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Abstract: In this paper, we have studied the dynamical behaviours of a predator-
prey system. The prey exhibits herd behaviour, and is also subject to strong Allee
effect. Positivity and boundedness of the system are discussed. Some criteria for
the extinction of prey and predator populations are derived. Stability analysis of the
equilibrium points is presented. A criterion for Hopf bifurcation is derived. Numerical
simulations are carried out to validate our analytical findings. Implications of our
analytical and numerical findings are discussed critically.
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1 Introduction

It is a fact that species does not survive alone. Individuals of one species are usually bio-
logically associated to members of other. Their interactions take several forms, depend-
ing on whether the influences are beneficial or detrimental. Among these interactions,
predator-prey relationship is considered to be an extremely important one. It is true that
the preys always try to develop the methods of evasion to avoid being eaten. However,
it is certainly not true that a predator-prey relationship is always harmful for the preys,
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it might be beneficial to both. Further, such a relationship often plays an important role
to keep ecological balance in nature. Mathematical modelling of predator-prey interac-
tion was started in 1920s. Interestingly, the first predator-prey model in the history of
theoretical ecology was developed independently by Alfred James Lotka (a US physical
chemist) and Vito Volterra (an Italian mathematician) [29,40]. Subsequently, this model
has been used as a machine to introduce numerous mathematical and practical concepts
in theoretical ecology. Many refinements of the Lotka-Volterra model have also been
made to overcome the shortcomings of the model and to get better insights of predator-
prey interactions. If we summarize the basic considerations behind such modelling, it
would be evident that the most crucial elements of predator-prey models are the choices
of growth function of the prey and functional response of the predator.

So far as the growth of the prey is concerned, many modellers have considered logistic
growth function to be a logically acceptable function. The function was introduced in
1838 by the Belgian mathematician Pierre Francois Verhulst [39]. If X(T ) denotes the
population density at time T , then the logistic growth equation is given by

dX

dT
= rX

(

1− X

K

)

, (1)

where r is the intrinsic per capita growth rate and K is the carrying capacity of the
environment. The logic behind this is very simple. As the resources (e.g., space, food,
essential nutrients) are limited, every population grows into a saturated phase from which
it cannot grow further; the ecological habitat of the population can carry just so much of
it and no more. Therefore, the per capita growth rate is a decreasing function of the size of
the population, and reaches zero as the population achieves a size that can be maintained;
further, any population reaching a size that is above this value will experience a negative
growth rate. However, there are many evidences where the reverse holds true in low
population density [9,18–20,31,34]. This phenomenon of positive density dependence of
population growth at low densities is known as the Allee effect [19, 37].

Warder Clyde Allee, the US behavioral scientist after whom the phenomenon is
named, was the pioneer to describe this concept (although Allee never used the term
‘Allee effect’) [2–4]. The term ‘Allee effect’ was introduced by Odum [33]. Since the late
eighties of the 20th century, the concept gained importance but there was a necessity of
clear-cut definitions and clarification of concepts. In 1999, three important reviews gave
these much needed definitions and clarifications, which are used even today [18, 36, 37].
There might be countless reasons for the Allee effect, such as difficulty in mate finding,
reduced antipredator vigilance, problem of environmental conditioning, reduced defense
against predators, and many others (for thorough reviews, see [9, 19]). The Allee effect
can be divided into two main types, depending on how strong the per capita growth
rate is depleted at low population densities. These two types are called the strong Allee
effect [26, 38, 42, 43] or critical depensation [14, 15, 28], and the weak Allee effect [37, 41]
or noncritical depensation [14, 15, 28]. Usually, the Allee effect is modelled by a growth
equation of the form

dX

dT
= rX

(

1− X

K

)(

X

K0
− 1

)

, (2)

where X(T ) denotes the population density at time T , r is the intrinsic per capita growth
rate, and K is the carrying capacity of the environment. Here 0 < K0 << K. When
K0 > 0 and the population size is below the threshold level K0, then the population
growth rate decreases [10,16,21,26], and the population goes to extinction. In this case,



