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1 Introduction

Let (X, ‖ · ‖) be a complex Banach space. The objective of this paper is to study the
solutions to a new class of abstract integro-differential equations of fractional order with
non-instantaneous impulses in X :

cDα
t [u(t) + ϕ(t, u(t))] = Au(t) + J1−α

t f(t, u(t)),

t ∈ (si, ti+1], i = 0, 1, · · · , N, 0 < α < 1,

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · , N,

u(0) = u0,





(1)
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where A : D(A) ⊂ X → X is a sectorial operator on (X, ‖.‖), u0 ∈ X , 0 = t0 = s0 < t1 ≤
s1 ≤ t2 < · · · < tN ≤ sN ≤ tN+1 = T0 are pre-fixed numbers, gi ∈ C((ti, si]×X ;X) and
ϕ : [0, T0]×X → X, f : [0, T0]×X → X are suitably defined functions. The fractional
derivative cDα

t is to be understood in Caputo sense and Jα
t denotes the Riemann-Liouville

integral of order α. This paper is concerned with impulsive differential equations of
fractional order, where an impulsive action starts suddenly at the points ti and their
action stays active on the interval [ti, si].

Fractional differential equations arise as models in many fields of engineering and sci-
ence such as electrochemistry, electro-magnetics, electrical circuits control theory, visco-
elasticity, porous media, neuron modelling etc. [5, 9, 13, 15, 16, 18–20, 22]. The plentiful
occurrence and applications of fractional differential equations motivate the rapid devel-
opments and gained much attention in the recent years and have been studied exten-
sively in [2–4, 6, 7, 14, 23–27, 29, 30]. But systems with non-instantaneous impulses do
exist [10,11]. For example, one can consider the hemodynamical equilibrium of a person
in which impulses are non-instantaneous [10]. Such systems for the fractional differential
equations are less studied. Recently, Hernández and O’regan introduced and investi-
gated the existence of mild and classical solutions to a new class of abstract differential
equations with non-instantaneous impulses in X :

u′(t) = Au(t) + f(t, u(t)), t ∈ (si, ti+1], i = 0, 1, · · · , N, (2)

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · , N,

u(0) = u0.

The operator A generates an infinitesimal C0-semigroup of bounded linear operators
(X, ‖.‖), the functions gi ∈ C((ti, si] ×X ;X) for each i = 1, 2, · · · , N and f : [0, T0] ×
X → X is a suitable function. The results are established by fixed point theorem with
appropriate gi and f [10].

Kumar et al [12] had extended the work in [10] to the following problem in a Banach
space X :

cDα
t u(t) +Au(t) = f(t, u(t), u(g(t))),

t ∈ (si, ti+1], i = 0, 1, · · · , N, 0 < α < 1,

u(t) = gi(t, u(t)), t ∈ (ti, si], i = 1, 2, · · · , N,

u(0) = u0,





(3)

where cDα
t is the Caputo fractional derivative of order α, −A generates an analytic

semigroup. The sufficient conditions are obtained if f and hi are Lipschitz continuous in
the second variable appropriately. For more details, we refer to [12].

With the strong motivation from Hernández and O’regan [10]; and Kumar et al.
[12], we establish the existence and uniqueness of piecewise continuous mild solution
to the class of fractional integro-differential equations (1), where the impulses are non-
instantaneous. The main results are new and complement to the existing ones that
generalize some results of [10, 12, 23] to the fractional integro-differential equations.

The paper is organized as follows. We collect the basic notations, definitions, lemmas
and theorems in Section 2. We prove the existence as well as uniqueness of solution of
(1) in Section 3. We provide an example in Section 4 as an application of the analytical
results obtained.
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2 Preliminaries and Assumptions

In this section, we will introduce some basic definitions, notations and lemmas that are
useful throughout this paper. For more details, we refer to [13, 15–20]. For the Banach
space X, we denote the Banach space of all bounded linear operator from X into X by
L(X). We denote a ball in X of radius r centered at y as Br(y,X). The set of all mth

order continuously differentiable functions from J(J ⊂ R) into X is denoted by Cm(J,X)
for m ∈ N. We begin with the following definition of sectorial operator.

