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Abstract: Let G be a graph and S ⊆ V (G). We denote by 〈S〉 the subgraph of
G induced by S. For each vertex u ∈ S and for each v ∈ V (G) − S, we define
d(u, v) = d(v, u) to be the length of the shortest path in 〈V (G)− (S − {u})〉 if such
a path exists, and ∞ otherwise. Let v ∈ V (G). We define ws(v) =

∑
u∈S

1

2d(u,v)−1

if v /∈ S, and ws(v) = 2 if v ∈ S. If, for each v ∈ V (G), we have ws(v) ≥ 1,
then S is an exponential dominating set. The smallest cardinality of an exponen-
tial dominating set is the exponential domination number γe(G). In this paper,
we consider the exponential domination number in total graphs. We determine the
exponential domination number of T (G) for some specific graphs G.
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1 Introduction

In a communication network, the vulnerability measures the resistance of network to dis-
ruption of operation after the failure of certain stations or communication links. The sta-
bility of communication networks is of prime importance to network designers (see [9,10]).
If we think of the graph as modeling a communication network, many graph theoretical
parameters have been used to describe the stability of communication networks includ-
ing connectivity, toughness, integrity, domination and its variations (see [1,2,4,5]). The
domination number is one of the measures of the graph vulnerability.

Domination in graphs is a well-studied concept in graph theory. Domination based
parameters reveal an underlying efficient communication network in which a vertex can
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affect all its neighborhood vertices in some sense. In real life applications, we can en-
counter that a vertex can affect both its neighborhood vertices and all vertices within
a given distance. Distance domination is a kind of this situation. There has been no
framework yet in which the effect of a vertex broadens beyond its neighborhood while
decreasing by distance. It has been suggested (see [7]) that exponential domination is
a model for the reliability of the spread of information or gossip. In this model, the
dominating strategy of a vertex decreases exponentially with a distance, by the factor
1/2. Therefore, it is possible that a vertex v is dominated by one of its neighbors or by
some vertices that are closer to v. The assumption is that gossip heard directly from a
source is totally reliable, while gossip passed from person to person loses half its credi-
bility with each individual in the chain. Finding the exponential domination number in
this application amounts to determining the minimum number of sources needed so that
each person gets fully reliable information.

In this paper, we consider simple finite undirected graphs without loops and multiple
edges. Let G = (V,E) be a graph with vertex set V = V (G) and an edge set E = E(G).
For vertices u of a graph G, the open neighborhood of u is N(u) = {v ∈ V (G)|(u, v) ∈
E(G)}. We define analogously for any S ⊆ V (G) the open neighborhood N(S) =⋃
u∈S N(u). The closed neighborhood of u is N [u] = u ∪ N(u). For a set S ⊆ V , its

closed neighborhood N [S] = N(S) ∪ S. A set S is dominating set of G if N [S] = V , or
equivalently, every vertex in V −S is adjacent to at least one vertex of S. The dominating
number γ(G) is the minimum cardinality of a dominating set of G.

The distance d(u, v) between two vertices u and v in G is the length of the shortest
path between them. If u and v are not connected, then d(u, v) = ∞ , and for u = v,
d(u, v) = 0. The diameter of G, denoted by diam(G) is the largest distance between two
vertices in V (G) (see [3, 4]).

Throughout this paper, the largest integer not larger than x is denoted by bxc and
the smallest integer not smaller than x is denoted by dxe.

The paper proceeds as follows. In Sections 2 and 3, the definition of exponential
domination number and known results are given, respectively. In Section 4, we give
some results on the exponential domination number of total graphs. Formulas for the
exponential domination number of the graphs obtained by binary graph operations are
given in Section 5.

2 Exponential Domination Number

The exponential domination number of a graph is a new characteristic for graph vulner-
ability introduced in [7]. This definition is in the following:

This parameter is a variation of distance domination in which, as described in the
motivation already given, the ’dominating power’ radiating from a vertex declines ex-
ponentially with distance. Let G be a graph and S ⊆ V (G). We denote by 〈S〉 the
subgraph of G induced by S. For each vertex u ∈ S and for each v ∈ V (G)−S, we define
d(u, v) = d(v, u) to be the length of the shortest path in 〈V (G) − (S − {u})〉 if such a
path exists, and ∞ otherwise. Let v ∈ V (G). The definition is

ws(v) =

{ ∑
u∈S

1
2d(u,v)−1

, if v /∈ S,
2, if v ∈ S.

We refer to ws(v) as the weight of S at v (note that we define ws(v) = 2 if v ∈ S since
then v contributes ws(v)/2d to every vertex it exponentially dominates at distance d).