88 A. MAITI, P. SEN et al.

the equation describes the strong Allee effect [38,42,43]. On the contrary, the description
of weak Allee effect is also available (see [22, 42]). In this paper, we are concerned with
strong Allee effect. The above growth is often said to have a multiplicative Allee effect.
There is another mathematical form of the growth function featuring the additive Allee
effect. In this paper, we are not interested in additive Allee effect (interested readers
might see the works of Aguirre et al. [5,6]). A comparison of the logistic growth function
of (1) and the function representing the Allee effect in equation (2) is depicted in Figure
1.
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Figure 1: Comparison of the logistic growth function of (1) and the function representing the
Allee effect in equation (2), when r = 2 and K = 5. The blue curve is the logistic growth curve.
The magenta curve and the red curve are the graphs of the function on the right hand side of
(2) when K0 = 2 and K0 = 3, respectively.

Let us now turn our attention from the individual growth of the prey to the interaction
of the prey and its predator. The function that describes the number of prey consumed
per predator per unit time for given quantities of prey and predator is known as the
functional response or trophic function. Depending upon the behaviour of populations,
more suitable functional responses have been developed as a quantification of the relative
responsiveness of the predation rate to change in prey density at various populations of
prey. In this connection, Holling family of functional responses are the most focused [24,
25]. The Holling type-I functional response (or the Lotka-Volterra functional response) is
given by F (X) = αX , where X(T ) is the prey density at time T and α > 0 is a constant.
In particular, the Holling type-II functional response has become extremely popular,
and served as basis for a very large literature in predator-prey theory (see [30, 32, 35],
and references therein). The type-II functional response includes the fact that a single
individual can feed only until the stomach is not full, and so a saturation function would
be better to describe the intake of food. This is similar to the concept of the law of
diminishing returns borrowed from operations research, via a hyperbola rising up to an
asymptotic value. In other words, the functional response would be of the following form

F (X) =
αX

1 + ThαX
, (3)
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where X(T ) is the prey density at time T , α is the search efficiency of the predator for
prey, Th is the average handling time for each prey.

If a population is vulnerable to the Allee effect, there might be an important role of
herd behaviour of the population. Very recently, Angulo et al. [7] have suggested that
group behaviour diminishes extinction risks caused by the Allee effects. Now, when a
population lives forming groups, then all members of a group do not interact at a time.
There are many reasons for this herd behaviour, such as searching for food resources,
defending the predators, etc. As a consequence, it is necessary to search for suitable form
of functional response to describe this social behaviour. Only a few works have so far
tried to enlighten this area. These works demonstrated an ingenious idea that suitable
powers of the state variables can account for the social behaviour of the populations. For
example, to explore the consequence of forming spatial group of fixed shape by predators,
Cosner et al. [17] introduced the idea that the square root of the predator variable is to be
used in the function describing the encounter rate in two-dimensional systems. Similarly,
for three-dimensional systems, the two-third power of the predator in the encounter rate
would better describe such group behaviour by predators. Unfortunately, such an idea
has not been used by the researchers for about a decade. The work of Chattopadhyay
et al. [13] may be regarded as a strong recognition of this concept. Then came the most
innovative works of Ajraldi et al. [1] and Braza [12], which gave such modelling a new
dimension. We recall their central ideas in the next paragraph.

Let X be the density of a population that gathers in herds, and suppose that herd
occupies an area A. The number of individuals staying at outermost positions in the
herd is proportional to the length of the perimeter of the patch where the herd is located.
Clearly, its length is proportional to

√
A. Since X is distributed over a two-dimensional

domain,
√
X would therefore count the individuals at the edge of the patch. Thus, when

attack of a predator on this population is to be modelled, the functional response should
be in terms of square root of prey population. This is the main idea of Ajraldi et al. [1].
Braza [12] has placed a strong emphasis on this concept, and he has introduced a new
functional response, where the prey density in (3) is replaced by its square root. That
is, the functional response takes the form

F1(X) =
α
√
X

1 + Thα
√
X

. (4)

It is already mentioned that if a population is susceptible to the Allee effect, then
living in herds might be beneficial for it [7]. Now, if there is a predator, such behaviour
plays a key role so far as the vigilance and predation risk is concerned [31]. The dynam-
ics of predator-prey systems with herd behaviour of the prey has got the attention of
theoretical ecologists very recently, but in all the cases it is assumed that the prey has
a logistic growth (see [11] and references therein). It would be of utmost importance to
consider predator-prey systems with herd behaviour and the Allee effect. There should
be no denying that such considerations would be very interesting from both theoretical
and practical point of view. The dynamics of such models has so far not been studied in
literature. Our endeavour might accomplish such a necessity.