Definition 2.1 A closed linear operator A is said to be sectorial of type ω if there
exist constants ω ∈ R, θ ∈ [π2 , π], and M > 0 such that

(a) ρ(A) ⊂ Σθ,ω = {λ ∈ C : | arg(λ− ω)| < θ, λ 6= ω},

(b) ‖R(λ,A)‖L(X) ≤
M

|λ−ω| , λ ∈ Σθ,ω.

Definition 2.2 For f ∈ L1((0, T ), X) and α ≥ 0, we define the Reimann-Liouville
integral of order α of f as

Jα
t f(t) = (f ∗Θα)(t) =

1

Γα

∫ t

0

(t− s)α−1f(s)ds, t > 0, α > 0, (1)

where J0
t f(t) = f(t) and

Θα(t) =





1

Γα
tα−1, t > 0,

0, t ≤ 0,

and Θ0(t) = 0.

Definition 2.3 If f ∈ Cm−1((0, T ), X) and (Θm−α ∗ f) ∈ Wm,1((0, T ), X), 0 ≤
m− 1 < α < m, m ∈ N, then the the Caputo fractional derivative of order α of f is
defined as

cDα
t f(t) = Dm

t Jm−α
t

(
f(t)−

m−1∑

0

f i(0)Θi+1(t)
)
, (2)

where Dm
t = dm

dtm and

Wm,1((0, T );X) =

{
f ∈ X : fm ∈ L1((0, T );X) f(t) =

m−1∑

j=0

f j(0)
tj

j!
+

tm−1

(m− 1)!
∗fm(t)

}
.

We note the following properties of Jα
t

Lemma 2.1 [28, Proposition 2.4] For α, β > 0, we have

(i) Jα
t J

β
t f(t) = Jα+β

t f(t) for all f ∈ L1(J ;X);

(ii) Jα
t (f ∗ g) = Jα

t f ∗ g for all f, g ∈ Lp(J ;X)(1 ≤ p < +∞);

(iii) The Caputo fractional derivative cDα
t is a left inverse of Jα

t :

cDα
t J

α
t f = f, for all f ∈ L1(J ;X),
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but in general not a right inverse, in fact, for all f(t) ∈ Cm−1(J ;X) with Θm−α ∗
f ∈ Wm,1(J,X)(m ∈ N, 0 ≤ m− 1 < α < m), one has

Jα
t (

cDα
t )f(t) = f(t)−

m−1∑

i=0

f (i)(0)Θi+1(t). (3)

We consider the following Cauchy problem

cDα
t u(t) + λu(t) = 0, t > 0,

u(0) = u0, 0 < α < 1. (4)

Then the solution of (4) is u(t) = S(t)u0, where S(t) = Eα,1(−λtα) = Eα(−λtα) [8],
where Eα,β is the generalized Mittag-Leffler function. The generalized Mittag-Leffler
function Eα,β is defined as

Eα,β :=

∞∑

k=0

zk

Γ(αk + β)
=

1

2πi

∫

χ

λα−βeλ

λα − z
dλ for α, β > 0, z ∈ C,

where χ is a contour that starts and ends at −∞ and encircles the disc |λ| ≤ |z|1/α

counterclockwise.
Replacing λ by −A, we rewrite S(t) as

S(t) =
1

2πi

∫

Bγ

eλtλα−1R(λα, A)dλ,

where Bγ denotes the Bromwich path. Moreover, if A is a sectorial operator of type ω
then A is the generator of a solution operator given by

Sα(t) =
1

2πi

∫

Υ

eλtλα−1(λα −A)−1dλ,

where Υ is suitable path lying on Σθ,ω. For more details, we refer the reader to [3,6,15,
16, 23, 27–29].

We consider the following Cauchy problem

cDα
t [u(t) + Φ(t)] = Au(t) + J1−α

t f(t), 0 < α < 1,

u(0) = u0 ∈ X,

}
(5)

where f : [0,∞) → X and A is a sectorial operator. The solution of (5) is given by the
following theorem.

