set Bq is clearly a bounded, closed and convex set in H2. From Lemma 2.1, Holder’s
inequality and assumption (i), we derive that

E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

S(t− s)f(s, x(s))ds

∣

∣

∣

∣

∣

∣

∣

∣

2

H

≤ E

(
∫ t

0

||S(t− s)f(s, x(s))||Hds

)2

≤ M2
E

(
∫ t

0

||f(s, x(s))||Hds

)2

≤ M2b

∫ t

0

E||f(s, x(s))||2Hds

= M2b

∫ t

0

N2(1 + E||x(s)||2H )ds

≤ M2bN2

∫ t

0

(1 + sup
s∈[0,b]

E||x(s)||2H)ds

≤ M2bN2b(1 + ||x||2H2
)

≤ M2b2N2(1 + ||x||2H2
),

which deduces that S(t − s)f(s, x(s)) is integrable on J , by Bochner’s theorem, Pα is
well defined on Bq.

Similarly from (ii), we derive that

E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

S(t− s)σ(s, x(s))dw(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ Lσ

∫ t

0

E||S(t− s)σ(s, x(s))||2
L0

2

ds

≤ LσM
2

∫ t

0

E||σ(s, x(s))||2
L0

2

ds

≤ LσM
2

∫ t

0

K2(1 + E||x(s)||2H)ds

≤ LσM
2K2

∫ t

0

(1 + sup
s∈[0,b]

E||x(s)||2H )ds

≤ LσM
2K2b(1 + ||x||2H2

)

≤ LσM
2K2b(1 + ||x||2H2

).

Now, we claim that there exists a positive number q such that Pα(Bq) ⊆ Bq.

If it is not true, then for each positive number q, there is a function xq(.) ∈ Bq but
Pαxq does not belong to Bq, that is E||Pαxq(t)||

2
H > q for some t ∈ J .
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On the other hand, from assumptions (ii), (iii) and Lemma 3.2, we have

q ≤ E||Pαxq(t)||
2
H = E

∣

∣

∣

∣

∣

∣

∣

∣

S(t)(x0 + g(x)) +

∫ t

0

S(t− s)[Buα(s, x) + f(s, x(s))]ds

+

∫ t

0

S(t− s)σ(s, x(s))dw(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

H

≤ 4M2
E||x0 + g(x)||2 + 4M2M2

Bb
2Mu

α2
(1 + ||x||2H2

)

+4M2b2N2(1 + ||x||2H2
) + 4M2LσK2b(1 + ||x||2H2

)

≤ 4M2[2E||x0||
2 + 2E||g(x)||2] + 4M2M2

Bb
2Mu

α2
(1 + ||x||2H2

)

+ 4M2b2N2(1 + ||x||2H2
) + 4M2LσK2b(1 + ||x||2H2

)

≤ 4M2[2E||x0||
2 + 2Mg(1 + ||x||2H2

)] + 4M2M2
Bb

2Mu

α2
(1 + ||x||2H2

)

+4M2b2N2(1 + ||x||2H2
) + 4M2LσK2b(1 + ||x||2H2

)

≤ 4M2[2E||x0||
2 + 2Mg(1 + q)] + 4M2M2

Bb
2Mu

α2
(1 + q)

+4M2b2N2(1 + q) + 4M2LσK2b(1 + q)

≤

(

8M2
E||x0||

2 + 8M2Mg +
4M2M2

Bb
2Mu

α2

+ 4M2b2N2 + 4M2LσK2b

)

+

(

8M2Mg +
4M2M2

Bb
2Mu

α2
+ 4M2b2N2 + 4M2LσK2b

)

q.

Dividing both sides by q and taking the limit as q → ∞, we get

8M2Mg + 4M2

(

M2
Bb

2Mu

α2
+ b2N2 + LσK2b

)

> 1.

This contradicts condition (5). Hence for some positive number q, PαBq ⊆ Bq.

Step 3. Now, we define operators Pα1
and Pα2

as

(Pα1
x)(t) = S(t)[x0 + g(x)],

(Pα2
x)(t) =

∫ t

0

S(t− s)[Buα(s, x) + f(s, x(s))]ds+

∫ t

0

S(t− s)σ(s, x(s))dω(s)

for t ∈ J . Here, we will prove that Pα1
is completely continuous, while Pα2

is a contraction
operator.