The rest of the paper is organized as follows. In Section 2, we present the mathemat-
ical model with basic considerations. Boundedness and positivity of the solutions of the
model are established in Section 3. Some results on the extinction of prey and predator
are derived in Section 4. Section 5 deals with all the possible equilibrium points of the
model and their stability analysis. A criterion for Hopf bifurcation is derived in Section
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6. To illustrate our analytical findings, computer simulations of variety of solutions of
the system are performed; and the results are presented in Section 7. Section 8 contains
the general discussion of the paper and biological significance of our analytical findings.

2 The Mathematical Model

At time T, let X(T ) denote the density of the prey, and Y (T ) denote the density of the
predator. We assume that the preys live in herds. We also consider a multiplicative
Allee effect in prey population growth. These considerations motivate us to introduce
the following predator-prey system within the framework of the following set of nonlinear
ordinary differential equations:

dX

dT
= rX

(

1− X

K

)(

X

K0
− 1

)

− α
√
XY

1 + Thα
√
X

, X(0) > 0,

dY

dT
= −δY +

βα
√
XY

1 + Thα
√
X

, Y (0) > 0.

(5)

The parameter r is the intrinsic growth rate of the prey, K is the carring capacity of the
prey, δ represents the death rate of the predator. We assume a strong Allee effect on the
prey. The parameterK0 with 0 < K0 << K is the prey population Allee threshold in the
absence of predators. As the prey exhibits herd behaviour, here we have used the modified
functional response (4) (suggested by Braza [12]) to represent the interaction between
prey and predator. So α, Th, β stand for the search efficiency of the predator for prey,
the average handling time for each prey, and the biomass conversion rate, respectively.
It is an obvious assumption that all the parameters are positive.

To reduce the number of parameters in the system (5), we use the following scaling

x =
X

K
, y =

Y

K
, and t = r

K

K0
T.

Then the system (5) takes the following form (after some simplifications)

dx

dt
= x(1 − x)(x−m)− b

√
xy

1 + a
√
x
, x(0) > 0,

dy

dt
= −dy +

c
√
xy

1 + a
√
x
, y(0) > 0,

(6)

where

m =
K0

K
, a = Thα

√
K, b =

αK0

r
√
K

, c =
βαK0

r
√
K

, d =
δK0

rK
.

3 Positivity and Boundedness

Positivity and boundedness of a model guarantee that the model is biologically well
behaved. For positivity of the system (6), we have the following theorem.

Theorem 3.1 All solutions of the system (6) that start in R
2
+ remain positive for-

ever.

The proof is simple and therefore it is omitted. The following theorem ensures the
boundedness of the system (6).
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Theorem 3.2 All solutions of the system (6) that start in R
2
+ are uniformly bounded.

Proof. Let (x(t), y(t)) be any solution of the system (6). We consider two possible
cases separately.

Case-I. Let x(0) ≤ 1. We claim that x(t) ≤ 1 for all t ≥ 0.
If possible, assume that our claim is not true. Then it is possible to find two positive
real numbers t′ and t′′ such that x(t′) = 1 and x(t) > 1 for all t ∈ (t′, t′′).
Now, for all t ∈ (t′, t′′), we have from the first equation of(6)

x(t) = x(0) exp

(
∫ t

0

φ(x(s), y(s))ds

)

,

where φ(x(t), y(t)) = (1− x(t))(x(t) −m)− b y(t)√
x(t)(1+a

√
x(t))

.

This implies that

x(t) = x(0)

[

exp

(

∫ t′

0

φ(x(s), y(s))ds

)]

[

exp

(
∫ t

t′
φ(x(s), y(s))ds

)]

= x(t′) exp

(
∫ t

t′
φ(x(s), y(s))ds

)

, for all t ∈ (t′, t′′).