Theorem 2.1 If f and Φ satisfy the uniform Hölder condition with exponent β ∈
(0, 1] and A is a sectorial operator, then the unique solution of the Cauchy problem (5)
is given by

u(t) = Sα(t)[u0 +Φ(0)]− Φ(t)−

∫ t

0

Tα(t− s)Φ(s)ds+

∫ t

0

Sα(t− s)f(s)ds,

where

Sα(t) =
1

2πi

∫

Γ

eλtλα−1R(λα, A)dλ, Tα(t) =
1

2πi

∫

Γ

eλtR(λα, A)dλ,

for a suitable path Γ lying on Σθ,ω.
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Proof. Applying the Riemann-Liouville fractional integral operator Jα
t to both sides

of equation (5), we get

Jα
t (

cDα
t )[u(t) + Φ(t)] = Jα

t Au(t) + J1
t f(t).

Using (1) and (3), we get

u(t) + Φ(t) = [u0 +Φ(0)] +
1

Γα

∫ t

0

(t− s)α−1Au(s)ds+

∫ t

0

f(s)ds

= [u0 +Φ(0)] +
1

Γα

∫ t

0

(t− s)α−1[Au(s) + Φ(s)]ds

−
1

Γα

∫ t

0

(t− s)α−1Φ(s)ds+

∫ t

0

f(s)ds. (6)

Applying the Laplace transform to equation (6), we get

(L(u +Φ))(λ) =
1

λ
[u0 +Φ(0)] +

1

λα
A(L(u +Φ)(λ) −

1

λα
(LΦ)(λ) +

1

λ
(Lf)(λ).

Since (λαI −A)−1 exists, i.e., λα ∈ ρ(A), we obtain

(L(u +Φ))(λ) = (λαI −A)−1
[
λα−1(u0 +Φ(0))− (LΦ)(λ) + λα−1(Lf)(λ)

]
.

Applying the inverse Laplace transform, we get

u(t) = Sα(t)[u0 +Φ(0)]− Φ(t)−

∫ t

0

Tα(t− s)Φ(s)ds+

∫ t

0

Sα(t− s)f(s)ds.

✷

We define the set PC(X) for the solution space as follows

PC(X) = {u : [0, T0] → X : u(·) is continuous at t 6= ti, u(t
−
k ) = u(tk), u(t

+
k )

exists for all i = 1, 2, · · · , N}.

We note that PC(X) is a Banach space endowed with the supremum norm

‖u‖PC := sup
t∈[0,T0]

‖u(t)‖.

Now, we define the functions ũi ∈ C([ti, ti+1];X) given by

ũi(t) =

{
u(t), for t ∈ (ti, ti+1],

u(t+i ), for t = ti.

For a ball Br ⊆ PC(X), we define

B̃i = {ũi : u ∈ Br}.

The following Arzela-Ascoli type lemma will be used to establish the main result.

Lemma 2.2 [10, Lemma 1.1] A set Br ⊆ PC(X) is relatively compact in PC(X) if

and only if B̃i is relatively compact in C([ti, ti+1];X ]) for every i = 0, 1, 2, · · · , N .
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Definition 2.4 A function u ∈ PC(X) is said to be a mild solution of the problem
(1) if u(0) = u0, u(t) = gi(t, u(t)) for all t ∈ (ti, si] and each i = 1, · · · , N, and

u(t) = Sα(t)[u0 + ϕ(0, u0)]− ϕ(t, u(t)) −

∫ t

0

Tα(t− s)ϕ(s, u(s))ds

+

∫ t

0

Sα(t− s)f(s, u(s))ds, for all t ∈ [0, t1],

and

u(t) = Sα(t− si)gi(si, u(si))− ϕ(t, u(t))−

∫ t

si

Tα(t− s)ϕ(s, u(s))ds

+

∫ t

si

Sα(t− s)f(s, u(s))ds, for all t ∈ [si, ti+1] i = 1, · · · , N.

3 The Main Results

In this section, we prove the existence of solution to problem (1). The idea of the proof
is based on [10,23]. We need the following hypothesis on f, ϕ and gi. Let V be an open
subset of X . For each v ∈ V , there is a ball B(v, r) such that B(v, r) ⊂ V for r > 0.

(H1) There exist constants Lf > 0, Lϕ > 0 such that the nonlinear maps f, ϕ : [0, T0]×
V → X , will satisfy the following conditions,

‖f(t, u)− f(t, u1)‖ ≤ Lf‖u− u1‖, (1)

‖ϕ(t, u)− ϕ(t, u1)‖ ≤ Lϕ‖u− u1‖, (2)

for all u, u1 ∈ V and t > 0.