14 A. AYTAÇ AND B. ATAY

If, for each v ∈ V (G), we have ws(v) ≥ 1, then S is an exponential dominating set.
The smallest cardinality of an exponential dominating set is the exponential domination
number, γe(G), and such a set is a minimum exponential dominating set, or γe(G) -set
for short. If u ∈ S and v ∈ V (G)− S and 1

2d(u,v)−1
> 1, then we say that u exponentially

dominates v. Note that if S is an exponential dominating set, then every vertex of
V (G)− S is exponentially dominated, but the converse is not true (see [7, 8]).

3 Basic Results

Theorem 3.1 [7] For every positive integer n, γe(Pn) = dn+1
4 e.

Theorem 3.2 [7] For every positive integer n,

γe(Cn) =

{
2, if n = 4,
dn4 e, if n 6= 4 ∈ S.

Theorem 3.3 [7] If G is a connected graph of diameter d, then γe(G) ≥ dd+2e
4 .

Theorem 3.4 [7] If G is a connected graph of order n, then γe(G) ≤ 2
5 (n+ 2).

Theorem 3.5 [7] Let G be a connected graph of order n and T be a spanning tree
of G. Then γe(G) ≤ γe(T ).

4 Exponential Domination Number of Total Graphs

In this section, the exponential domination number of total graph of a graph is calculated
and formula for the exponential domination number of γe(T (G)) is given.

Definition 4.1 [3, 4] The vertices and edges of a graph are called its elements. Two
elements of a graph are neighbors if they are either incident or adjacent. The total graph
T (G) of the graph G = (V (G), E(G)), has vertex set V (G) ∪ E(G), and two vertices of
T (G) are adjacent whenever they are neighbors in G.

Example 4.1

Figure 1: Total graph T (P8).
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The following table shows us the weight of S1 at all vertices of the graph T (P8),
where S1 = {v2, v8, v12, v14}.

v d(v, v2) d(v, v8) d(v, v12) d(v, v14) ws1(v)

v1 1 1 4 7 2.135
v2 - - - - 2
v3 1 3 2 4 1.875
v4 2 4 1 3 1.875
v5 3 5 1 2 1.81
v6 4 6 2 1 1.655
v7 5 7 3 1 1.325
v8 - - - - 2
v9 1 1 3 6 2.281
v10 1 2 2 5 2.015
v11 2 3 1 4 1.875
v12 - - - - 2
v13 4 6 1 1 2.156
v14 - - - - 2
v15 6 8 4 1 1.147

For S1 set, ∀v ∈ V (T (P8)), ws(v) ≥ 1 is satisfied. So, S1 set is an exponential
dominating set.

The following table shows us the weight of S2 at all vertices of the graph T (P8), where
S2 = {v5, v10, v14}.

v d(v, v5) d(v, v10) d(v, v14) ws2(v)

v1 4 2 6 0.656
v2 3 1 5 1.56
v3 2 1 4 1.625
v4 1 2 3 1.75
v5 - - - 2
v6 1 4 1 2.125
v7 2 5 1 1.56
v8 5 2 7 0.575
v9 4 1 6 1.156
v10 - - - 2
v11 2 1 3 1.75
v12 1 2 2 2
v13 1 3 1 2.25
v14 - - - 2
v15 3 6 1 1.281

For S2 set, wS2
(v1) ≥ 1 and condition wS2

(v8) ≥ 1 is not satisfied. So, S2 is not
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an exponential dominating set.
The following table shows us the weight of S3 at all vertices of the graph T (P8),

where S3 = {v8, v11, v14}.

v d(v, v8) d(v, v11) d(v, v14) ws3(v)

v1 1 3 6 1.281
v2 2 2 5 1.06
v3 3 1 4 1.375
v4 4 1 3 1.375
v5 5 2 2 1.06
v6 6 3 1 1.281
v7 7 4 1 1.14
v8 - - - 2
v9 1 2 6 1.531
v10 2 1 5 1.56
v11 - - - 2
v12 5 1 2 1.56
v13 6 2 1 1.531
v14 - - - 2
v15 8 5 1 1.067

For S3 set, ∀v ∈ V (T (P8)), ws(v) ≥ 1 is satisfied. So, S3 set is an exponential
dominating set.

Similarly, we can get a lot of exponential dominating sets of the graph T (P8) but,
for exponential domination number we need the minimum cardinality of among all ex-
ponential dominating sets. Here, γe(T (Pn)) = min{|S1|, |S3|} = min{4, 3} = 3.