Since m < 1, we have φ(x(t), y(t)) < 0 for all t ∈ (t′, t′′). Consequently, we have

x(t) < x(t′), where x(t′) = 1.

This is contrary to the assumption that x(t) > 1 for all t ∈ (t′, t′′). Thus our claim is
true.

Case-II. Let x(0) > 1. We claim that lim supt→∞ x(t) ≤ 1.
If possible, assume that this claim is false. Then x(t) > 1 for all t > 0. So φ(x(t), y(t)) < 0
(where φ has the same expression as in Case-I); and consequently, we have from the first
equation of(6) that

x(t) = x(0) exp

(
∫ t

0

φ(x(s), y(s))ds

)

< x(0).

Also from the first equation of (6), we obtain

dx

dt
< (x(0)−m)x(1 − x), where x(0)−m > 0.

This implies that lim supt→∞ x(t) ≤ 1, which is contradictory to our assumption. There-
fore our claim is true.

From the above two cases, we have lim supt→∞ x(t) ≤ 1.

Let W = cx+ by. Then, for large t, we have

dW

dt
= cx(1 − x)(x −m)− bdy

= cx{(1 +m)x−m− x2} − bdy
≤ c(1 +m)x− bdy
≤ 2c(1 +m)− λW, where λ = min{(1 +m), d}.
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Therefore,
dW

dt
+ λW ≤ 2c(1 +m).

Applying the theory of differential inequalities, we obtain

0 ≤ W (x, y) ≤ 2c(1 +m)

λ
+

W (x(0), y(0))

eλt
.

and for t → ∞,

0 ≤ W ≤ 2c(1 +m)

λ
.

Thus, all the solutions of (2.2) enter into the region

B =

{

(x, y) : 0 ≤ W ≤ 2c(1 +m)

λ
+ ǫ, for any ǫ > 0

}

.

Hence the theorem is proved. ✷

4 Extinction Scenarios

In this section, we find some conditions for extinction of the prey or predator. Here we
use the symbols x and y to represent lim supt→∞ x(t) and lim inft→∞ y(t), respectively.
We frequently use the fact that x ≤ 1, which is proved in Theorem 3.2.

The first two theorems of this section are on the extinction of the prey species. It is
quite obvious that if, after certain time, the prey population density lies below the Allee
threshold (moreover there is attack of predator), then it is really impossible for the prey
to survive. This fact is represented in mathematical terms in the following theorem.

Theorem 4.1 If x < m, then limt→∞ x(t) = 0.

Proof. If possible, let limt→∞ x(t) = µ > 0. The definition of x implies that for any
ǫ satisfying 0 < ǫ < m− x, there exists tǫ > 0 such that x(t) < x+ ǫ for t > tǫ.
Then, for t > tǫ, we have from the first equation of (6) that

x(t) = x(0) exp

[

∫ t

0

{

(1 − x(s))(x(s) −m)− b
√

x(s)y(s)

x(s)(1 + a
√

x(s))

)

ds

]

< x(0) exp

[
∫ t

0

(x+ ǫ−m) ds

]

< x(0) exp{−(m− x− ǫ)t} → 0 as t → ∞,

which is a contradiction. This proves the theorem. ✷

If the condition of the above theorem is satisfied, then the predator has no vital role
in leading the prey to extinction, because the Allee effect is enough to do this (of course,
the predator might expedite the process of extinction of the prey). The following theorem
shows that the predator might also play a key role to prompt the prey to die out.

Theorem 4.2 If y > 2
√
2

b
(1 + a

√
2)(1−m), then limt→∞ x(t) = 0.
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Proof. If possible, let limt→∞ x(t) = µ > 0. Since x ≤ 1, for any 0 < ǫ < 1 − m,
there exists tǫ > 0 such that x(t) < 1 + ǫ for t > tǫ.

