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Formation et de Recherches en Sciences Exactes et Appliquées, Département de
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Abstract: We study a nonlinear elliptic problem with homogeneous Neumann
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1 Introduction and Main Results

Our aim is to study the existence and uniqueness of a solution for nonlinear homogeneous
Neumann boundary value problem of the form

N(β, µ)





−∇ · a(x,∇u) + β(u) ∋ µ in Ω,

a(x,∇u).η = 0 on ∂Ω,

where η is the unit outward normal vector on ∂Ω, β is a maximal monotone graph on R

such that 0 ∈ β(0), a is a Leray-Lions operator, µ is a diffuse measure such that µ = µ⌊Ω
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and Ω ⊂ R
N is a smooth open bounded domain (N ≥ 1). We set dom(β) = [m,M ] ⊂ R

with m ≤ 0 ≤M .
Recall that a Leray-Lions operator which involves variable exponents is a

Carathéodory function a(x, ξ) : Ω × R
N −→ R

N (i.e. a(x, ξ) is continuous in ξ for
a.e. x ∈ Ω and measurable in x for every ξ ∈ R

N ) such that:
• There exists a positive constant C1 such that

|a(x, ξ)| ≤ C1(j(x) + |ξ|p(x)−1) (1)

for almost every x ∈ Ω and for every ξ ∈ R
N where j is a nonnegative function in

Lp′(.)(Ω), with
1

p(x)
+

1

p′(x)
= 1.

• The following inequalities hold

(a(x, ξ)− a(x, η)).(ξ − η) > 0 (2)

for almost every x ∈ Ω and for every ξ, η ∈ R
N , with ξ 6= η, and there exists C > 0 such

that
1

C
|ξ|p(x) ≤ a(x, ξ).ξ, (3)

for almost every x ∈ Ω, and for every ξ ∈ R
N .

In this paper, we make the following assumption on the variable exponent:

p(.) : Ω → R is a continuous function such that 1 < p− ≤ p+ < +∞, (4)

where p− := ess inf
x∈Ω

p(x) and p+ := ess sup
x∈Ω

p(x).

We denote by LN the N -dimensional Lebesgue measure of R
N and by Mb(X)

the space of bounded Radon measure in X , equipped with its standard norm
||.||Mb(X). Given ν ∈ Mb(X), we say that ν is diffuse with respect to the ca-

pacity W 1,p(.)(X)(p(.)−capacity for short) if ν(B) = 0 for every set B such that
Capp(.)(B,X) = 0, where the Sobolev p(.)−capacity of B is defined by

Capp(.)(B,X) = inf
u∈Sp(.)(B)

∫

X

(
|u|p(x) + |∇u|p(x)

)
dx,

with

Sp(.)(B) = {u ∈ W
1,p(.)
0 (X) : u ≥ 1 in an open set containing B and u ≥ 0 in X}.

In the case Sp(.)(B) = ∅, we set Capp(.)(B,X) = +∞.
The set of bounded Radon diffuse measure in the variable exponent setting is denoted

by M
p(.)
b (X).

Elliptic problems with measures data in the context of constant exponent was studied
by many authors (see [4–6,10,12]). The multivalued case for Dirichlet boundary condition
with constant exponent was studied by some authors among whose papers one can cite
the most recent one by Igbida et als [14]. The study of multivalued elliptic problems
with measure data in the context of variable exponent was carried out for the first time
by Nyanquini et als [16] under homogeneous Dirichlet Boundary condition. In [16], the
authors first proved a decomposition theorem for the measure data (more precisely, as
a sum of a function in L1(Ω) and of a measure in W−1,p′(.)(Ω)) and used it to prove,
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following [14], a result on existence and uniqueness of entropy solution of the problem
considered.