By assumption (iii), it is clear that Pα1
is a completely continuous operator. Next we

show that Pα2
is the contraction operator. For this, let x, y ∈ Bq, then for each t ∈ J ,
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we have from assumptions (ii),(iii)

E||(Pα2
x)(t) − (Pα2

y)(t)||2H ≤ 3E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

S(t− s)B[uα(s, x) − uα(s, y)]ds

∣

∣

∣

∣

∣

∣

∣

∣

2

H

+3E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

S(t− s)[f(s, x(s))− f(s, y(s))]ds

∣

∣

∣

∣

∣

∣

∣

∣

2

H

+3E

∣

∣

∣

∣

∣

∣

∣

∣

∫ t

0

S(t− s)[σ(s, x(s)) − σ(s, y(s))]dω(s)

∣

∣

∣

∣

∣

∣

∣

∣

2

H

≤ 3M2M2
B

∫ t

0

E||uα(s, x)− uα(s, y)||2Hds

+ 3M2

∫ t

0

E||f(s, x(s)) − f(s, y(s))||2ds

+3M2

∫ t

0

E||σ(s, x(s)) − σ(s, y(s))||2dw(s)

≤ 3M2M2
Bb
Mu

α2
||x− y||2H2

+ 3M2bN1||x− y||2H2

+ 3M2LG||x− y||2H2

≤

(

3M2M2
BbMu

α2
+ 3M2bN1 + 3M2Lσ

)

||x− y||2H2

therefore ||(Pα2
x)− (Pα2

y)||2H2
≤ L0||x− y||2H2

, where

L0 =

(

3M2M2
BbMu

α2
+ 3M2bN1 + 3M2LG

)

< 1.

Thus Pα2
is a contraction mapping.

Now we have Pα = Pα1
+ Pα2

is a condensing map on Bq, so Sadovskii’s fixed point
theorem is satisfied. Hence we conclude that there exists a fixed point x(.) for Pα on Bq,
which is the mild solution of (1).

Theorem 3.2 Assume assumptions (i) − (iv) are satisfied and if f and σ are uni-
formly bounded, then the system (1) is approximately controllable on [0, b].

Proof. Let xα be a fixed point of Pα in H2. By using the stochastic Fubini theorem,
it is easy to see that

xα(b) = xb − α(αI + Γb
0)

−1

(

Exb − S(b)(x0 + g(x))

)

+α

∫ b

0

(αI + Γb
s)

−1S(b− s)f(s, xα(s))ds

+α

∫ b

0

(αI + Γb
s)

−1[S(b− s)σ(s, xα(s)) − φ(s)]dω(s).

By the assumption that f and σ are uniformly bounded, there exists D > 0 such that

||f(s, xα(s))||
2 + ||σ(s, xα(s))||

2 ≤ D
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in [0, b] × Ω. Then there is a subsequence denoted by {f(s, xα(s)), σ(s, xα(s))} weakly
converging to say {f(s, ω), σ(s, ω)} in H × L0

2. Now, the compactness of S(t) implies
that S(b− s)f(s, xα(s)) → S(b− s)f(s) and S(b− s)σ(s, xα(s)) → S(b− s)σ(s) in J ×Ω.

Now, from the above equation, we get

E||xα(b)− xb||
2 ≤ 6

∣

∣

∣

∣

∣

∣

∣

∣

α(αI + Γb
0)

−1

[

Exb − S(b)[x0 + g(x))]

]
∣

∣

∣

∣

∣

∣

∣

∣

2

+6E

(
∫ b

0

||α(αI + Γb
s)

−1φ(s)||2L0

2

ds

)

+6E

(
∫ b

0

||α(αI + Γb
s)

−1|| ||S(b− s)[f(s, xα(s))− f(s)]||ds

)2

+6E

(
∫ b

0

||α(αI + Γb
s)

−1S(b− s)f(s)||ds

)2

+6E

(
∫ b

0

||α(αI + Γb
s)

−1|| ||S(b− s)[σ(s, xα(s))− σ(s)]||2
L0

2

ds

)

+6E

(
∫ b

0

||α(αI + Γb
s)

−1S(b− s)σ(s)||2
L0

2

ds

)]

.