Theorem 4.1 Let Pn be a path graph with n vertices and T (Pn) ∼= G be a total graph
of Pn with 2n− 1 vertices. Then γe(G) = dn3 e.

Proof. The domination number of Pn is γ(Pn) = dn3 e. If we add the vertices of
the domination set to γe − set, every vertex v in γe − set is adjacent to four vertices
in graph G. For ∀u ∈ Nγe−set(v), ws(u) ≥ 1. The length of the shortest path, from
∀u ∈ V (G) − Nγe−set[v] remaining vertices to exactly two vertices in γe − set is 2. So,
ws(u) ≥ 1. Consequently, exponential domination number of G is

γe(G) = dn3 e.

The proof is completed.

Theorem 4.2 Let Cn be a cycle graph with n vertices and T (Cn) ∼= G be a total
graph of Cn with 2n vertices. Then, for n > 3 γe(G) = dn3 e.

Proof. The proof is similar to the proof of Theorem 7.

Theorem 4.3 Let S1,n be a star graph with n+1 vertices and T (S1,n) ∼= G be a total
graph of S1,n with 2n+ 1 vertices. Then γe(G) = 1.
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Proof. Every vertex in G is adjacent to centre vertex c in G. So, we can add only
centre vertex c to γe−set. Hence, we have ws(v) = 1 for ∀v ∈ V (G)−{c} and ws(c) = 2.
Therefore, the result is obvious.

The proof is completed.

Theorem 4.4 Let Kn be a complete graph with n vertices and T (Kn) ∼= G be a total
graph of Kn with (n2 + n)/2 vertices. Then, γe(G) = 2.

Proof. Since in a complete graph all vertices are mutually adjacent, distance between
each pair of vertex is 1. Distance between remaining vertices in V (G) − V (Kn) and
any vertex in Kn is at most 2. Hence, condition ws(v) ≥ 1 is not satisfied for some
v ∈ V (G) − V (Kn). As in the proof of Theorem 7, one more vertex in Kn should be
added to γe − set for the length of the path from vertices in V (G) − V (Kn) to exactly
two vertices in γe − set to be 2. Hence, we have γe(G) = 2.

The proof is completed.

Theorem 4.5 Let W1,n be a wheel graph with n+ 1 vertices and T (W1,n) ∼= G be a
total graph of W1,n with 3n+ 1 vertices. Then, γe(G) = dn4 e+ 1.

Proof. Let the vertex-set of graph G be V (G) = V1(G) ∪ V2(G) ∪ V3(G) ∪ V4(G)
where,

V1(G) = The set contains the center vertex c of graph W1,n.
V2(G) = The set contains all vertices of graph W1,n, except center vertex.
V3(G) = The set contains the edges of graph W1,n, which are adjacent to center

vertex; are the vertices of graph T (W1,n).
V4(G) = The set contains the edges of the cycle of graph W1,n are the vertices of

graph T (W1,n).
The center vertex c is adjacent to every vertex in V2(G) and V3(G). So, the centre

vertex c should be added to γe − set. But, the length of the path from ∀u ∈ V4(G) to
every vertex in γe − set is 2. Therefore, condition ws(u) ≥ 1 is not satisfied. As in the
proof of Theorem 7, the length of the path from every vertex in V4(G) to exactly two
vertices in γe − set should be 2. The length of the path from every vertex in V2(G) to

two vertices in V4(G) is 1 and two vertices in V4(G) is 2. Hence, d |V2(G)|
4 e = dn4 e vertices

in V2(G) should be added to γe − set. There is already the center vertex c in γe − set.
Hence, we have γe(G) = dn4 e+ 1.

The proof is completed.

5 Corona and join graphs, the exponential domination number

Definition 5.1 [3,4] The corona G1oG2 is obtained by taking one copy of G1 and
|G1| copies of G2 , and by joining each vertex of the ith copy of G2 to the ith vertex of
G1, i=1,2,...,|G1|.

Definition 5.2 [3,4] Let G1 and G2 be two disjoint graphs. The join of G1 and
G2 with disjoint vertex sets V (G1) and V (G2) and edge sets E(G1) and E(G2) is the
graph G = G1 + G2 with vertex set V (G) = V (G1) ∪ V (G2) and edge set E(G) =
E(G1) ∪ E(G2) ∪ {(u, v) : u ∈ V (G1), v ∈ V (G2)}.