In this paper, we consider Neumann homogeneous boundary condition. Since the
boundary condition is the Neumann condition, we cannot work with the common space

W
1,p(.)
0 (Ω) in which, we can use the Poincaré inequality but also, when one uses the

integration by parts formula, the term which appears at the boundary due to the part
of the measure in W−1,p′(.)(Ω), vanishes. We have to work in the space W 1,p(.)(Ω). The
first main difficulty which appears in this case is that for the proof of some a priori
estimates, the famous Poincaré inequality doesn’t apply, and neither do the Poincaré-
Wirtinger inequality and the Poincaré-Sobolev inequality (since we have homogeneous
Neumann condition). A second main difficulty is that, when one uses the integration
by parts formula in the Yosida approximated problem (see problem N(βǫ, µǫ) below),
a term which cannot vanish appears at the boundary, for the part of the measure data
which is in W−1,p′(.)(Ω). In order to treat this difficulty, we consider a smooth domain

Ω in order to work with the space W
1,p̃(.)
0 (UΩ), where p̃(.) : UΩ → (1,∞) is continuous

such that p̃(x) = p(x) for all x ∈ Ω, and to go back later to the space W 1,p(.)(Ω). More
precisely, Ω is assumed to be a bounded domain in R

N with a boundary ∂Ω of class C1.
Then, Ω is an extension domain (see [8]), so we can fix an open bounded subset UΩ of
R

N such that Ω ⊂ UΩ, and there exists a bounded linear operator

E :W 1,p(.)(Ω) →W
1,p̃(.)
0 (UΩ),

for which
(i) E(u) = u a.e. in Ω for each u ∈W 1,p(.)(Ω),
(ii) ‖E(u)‖

W
1,p̃(.)
0 (UΩ)

≤ C‖u‖W 1,p(.)(Ω), where C is a constant depending only on Ω.

We define

M
p(.)
b (Ω) := {µ ∈ M

p̃(.)
b (UΩ) : µ is concentrated on Ω}.

This definition is independent of the open set UΩ. Note that for u ∈ W 1,p(.)(Ω)∩L∞(Ω)

and µ ∈ M
p(.)
b (Ω), we have

〈µ,E(u)〉 =

∫

Ω

u dµ.

On the other hand, as µ is diffuse (cf. Theorem 3.1 below), there exist f ∈ L1(UΩ) and
F ∈ (Lp̃′(.)(UΩ))

N such that µ = f− div(F ) in D′(UΩ). Therefore, we can also write

〈µ,E(u)〉 =

∫

UΩ

fE(u) dx+

∫

UΩ

F.∇E(u) dx.

Now, define the following spaces which are similar to that introduced in [1, 3] (see
also [7]). We note

T 1,p(.)(Ω) :=
{
u : Ω −→ R measurable; Tk(u) ∈W 1,p(.)(Ω) for all k > 0

}
.

As in [3], we can prove that for u ∈ T 1,p(.)(Ω), there exists a unique measurable function
w : Ω −→ R such that ∇Tk(u) = wχ{|u|<k} ∀k > 0. This function w will be denoted by
∇u.
We define T

1,p(.)
H (Ω) (see [7]) as the set of functions u ∈ T 1,p(.)(Ω) such that there exists

a sequence (uδ)δ ⊂W 1,p(.)(Ω) satisfying the following conditions:
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(i) uδ −→ u a.e. in Ω as δ → 0.
(ii) ∇Tk(uδ) −→ ∇Tk(u) in L1(Ω) for any k > 0 as δ → 0.
The symbol H in the notation is related to the fact that we consider here homogeneous
Neumann boundary condition.

Our main results are the following theorems.

Theorem 1.1 For any µ ∈ M
p(.)
b (Ω), the problem N(β, µ) has at least one solution

(u,w, ν) in the sense that

(u,w, ν) ∈ W 1,p(.)(Ω)× L1(Ω)×M
p(.)
b (Ω)

such that
(i) u ∈ dom(β) LN − a.e. in Ω,
(ii) w ∈ β(u) LN − a.e. in Ω,
(iii) ν ⊥ LN , ν+ is concentrated on [u =M ], ν− is concentrated on [u = m],
(iv) for any ϕ ∈ W 1,p(.)(Ω) ∩ L∞(Ω),

∫

Ω

a(x,∇u).∇ϕdx +

∫

Ω

wϕdx +

∫

Ω

ϕdν =

∫

Ω

ϕdµ. (5)

The uniqueness of the solution is given in the following theorem.