From the definition of y, it follows that, for any 0 < ǫ′ < y− 2
√
2

b
(1+ a

√
2)(2−m), there

exists tǫ′ > 0 such that y(t) > y − ǫ′ for t > tǫ′ .
Then, for t > max{tǫ, tǫ′}, we have from the first equation of (6) that

dx

dt
< x(1 + ǫ−m)− b

√
xy

1 + a
√
1 + ǫ

,

< x(1 + ǫ−m)− bxy√
1 + ǫ(1 + a

√
1 + ǫ)

, as x <
√
1 + ǫ

√
x,

< x

{

2(1−m)−
b(y − ǫ′)

√
2(1 + a

√
2)

}

,

< − bx√
2(1 + a

√
2)

{

y − ǫ′ − 2
√
2

b
(1 + a

√
2)(1 −m)

}

< 0,

which implies that limt→∞ x(t) = 0, a contradiction.
Hence the theorem is established. ✷

A very simple criterion for the extinction of the predator is given in the following
theorem.

Theorem 4.3 If d > c, then limt→∞ y(t) = 0.

Proof. Since x ≤ 1, for any 0 < ǫ < d2

c2
− 1, there exists tǫ > 0 such that x(t) < 1+ ǫ

for t > tǫ. For t > tǫ, we have from the second equation of (6) that

dy

dt
= y

(

−d+
c
√
x

1 + a
√
x

)

< y
(

−d+ c
√
x
)

< y
(

−d+ c
√
1 + ǫ

)

< −cy

(

d

c
−
√
1 + ǫ

)

< 0.

Therefore, limt→∞ y(t) = 0. ✷

Remark 4.1 We notice that if the predator is aggressive (characterized by the high
value of b) or the Allee effect is very strong (m ≈ 1), then the condition of Theorem
4.2 might be satisfied automatically. On the other hand, if the maximal benifit of the
predator (in interaction with the prey) fails to overcome its loss due to death, then the
predator will be ultimately washed out from the system.

5 Equilibria and Their Stability

In this section, we find the equilibrium points of the system (6) and study their stability.
The nullclines are shown in Figure 2. The following lemma gives the equilibrium points
with the conditions of their existence.

Lemma 5.1 The trivial equilibrium E0(0, 0) of the system (6) always exists. There
are two axial (predator-free) equilibrium points E1(1, 0) and E2(m, 0), each of which also
exists unconditionally. The interior or coexistence equilibrium E∗(x∗, y∗) exists if and
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Figure 2: Nullclines of the system (6) for a = 0.89, b = 0.19, c = 0.21, d = 0.1, m = 0.17.

only if (c − ad)
√
m < d < (c − ad). When E∗(x∗, y∗) exists, the expressions for x∗ and

y∗ are given by

x∗ =
d2

(c− ad)2
, y∗ =

cx∗(1− x∗)(x∗ −m)

bd
.

It is not possible to linearize the system (6) about the trivial equilibrium. Therefore,
local stability of E0(0, 0) cannot be studied. However, results of the previous section
could provide some results on global stability of E0(0, 0). For example, if the conditions
of Theorem 4.1 and Theorem 4.3 are satisfied simultaneously, then E0(0, 0) is globally
stable. Also E0(0, 0) is globally stable if the conditions of Theorem 4.2 and Theorem 4.3
are satisfied. We are not interested to restate those results here.

The Jacobian matrix J(E1) at E1(1, 0) is given by

J(E1) =

[

m− 1 − b
1+a

0 −d+ c
1+a

]

.

Clearly, the eigenvalues of J(E1) are m − 1 and −d + c
1+a

. Since m < 1, the first
eigenvalue m− 1 is always negative. The second one will also be negative if and only if
c < d(1 + a). Thus we have the following theorem on stability of E1(1, 0).

Theorem 5.1 The equilibrium E1(1, 0) is locally asymptotically stable if and only if
c < d(1 + a).

Remark 5.1 We notice that the existence of E∗ destabilizes E1.

The Jacobian matrix J(E2) at E2(m, 0) is given by

J(E2) =

[

m(1 −m) − b
√
m

1+a
√
m

0 −d+ c
√
m

1+a
√
m

]

.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (1) (2016) 86–101 95

The eigenvalues of J(E2) are m(1−m) and −d+ c
√
m

1+a
√
m
. The first eigenvalue is always

positive, as 0 < m < 1. The second one will be negative if and only if c
√
m < d(1+a

√
m).