(H2) The functions gi : [ti, si]×X → X are continuous and there are positive constants
Lgi such that

‖gi(t, x) − gi(t, y)‖ ≤ Lgi‖x− y‖,

for all x, y ∈ X, t ∈ [ti, si] and each i = 0, 1, · · · , N.

(H3) The solution operators Sα, Tα : R+ → L(X) are bounded i.e., there exist constants
M1 and M2 such that

‖Sα(t)‖L(X) ≤ M1, ‖Tα(t)‖L(X) ≤ M2 for t > 0.

And the operators (Sα(t))t≥0, (Tα(t))t≥0 are compact, where (Tα(t)) = t1−αTα(t).

Theorem 3.1 Let u0 ∈ X. Also let the assumptions (H1)-(H2) hold such that

L = max{M1(Lgi + Lf T0) + Lϕ(1 +M2T0), Lgi : i = 1, · · · , N} < 1. (3)

Then there exists a unique mild solution u ∈ PC(X) of the problem (1).
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Proof. We define a map ̥ : PC(X) → PC(X), given by ̥u(0) = u0, ̥u(t) =
gi(t, u(t)) for each t ∈ (ti, si], i = 1, · · · , N and

̥u(t) = Sα(t)[u0 + ϕ(0, u0)]− ϕ(t, u(t)) −

∫ t

0

Tα(t− s)ϕ(s, u(s))ds

+

∫ t

0

Sα(t− s)f(s, u(s))ds, for all t ∈ [0, t1],

and

̥u(t) = Sα(t− si)gi(si, u(si))− ϕ(t, u(t))−

∫ t

si

Tα(t− s)ϕ(s, u(s))ds

+

∫ t

si

Sα(t− s)f(s, u(s))ds, for all t ∈ [si, ti+1] and i = 1, · · · , N.

Then ̥ is well defined. Next we show that ̥ is a contraction map on PC(X). For
u, v ∈ PC(X), i = 1, · · · , N and t ∈ [si, ti+1], we have

‖̥u(t)−̥v(t)‖ ≤ ‖Sα(t− si)‖ ‖gi(si, u(si))− gi(si, v(si))‖

+‖ϕ(t, u(t))− ϕ(t, v(t))‖

+

∫ t

si

‖Tα(t− s)‖ ‖ϕ(s, u(s))− ϕ(s, v(s))‖ds

+

∫ t

si

‖Sα(t− s)‖ ‖f(s, u(s))− f(s, v(s))‖ds

≤ [M1(Lgi + LfT0) + Lϕ(1 +M2T0)]‖u− v‖PC(X).

Thus we obtain

‖̥u−̥v‖C([si,ti+1];X) ≤ [M1(Lgi + Lf T0) + Lϕ(1 +M2T0)]‖u− v‖PC(X). (4)

Similarly, we obtain

‖̥u−̥v‖C([0,t1];X) ≤ (M1LfT0 + Lϕ(1 +M2T0)‖u− v‖PC(X), (5)

‖̥u−̥v‖C((ti,si];X) ≤ Lgi‖u− v‖PC(X) i = 1, 2, 3, ...N. (6)

It follows from (4)-(6) that

‖̥u−̥v‖PC(X) ≤ L‖u− v‖PC(X). (7)

By the assumption (3), the map ̥(·) is a contraction and hence there exists a
unique mild solution of (1). ✷

By a ball Br with center at 0 and radius r, we mean the set Br(0,PC(X)) = {u ∈
PC(X) : ‖u‖PC ≤ r}. We define

Nf = sup
s∈[si,ti+1],v∈Br(0,PC(X))

‖f(s, v(s))‖ Nϕ = sup
s∈[si,ti+1],v∈Br(0,PC(X))

‖ϕ(s, v(s))‖.

Theorem 3.1 can be proved with a weaker assumptions on f . We prove the theorem
for the existence of mild solution to problem (1) with the following hypothesis.
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(H1)´ There exists constant Lϕ > 0 such that the nonlinear maps ϕ : [0, T0]×V →
X , will satisfy

‖ϕ(t, u)− ϕ(t, u1)‖ ≤ Lϕ‖u− u1‖, (8)

for all u, u1 ∈ V and t > 0.