Since by assumption (iv), for all 0 ≤ s < b the operator α(αI + Γb
s)

−1 → 0 strongly as
α → 0+ and moreover ||α(αI+Γb

s)
−1|| ≤ 1. Thus by the Lebesgue dominated convergence

theorem, we obtain E||xα(b)− xb||
2 → 0+. This gives the approximate controllability.

4 Example

Consider the stochastic control system:

dtz(t, θ) = [zθθ +Bu(t, θ) + p(t, z(t))]dt+ k(t, z(t))dω(t),
z(t, 0) = z(t, π) = 0, 0 ≤ t ≤ T, 0 < θ < π,

z(0, θ) +

n
∑

i=1

αiz(ti, θ) = z0(θ) t ∈ J,



















(6)

where B is a bounded linear operator from a Hilbert space U into X ; p : J ×X → X ,
k : J ×X → L0

2 are all continuous and uniformly bounded, u(t) is a feedback control and
w is a Q-Wiener process.

Let X = L2[0, π], and let A : D(A) ⊂ X → X be an operator defined by

Az = zθθ

with domain

D(A) = {z(.) ∈ X |z, zθ are absolutely continuous , zθθ ∈ X, z(0) = z(π) = 0}.

Furthermore, A has discrete spectrum, the eigenvalues are −n2, n = 1, 2, · · · with the
corresponding normalized characteristic vectors en(s) = (2/π)1/2 sinns, then

Az =

∞

∑

n=1

−n2 < z, en > en, z ∈ X.
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It is known that A generates a compact semigroup S(t), t > 0 in X and is given by

S(t)z =
∞

∑

n=1

e−n2t < z, en > en(θ), z ∈ X.

Let f : J ×X → X be defined by

f(t, x(t))(θ) = p(t, x(t))(θ)), (t, xt) ∈ J ×X, θ ∈ [0, π].

Let σ : J ×X → L0
2 be defined by

σ(t, x(t))(θ) = k(t, x(t))(θ)), (t, xt) ∈ J ×X, θ ∈ [0, π].

The function g : C(J,X) → X is defined as

g(z)(θ) =

n
∑

i=1

αiz(ti, θ)

for 0 < ti < T and θ ∈ [0, π].

With this choice of A,B, f, σ and g, (1) is the abstract formulation of (6) such that
the conditions in (i) and (ii) are satisfied.

Now define an infinite-dimensional space

U =

{

u : u =

∞

∑

n=2

unen(θ) |

∞

∑

n=2

u2n <∞

}

with the norm defined by

||u||U =

(

∞

∑

n=2

u2n

)1/2

and a linear continuous mapping B from U → X as follows:

Bu = 2u2e1(θ) +

∞

∑

n=2

un(t)en(θ).

It is obvious that for u(t, θ, ω) =

∞

∑

n=2

un(t, ω)en(θ) ∈ Lℑ

2 (J, U)

Bu(t) = 2u2(t)e1(θ) +

∞

∑

n=2

un(t)en(θ) ∈ Lℑ

2 (J,X).

Moreover,

B∗v = (2v1 + v2)e2(θ) +

∞

∑

n=3

vnen(θ),

B∗S∗(t)z = (2z1e
−t + z2e

−4t)e2(θ) +

∞

∑

n=3

zne
−n2ten(θ),
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for v =
∞

∑

n=1

vnen(θ) and z =
∞

∑

n=1

znen(θ).

Let ||B∗S∗(t)z|| = 0, t ∈ [0, T ], it follows that

||2z1e
−t + z2e

−4t||2 +

∞

∑

n=3

||zne
−n2t||2 = 0, t ∈ [0, T ]

⇒ zn = 0, n = 1, 2, · · · ⇒ z = 0.
Thus by Theorem 4.1.7 of [23], the deterministic linear system corresponding to (6) is

approximate controllable on [0, T ]. Therefore the system (6) is approximate controllable
provided that f, σ and g satisfy the assumptions (i) and (ii).
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