Theorem 5.1 Let G1
∼= Pn be a path graph with n vertices and G be any connected

graph. Then, γe(G1oG) = bn−22 c+ 2.
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Proof. If |V (G)| = n1, then |V (G1oG)| = n(n1 + 1). Every vertex in G1 except the
end vertices is adjacent to n1 vertices and two vertices in G1. The path between every
vertex in G1 except the end vertices and n(n1 + 1)− (n1− 2) vertices in G1oG is at least
2. So, we obtain the minimum exponential domination set S by adding some vertices in
G1 to S and S ⊆ V (G1). Two end vertices of graph G1 should be added to exponential
domination set S of G1oG. Otherwise, for ∀v ∈ V (G1oG) − V (G1) that are adjacent
to these end vertices, ws(v) ≥ 1 is not satisfied, since the length of the path between v
and one vertex in G1oG is 2; the length of the path between v and the other remaining
vertices in G1oG is at least 3. If we add bn−22 c vertices in G1 except these end vertices,
to S, for ∀u ∈ V (G1oG) ws(u) ≥ 1 is satisfied. There are already two end vertices in S.
Hence, we have γe(G1oG) = bn−22 c+ 2.

The proof is completed.

Theorem 5.2 Let G1
∼= Cn be a cycle graph with n vertices and G be any connected

graph. Then, γe(G1oG) = dn2 e.

Proof. If |V (G)| = n1, then |V (G1oG)| = n(n1 + 1). Every vertex in G1 is adjacent
to n1 vertices and two vertices in G1. The path between every vertex in G1 and n(n1 +
1) − (n1 − 2) vertices in G1oG is at least 2. So, we obtain the minimum exponential
domination set S by adding some vertices in G1 to S and S ⊆ V (G1). We obtain S by
adding ∀v ∈ S satisfies d(u, v) ≤ 2 or d(u, v) =∞ for ∀u ∈ (V (G1oG)−S). So, there must
be dn2 e vertices from G1 in S . Consequently, ws(x) ≥ 1 satisfying for ∀x ∈ V (G1oG)
and we have

γe(G1oG) = dn2 e.

The proof is completed.

Corollary 5.1 Let G1
∼= Cn. Then, γe(G1oG) = diam(G1).

Theorem 5.3 Let G1
∼= S1,n be a star graph with n + 1 vertices and G be any

connected graph. Then, γe(G1oG) = 4.

Proof. We denote the centre vertex of G1 by c. In G1oG, for ∀u ∈ V (G) and
∀v ∈ V (G1 − {c}) d(u, v) ≤ 3. If we set S with vertices from G1 − {c} then vertex v
contributes at least 1

2d(u,v)−1
= 1

22 to ws(u). Hence, adding any 4 vertices from G1 − {c}
to S is sufficient and we have

γe(G1oG) = 4.

The proof is completed.

Theorem 5.4 Let G1
∼= W1,n be a wheel graph with n + 1 vertices and G be any

connected graph. Then, γe(G1oG) = 4.

Proof. The proof is similar to the proof of Theorem 17.

Theorem 5.5 Let G1
∼= Kn be a complete graph with n vertices and G be any con-

nected graph. Then γe(G1oG) = 2.

Proof. The length of the path between ∀v ∈ G1oG and every vertex in G1 is at most
2. So, it is easy to see that diam(G1oG) = 3. Hence, S ⊆ V (G1) satisfying ws(v) ≥ 1.
It is sufficient to add any two vertices to S. Therefore, we have
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γe(G1oG) = 2.

The proof is completed.

Corollary 5.2 For any two graphs G1 and G2, G1oG2 ≥ ddiam(G1oG2)
2 e.

Theorem 5.6 Let G1 and G2 be any two graphs having respectively diameters d1
and d2. If diam(G1) = d1 < diam(G2) = d2, then γe(G1 +G2) = γe(G1).

Proof. We assume that diam(G1) = d1 < diam(G2) = d2. By the definition of
γe(G1), we can not reduce any vertex from γe(G1) and every vertex in G2 is adjacent
to every vertex in γe(G1). If we add every vertex in γe(G1) to S minimum exponential
number of G1 +G2, for ∀u ∈ G1 ws(u) ≥ 1 and for ∀v ∈ V (G2) ws(v) = 1 is satisfied.

The proof is completed.

6 Conclusion

In an administrative setup, decisions are taken by a small group who have effective
communication links with other members of the organization. Domination in graphs
provides a model for such a concept. The domination in graphs is one of the concepts
in graph theory which has attracted many researchers to work on it because of its many
and varied applications in such fields as linear algebra and optimization, design and
analysis of communication networks, and social sciences and military surveillance. Many
variants of dominating models are available in the existing literature. Dankelmann et al.
(see [7]) recently defined exponential domination. Hence, in this paper, we investigate
the exponential domination number of some total graphs. Moreover some results about
exponential domination number of graphs obtained by graph operations are established.
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