Theorem 1.2 Let (u1, w1, ν1) and (u2, w2, ν2) be two solutions of N(β, µ).
Then 





u1 − u2 = c a.e. in Ω,
w1 = w2 a.e. in Ω,
ν1 = ν2.

(6)

Moreover,

ν+ ≤ µs ⌊[u =M ] (7)

and

ν− ≤ −µs ⌊[u = m]. (8)

2 Preliminary

As the exponent p(.) appearing in (1) and (3) depends on the variable x, we must work
with Lebesgue and Sobolev spaces with variable exponents. We define the Lebesgue
space with variable exponent Lp(.)(Ω) as the set of all measurable function u : Ω −→ R

for which the convex modular

ρp(.)(u) :=

∫

Ω

|u|p(x) dx

is finite. If the exponent is bounded, i.e., if p+ < +∞, then the expression

|u|p(.) := inf {λ > 0 : ρp(.)(u/λ) ≤ 1}

defines a norm in Lp(.)(Ω), called the Luxembourg norm. The space (Lp(.)(Ω), |.|p(.)) is

a separable Banach space. Moreover, if 1 < p− ≤ p+ < +∞, then Lp(.)(Ω) is uniformly
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convex, hence reflexive, and its dual space is isomorphic to Lp′(.)(Ω), where
1

p(x)
+

1

p′(x)
=

1. Finally, we have the Hölder type inequality:
∣∣∣
∫

Ω

uv dx
∣∣∣ ≤

( 1

p−
+

1

(p′)−

)
|u|p(.)|v|p′(.), (9)

for all u ∈ Lp(.)(Ω) and v ∈ Lp′(.)(Ω).
Now, let

W 1,p(.)(Ω) :=
{
u ∈ Lp(.)(Ω) : |∇u| ∈ Lp(.)(Ω)

}
,

which is a Banach space equipped with the following norm

||u||1,p(.) = |u|p(.) + |(|∇u|)|p(.).

The space
(
W 1,p(.)(Ω), ||u||1,p(.)

)
is a separable and reflexive Banach space. For the

interested reader, more details about Lebesgue and Sobolev spaces with variable exponent
can be found in [11, 15].

An important role in manipulating the generalized Lebesgue and Sobolev spaces is
played by the modular ρp(.) of the space Lp(.)(Ω). We have the following result (cf. [13]):

Lemma 2.1 If un, u ∈ Lp(.)(Ω) and p+ < +∞, then the following properties hold:
i) |u|p(.) > 1 =⇒ |u|

p−

p(.) ≤ ρp(.)(u) ≤ |u|
p+

p(.);

ii) |u|p(.) < 1 =⇒ |u|
p+

p(.) ≤ ρp(.)(u) ≤ |u|
p−

p(.);

iii) |u|p(.) < 1 (respectively = 1;> 1) ⇐⇒ ρp(.)(u) < 1 (respectively = 1;> 1);
iv) |un|p(.) −→ 0 (respectively −→ +∞) ⇐⇒ ρp(.)(un) −→ 0 (respectively −→ +∞);

v) ρp(.)
(
u/|u|p(.)

)
= 1.

For a measurable function u : Ω → R, we introduce the functional

ρ1,p(.)(u) :=

∫

Ω

|u|p(x) dx+

∫

Ω

|∇u|p(x) dx.

Then, we have the following lemma (see [17, 18]).