Therefore, we have the following theorem.

Theorem 5.2 The equilibrium E2(m, 0) is always unstable. It is a saddle point if
and only if c

√
m < d(1 + a

√
m).

Finally, we consider the stability issue of the most important equilibrium E∗(x∗, y∗).
We have the following Jacobian matrix at E∗(x∗, y∗):

J(E∗) =

[

a11 a12
a21 0

]

,

where

a11 = (1− 2x∗)(x∗ −m) + x∗(1− x∗)− by∗

2
√
x∗(1 + a

√
x∗)2

,

a12 = − b
√
x∗

1 + a
√
x∗ , a21 =

cy∗

2
√
x∗(1 + a

√
x∗)2

.

The characteristic equation of J(E3) is

λ2 + Pλ+Q = 0,

where P = −tr J(E∗) = −a11, Q = det J(E∗) = −a12a21 > 0. A little algebraic
manipulation yields

P =
ABm− d2{2c(A− d2) +B}

2cA2
,

where A = (c − ad)2 and B = (c + ad)A − (3c + ad)d2. Then we have the following
theorem guaranteeing the stability of E∗(x∗, y∗).

Theorem 5.3 The necessary and sufficient condition for local asymptotic stability of
the interior equilibrium E∗(x∗, y∗) is that ∆ = ABm− d2{2c(A− d2) +B} > 0.

It would be interesting if we can establish some sort of global behaviour of the interior
equilibrium. Let Ω = {(x, y) ∈ R

2 : 0 < x < 1, y > 0}. Clearly, E∗(x∗, y∗) ∈ Ω. Then
we have the following theorem.

Theorem 5.4 If E∗(x∗, y∗) is locally asymptotically stable with d > c+m+ 2, then
E∗ attracts all solutions of the system (6) lying in Ω.

Proof. Let us write the first equation of the system (6) as dx
dt

= P (x, y), and the

second equation as dy
dt

= Q(x, y). Then, for all (x, y) ∈ Ω, we notice that

∂P

∂x
+

∂Q

∂y
= (1− 2x)(x −m) + x(1 − x)− by

2
√
x(1 + a

√
x)2

− d+
c
√
x

1 + a
√
x

≤ 2x+ 2mx−m− d+ c
√
x

≤ 2 +m− d+ c < 0.

Therefore, by Bendixson’s criterion, there is no periodic orbit in Ω. Hence the theorem
follows from the Poincaré-Bendixson theorem. ✷
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6 Hopf Bifurcation

In this section, we provide conditions for the occurrence of a simple Hopf bifurcation
near the interior equilibrium E∗(x∗, y∗). We use the Hopf bifurcation theorem [8,23,32]
for this purpose.

Theorem 6.1 If the equilibrium point E∗(x∗, y∗) exists, then Hopf bifurcation occurs

at m = m∗ = d2{2c(A−d2)+B}
AB

, provided m∗ is positive.

Proof. We notice that
(i) [tr J(E∗)]m=m∗ = 0,
(ii) [detJ(E∗)]m=m∗ > 0,
(iii) when m = m∗ the characteristic equation is λ2 + det J(E∗) = 0, whose roots are
purely imaginary,
(iv) [(d/dm)(tr J(E∗))]m=m∗ = − B

2cA 6= 0.

Hence all the conditions of the Hopf-bifurcation theorem are satisfied, and the theorem
follows. ✷

7 Numerical Simulation

In this section, we present computer simulations of some solutions of the system (6).
These simulations are performed to validate the analytical findings of the last two sec-
tions.

First, we take the parameters of the system (6) as m = 0.2, b = 0.19, a = 0.89, d =
0.1 and c = 0.17. Then c < d(1 + a), and consequently by Theorem 5.1, E1(1, 0) is
locally asymptotically stable. Figure 3 illustrates this. Clearly, x approaches 1 and y
dies out in finite time.