Theorem 3.2 Let f : [0, T0]×X → X be a continuous function that maps a bounded
set into bounded set and ϕ(·, 0), gi(·, 0) are bounded for each u0 ∈ X. Let r > 1 and
0 < δ < 1 be two numbers such that

M1‖[u0 + ϕ(0, u0)]‖+ (1 +M1) max
i=1,··· ,N

‖gi(·, 0)‖ ≤ (1 − δ)r, (9)

max
i=1,··· ,N

{
Nϕ + Lgi(1 +M1)‖u‖PC + (M2Nϕ +M1Nf )T0

+(1 +M1)‖gi(t, 0)‖
}
≤ δr, (10)

(
M1 sup

s∈[0,t1],v∈Br(0,PC(X))

‖f(s, v(s))‖ +M2 sup
s∈[0,t1],v∈Br(0,PC(X))

‖ϕ(s, v(s))‖
)
T0 ≤ δr,

(11)
Also, we assume that

(1 +M1)Lgi + Lϕ(1 +M2T0) < 1. (12)

If assumptions (H1)´, (H2) and (H3) hold, then there exists a mild solution u ∈ PC(X)
to problem (1).

Proof. We decompose ̥ as

̥ = ̥1 +̥2,

where ̥1 =
∑N

i=0 ̥
1
i , ̥2 =

∑N
i=0 ̥

2
i and ̥k

i : PC(X) → PC(X), i = 0, 1, · · · , N, k =
1, 2. The map ̥k

i is given by

(̥1
iu)(t) =





gi(t, u(t)), for t ∈ (ti, si], i ≥ 1,

Sα(t− si)gi(si, u(si))− ϕ(t, u(t))

−
∫ t

si
Tα(t− s)ϕ(s, u(s))ds, for t ∈ (si, ti+1], i ≥ 1,

0, for t /∈ (ti, ti+1], i ≥ 0,

Sα(t)[u0 + ϕ(0, u0)]− ϕ(t, u(t))

−
∫ t

0 Tα(t− s)ϕ(s, u(s))ds, for t ∈ [0, t1], i = 0,

(̥2
iu)(t) =





∫ t

si
Sα(t− s)f(s, u(s))ds, for t ∈ [si, ti+1], i ≥ 0,

0, for t /∈ [si, ti+1], i ≥ 0.

The proof is divided into four steps.
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Step 1. We begin by showing ̥Br(0,PC(X)) ⊂ Br(0,PC(X)). Let u ∈
Br(0,PC(X)). For i ≥ 1 and t ∈ (ti, ti+1], we have

‖(̥1u)(t) + (̥2u)(t)‖

≤ ‖gi(t, u(t))− gi(t, 0)‖+ ‖gi(t, 0)‖+ ‖ϕ(t, u(t))‖

+ ‖Sα(t− si)‖ ‖gi(si, u(si))− gi(si, 0)‖+ ‖Sα(t− si)‖‖gi(si, 0)‖

+

∫ t

si

‖Tα(t− s)‖ ‖ϕ(s, u(s))‖ds+

∫ t

si

‖Sα(t− s)‖ ‖f(s, u(s))‖ds

≤ Nϕ + Lgi‖u(t)‖+ ‖gi(t, 0)‖+M1Lgi‖u(t)‖+M1‖gi(t, 0)‖

+M2Nϕ(t− si) +M1Nf (t− si)

≤ Nϕ + Lgi(1 +M1)‖u‖PC + (1 +M1)‖gi(t, 0)‖

+ (M2Nϕ +M1Nf)T0,

It follows from assumption (10) that

‖̥1u+̥1u‖PC ≤ r ∀i ≥ 1.

Similarly, for each t ∈ [0, t1], we have

‖(̥1u)(t) + (̥2u)(t)‖

≤ ‖Sα(t)‖ ‖u0 + ϕ(0, u0)‖ +

∫ t

0

‖Tα(t− s)‖‖ϕ(s, u(s))‖ds

+

∫ t

0

‖Sα(t− s)‖‖f(s, u(s))‖ds+ ‖ϕ(t, u(t))‖

≤ Nϕ +M1‖[u0 + ϕ(0, u0)]‖+ (M2Nϕ +M1Nf )T0.