Lemma 2.2 If un, u ∈ W 1,p(.)(Ω) and p+ < +∞, then the following properties hold:
(i) ‖u‖1,p(.) > 1 =⇒ ‖u‖

p−

1,p(.) ≤ ρ1,p(.)(u) ≤ ‖u‖
p+

1,p(.);

(ii) ‖u‖1,p(.) < 1 =⇒ ‖u‖
p+

1,p(.) ≤ ρ1,p(.)(u) ≤ ‖u‖
p−

1,p(.);

(iii) ‖u‖1,p(.) < 1 (respectively = 1;> 1) ⇐⇒ ρ1,p(.)(u) < 1 (respectively = 1;> 1);
(iv) ‖un‖1,p(.) −→ 0 (respectively −→ +∞) ⇐⇒ ρ1,p(.)(un) −→ 0 (respectively −→ +∞).

For any given l, k > 0, we define the function hl by hl(r) = min
(
(l+1− |r|)+, 1

)
and

the truncation function Tk : R → R by Tk(s) = max{−k,min(k, s)}.
For any l0 > 0, we consider a function h0 such that

(i) h0 ∈ C1
c (R), h0(r) ≥ 0, for all r ∈ R,

(ii) h0(r) = 1 if |r| ≤ l0 and h0(r) = 0 if |r| ≥ l0 + 1.
Let γ be a maximal monotone operator defined on R. We recall the definition of the

main section γ0 of γ:

γ0(s) =






the element of minimal absolute value of γ(s), if γ(s) 6= φ,
+∞, if [s,+∞) ∩D(γ) = φ,
−∞, if (−∞, s] ∩D(γ) = φ.
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We write for any u : Ω → R and k ≥ 0, {|u| ≤ k(< k,> k,≥ k,= k)} for the set
{x ∈ Ω/|u(x)| ≤ k(< k,> k,≥ k,= k)}.

To end this section, we give a useful convergence result.

Lemma 2.3 (Lebesgue generalized convergence theorem) Let (fn)n∈N be a sequence
of measurable functions and f be a measurable function such that fn → f a.e. in Ω. Let
(gn)n∈N ⊂ L1(Ω) such that for all n ∈ N, |fn| ≤ gn a.e. in Ω and gn → g in L1(Ω).
Then ∫

Ω

fn dx→

∫

Ω

f dx.

3 Decomposition of a Measure in M
p(.)
b (X)

Let X be an open subset of RN . We have the following result.

Theorem 3.1 Let p(.) : X1 ⊂ X −→ [1,+∞] with 1 < p− ≤ p+ < +∞ be a

continuous function and µ ∈ Mb(X). Then µ ∈ M
p(.)
b (X) if and only if µ ∈ L1(X) +

W−1,p′(.)(X).

Proof. The proof of Theorem 3.1 is carried out in the same way as in [16], Theorem
1.2.

4 Proof of Theorem 1.1

For every ǫ > 0, we consider the Yosida regularisation βǫ of β given by

βǫ =
1

ǫ

(
I − (I + ǫβ)−1

)
.

In accordance to [9], there exists a nonnegative, convex and l.s.c. function j defined
on R, such that β = ∂j. To regularize β, we consider

jǫ(s) = min
r∈R

{ 1

2ǫ
|s− r|2 + j(r)

}
, ∀s ∈ R, ∀ǫ > 0.

According to ( [9], Proposition 2.11) we have
(i) dom(β) ⊂ dom(j) ⊂ dom(j) ⊂ dom(β).

(ii) jǫ(s) =
ǫ

2

∣∣βǫ(s)
∣∣2 + j(Jǫ) where Jǫ = (I + ǫβ)−1,

(iii) jǫ is convex, Frechet-differentiable and βǫ = ∂jǫ,
(iv) jǫ ↑ j as ǫ ↓ 0.

Note that βǫ is a nondecreasing and Lipschitz-continuous function.

Since µ ∈ M
p̃(.)
b (UΩ), recall that ( cf. Theorem 3.1) µ = f − div(F ) in D′(UΩ) with

f ∈ L1(UΩ) and F ∈ (Lp̃′(.)(UΩ))
N where UΩ is the open bounded subset of RN which

extends Ω via the operator E.
We regularize µ as follows: ∀ǫ > 0, ∀x ∈ UΩ we define

fǫ(x) = T 1
ǫ
(f(x))χΩ(x).