Next we consider the stability of the interior equilibrium. We take the parameter val-
ues as m = 0.17, b = 0.19, a = 0.89, d = 0.1 and c = 0.21. Then ∆ = 0.0000016314> 0.
Therefore, by Theorem 5.3, the interior equilibrium point E∗(x∗, y∗) = (0.6830, 1.2276)
is locally asymptotically stable. The corresponding phase portrait for different choices of
(x(0), y(0)) is depicted in Figure 4. Clearly the trajectories are stable spirals converging
to E∗. Figure 5 shows the behaviour of x and y with time, when (x(0), y(0)) = (0.85, 1.2),
and it is evident that (x, y) approaches to (x∗, y∗) in finite time.

If we gradually increase the value of m, keeping other parameters fixed, then following
Theorem 6.1, we have a critical value m∗ = 0.2096 such that E∗ loses its stability as m
passes through m∗. For m = 0.22 > m∗, we verify that E∗(0.6830, 1.1080) is unstable
(∆ = −0.0000004274 < 0) and there is a periodic orbit near E∗ (see Figure 6). The
oscillations of x and y in time are shown in Figure 7.

A bifurcation diagram is shown in Figure 8. As the parameter m passes through the
bifurcation value m∗ = 0.2096, there is a change in stability behaviour.

8 Concluding Remarks

Recently it has been suggested by researchers that herd behaviour of populations could
act as a buffer against population extinction due to the Allee effect (see [7]). Modelling
of the Allee effect has been done by many researchers. Nowadays there has been a
growing concern about modelling of herd behaviour of populations. In this paper, we
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Figure 3: Behaviour of the system (6) with time when m = 0.2, b = 0.19, a = 0.89, d = 0.1
and c = 0.17.
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Figure 4: Here m = 0.17, b = 0.19, a = 0.89, d = 0.1 and c = 0.21. Phase portrait
of the system (6) for different choices of x(0) and y(0) showing stable spirals converging to
E∗(0.6830, 1.2276).

have considered a predator-prey model where the prey shows herd behaviour and also
susceptible to the Allee effect. The number of parameters of the model has been reduced
by suitable scaling. Then the dynamical behaviours of the resulting model (6) is studied.
It is shown (in Theorem 3.1 and Theorem 3.2) that the solutions of the system (6) remain
non-negative forever, and they are uniformly bounded. These, in turn, imply that the
system is biologically well-behaved. We have derived some results on extinction of prey
and predator. It is seen that if there is a very strong the Allee effect, then it is almost
impossible for the prey to survive. Also, an aggressive predator might cause extinction
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Figure 5: Here the values of the parameters are as in Figure 4. When (x(0), y(0)) = (0.85, 1.2),
both the populations converge to their equilibrium-state values in finite time. The blue curve
represents x and the red one represents y.
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Figure 6: Here all the parameters are same as in Figure 4 except m = 0.22 > m∗. Phase
portrait of the system (6) showing a periodic orbit near E∗(0.6830, 1.1080).

of the prey, and this ultimately backfires (because the predator dies out in starvation,
which is clear from the second equation of (6)). It is also established that if the maximal
benefit of the predator (in interaction with the prey) fails to overcome its loss due to
death, then the predator would ultimately be washed out.

It has long been recognized that most of the studies of continuous time deterministic
models reveal two basic patterns: approach to an equilibrium or to a limit cycle. The
basic rationale behind such type of analysis is perhaps that these two patterns are very
common in many predator-prey systems we observe in nature. From this viewpoint, we
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Figure 7: Here all the parameters are same as in Figure 6. It shows oscillations of the x and y

in time. The blue curve represents x and the red one represents y.
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Figure 8: A bifurcation diagram withm as bifurcation parameter, when b = 0.19, a = 0.89, d =
0.1 and c = 0.21. The blue curve depicts stable behavior and the magenta curve depict unstable
behavior.

have presented the stability analysis of the equilibrium points, and bifurcation analysis of
the most important interior equilibrium point. The criterion for existence of the interior
equilibrium suggests that an aggressive predator with moderate death rate might give
a guarantee for the coexistence equilibrium to be feasible. Also, the existence of the
interior equilibrium destabilizes E1. The Allee effect has a negative effect on the fitness
of the predator (see Figure 8). Further, the bifurcation analysis presented here shows
that the Allee effect could have a regulatory impact on the whole system.
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