Using (9) and (10), we can conclude that

‖̥1u+̥2u‖PC ≤ r.

Thus, we have ̥1u+̥2u ∈ Br(0,PC(X)).

Step 2. In this step, we prove that ̥1 =
∑N

i=0 ̥
1
i is a contraction on Br(0,PC(X)).

Let t ∈ (ti, ti+1] and u, v ∈ Br(0,PC(X)). For i = 1, · · · , N , we have

‖(̥1
iu)(t)− (̥1

i v)(t)‖ ≤
[
(1 +M1)Lgi + Lϕ(1 +M2T0)

]
‖u− v‖C((ti,ti+1],X).

Thus
∥∥∥∥∥

N∑

i=0

̥1
iu−

N∑

i=0

̥1
i v

∥∥∥∥∥
PC

≤
[
(1 +M1)Lgi + Lϕ(1 +M2T0)

]
‖u− v‖PC .

It is clear from (12) that ̥1 is a contraction on Br(0,PC(X)).
Step 3. We prove that the set {̥2u : u ∈ Br} is relatively compact i.e., the set

{(̥2u)(t) : u ∈ Br} is uniformly bounded, equicontinuous and for any t ∈ [0, T0].
The continuity of f implies that ̥2

i is continuous for each i = 0, 1, · · · , N and t ∈

[si, ti+1]. Thus ̥2 =
∑N

i=0 ̥
2
i is continuous and we have the following estimates

‖(̥2
iu)(t)‖ ≤ M1NfT0, for i = 0, 1, · · · , N
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for any u ∈ Br(0,PC(X)). Therefore, {̥2u : u ∈ Br} is uniformly bounded on Br. Next,
we prove that the set

⋃
̥2

iBr(0,PC(X))(t) for t ∈ [si, ti+1], i = 0, 1, · · · , N, is relatively
compact in X, where

̥2
iBr(0,PC(X))(t) = {(̥2

iu)(t) : Br(0,PC(X))}.

Applying mean value theorem for Bochner integral [17] and Young inequality, we have

(̥2
0u)(t) ⊂

t1+α

α
co{Sα(t− s)f(s, u(s)) : s ∈ [0, t1], u ∈ Br}.

Similarly, for t ∈ (si, ti+1], i = 1, · · · , N, we obtain

(̥2
iu)(t) ⊂

(t− si)
1+α

α
co{Sα(t− s)f(s, u(s)) : s ∈ [si, t1+i], u ∈ Br}.

It follows from assumption (H3) that {(̥2
iu)(t)} is a compact subset of X , for t ∈ I, u ∈

Br. So, ̥2 is compact.

Step 4. In this step, we prove that the set of functions [̥2
i

˜Br(0,PC(X))]i, i =
0, 1, · · · , N is an equicontinuous subset of C([ti, ti+1], X).

Clearly, [̥2
i

˜Br(0,PC(X))]i is equicontinuous on [ti, si], for each i = 0, 1, · · · , N . Let
t1, t2 ∈ (si, ti+1], i = 0, 1, · · · , N, with t1 < t2 and u ∈ Br(0,PC(X)), we get

‖˜̥2
iu(t2)−

˜̥2
iu(t1)‖ ≤

∫ t2

t1

‖Sα(t2 − s)‖ ‖f(s, u(s))‖ds

+

∫ t1

si

‖Sα(t2 − s)− Sα(t1 − s)‖‖f(s, u(s))‖ds.

(13)

For the first term on the right hand side of (13), we have
∫ t2

t1

‖Sα(t2 − s)‖‖ϕ(s, u(s))‖ds ≤ M1Nfs(t2 − t1). (14)

For t1 = si, it is easy to see that the second term on the right hand side of (13) will be
zero. If t1 > si and ν > 0 be sufficiently small, we have

∫ t1−ν

si

‖[Sα(t2 − s)− Sα(t1 − s)]‖‖f(s, u(s))‖ds

+

∫ t1

t1−ν

‖[Sα(t2 − s)− Sα(t1 − s)]‖‖f(s, u(s))‖ds

≤ Nf sup
s∈[si,t1−ν]

‖Sα(t2 − s)− Sα(t1 − s)‖(t1 − ν) + 2M1Nfν. (15)

It follows from (14) and (15) that

‖˜̥2
iu(t2)−

˜̥2
iu(t1)‖

tends to zero as t2 → t1 and ν → 0 for any u ∈ Br(0,PC(X)). This means that

[̥2
i

˜Br(0,PC(X))]i is equicontinuous. Thus [̥
2
i

˜Br(0,PC(X))]i is an equicontinuous sub-
set of C([ti, ti+1], X).

By Ascoli-Arzela theorem, {̥2u : u ∈ Br} is relatively compact. Hence ̥2 is a
completely continuous operator. So by Krasnoselskii’s fixed point theorem [1], ̥ has a
fixed point. This completes the proof of the existence of a mild solution. ✷
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4 Application

We discuss the following problem to illustrate the results. We consider the following
system with noninstantaneous impulse for fractional partial differential equations in
L2([0, π]),

cDα
t [u(t, x) + ∂xG(t, x, u(t, x))] =

∂2

∂x2
u(t, x)

+ 1
Γ(1−α)

∫ t

0

(t− s)−αF (s, x, u(s, x))ds,

(t, x) ∈
⋃N

i=1[si, ti+1]× (0, π),
u(t, 0) = u(t, π) = 0, t ∈ [0, T0],
u(0, x) = u0(x), x ∈ (0, π),
u(t, x) = Hi(t, x, u(t, x)), x ∈ (0, π), t ∈ (ti, si],





(1)

where 0 = t0 = s0 < t1 ≤ s1 < · · · < tN ≤ sN < tN+1 = T0. Here T0 is a fixed real
number, u0 ∈ X , F ∈ ([0, T0] × [0, π] × R,R) and Hi ∈ C((ti, si] × [0, π] × R,R) for all
i = 1, · · · , N .

Let X = L2([0, π]) and Au = ∂2

∂x2u with

D(A) = {u ∈ X :
∂u

∂x
,
∂2u

∂x2
∈ X,u(0) = u(π) = 0}.

Then the operator A : D(A) ⊂ X → X is the infinitesimal generator of a solution
operator {Sα(t)}t≥0 [3, see Theorem 3.1].

The system (1) can be formulated in the abstract form (1), where u(t) = u(t, .), i.e.,
u(t)(x) = u(t, x) and the functions f : [0, T0] × X → X and gi : (ti, si] × X → X are
given by

f(t, u(t))(x) = F (t, x, u(t, x)),

ϕ(t, u(t))(x) = ∂xG(t, x, u(t, x)),

gi(t, u(t))(x) = Hi(t, x, u(t, x)).

For t ∈ [0, T0], u ∈ X, x ∈ (0, π), we define f as

f(t, u(t))(x) =
2e−t|u(t, x)|

(a+ 2et)(1 + 2|u(t, x)|)
, a > −1.

Then f : [0, T0]×X → X is continuous function and satisfies

‖f(t, u1)− f(t, u2)‖ ≤ Lf ‖u1 − u2‖,

for u1, u2 ∈ X and Lf = 2
a+2 .

If we define gi as follows

gi(t, u(t))(x) =
(cos(et) + sin(e−t))|u(t, x)|

4(1 + |u(t, x)|)
,

t ∈ [ti, si], u ∈ X, x ∈ (0, π),

then gi : [ti, si]×X → X is continuous function and satisfies

‖gi(t, u1)− gi(t, u2)‖ ≤ Lgi‖u1 − u2‖,

for u1, u2 ∈ X and Lgi = 1
2 . Hence the assumptions in Theorem 3.1 are satisfied [25].

Thus we have the following theorem for the existence.
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Theorem 4.1 If ϕ is chosen such that

‖ϕ(t, u)− ϕ(t, v)‖ ≤ Lφ‖u− v‖, t ∈ [0, T0], u, v ∈ X

and

L = max{M1(1/2 +
2

a+ 2
T0) + Lϕ(1 +M2T0), 1/2 : i = 1, · · · , N} < 1,

then problem (1) has a unique piecewise continuous mild solution.
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