Let (Fǫ)ǫ>1 ⊂ C∞
0 (UΩ) be a sequence such that Fǫ → F strongly in (Lp̃′(.)(UΩ))

N .
For any ǫ > 0, we set F̃ǫ = χΩFǫ and µǫ = fǫ − div(F̃ǫ). For any ǫ > 0, one has
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µǫ ∈ M
p(.)
b (Ω), µǫ ⇀ µ in Mb(UΩ) and µǫ ∈ L∞(Ω). Furthermore, for any k > 0 and

any ξ ∈ T 1,p(.)(Ω), ∣∣∣∣
∫

Ω

Tk(ξ) dµǫ

∣∣∣∣ ≤ kC(µ,Ω).

Lemma 4.1 The Yosida regularisation βǫ is a surjective operator.

Proof. Since dom(β) ⊂ [m,M ], we have ∀ r ∈ R, Jǫ(r) =
(
I + ǫβ

)−1
(r) ∈ [m,M ].

Consequently

lim
r→+∞

βǫ(r) = lim
r→+∞

r − Jǫ(r)

ǫ
= +∞

and

lim
r→−∞

βǫ(r) = lim
r→−∞

r − Jǫ(r)

ǫ
= −∞.

As βǫ is a maximal monotone graph, according to ( [9], Corollaire 2.3), we conclude
that βǫ is surjective.

Now, we consider the following approximating scheme problem

N(βǫ, µǫ)





−div a(x,∇uǫ) + βǫ(uǫ) = µǫ in Ω,

a(x,∇uǫ).η = 0 on ∂Ω.

We have the following results (see [16]).

Proposition 4.1

(i) There exists a unique weak solution uǫ for problem N(βǫ, µǫ) in the sense that uǫ ∈
W 1,p(.)(Ω), βǫ(uǫ) ∈ L∞(Ω) and ∀ϕ ∈ W 1,p(.)(Ω),

∫

Ω

a(x,∇uǫ).∇ϕdx +

∫

Ω

βǫ
(
uǫ
)
ϕdx =

∫

Ω

ϕdµǫ. (10)

(ii) Moreover, for any k > 0,

∫

Ω

|∇Tk(uǫ)|
p(x)dx ≤ kC(µ,Ω) (11)

and ∫

Ω

βǫ(uǫ)Tk(uǫ)dx ≤ kC(µ,Ω), (12)

where C(µ,Ω) is a positive constant.

Proposition 4.2 The sequences
(
βǫ(uǫ)

)

ǫ>0
and

(
βǫ(Tk(uǫ))

)

ǫ>0
are uniformly

bounded in L1(Ω).

Proposition 4.3 Let uǫ be a solution of N(βǫ, µǫ), then

meas{|uǫ| > k} ≤
C(µ,Ω)

min
(
βǫ(k),

∣∣βǫ(−k)
∣∣
) for k > 0 large enough (13)
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and

meas{|∇uǫ| > k} ≤
(k + 1)C

kp−

+
C(µ,Ω)

min
(
βǫ(k),

∣∣βǫ(−k)
∣∣
) for k > 0 large enough, (14)

where C is a positive constant.

Proposition 4.4 For all k > 0, Tk(uǫ) → Tk(u) in L
p−(Ω) and a.e. in Ω, as ǫ→ 0.

Moreover, u : Ω → R is such that u ∈ dom(β) a.e. in Ω and uǫ → u in measure and a.e.
in Ω, as ǫ→ 0.

Proposition 4.5 For any k > 0, as ǫ tends to 0, we have

(i) a(x,∇Tk(uǫ))⇀ a(x,∇Tk(u)) weakly in
(
Lp′(.)(Ω)

)N

.

(ii) ∇Tk(uǫ) −→ ∇Tk(u) a.e. in Ω.
(iii) a(x,∇Tk(uǫ)).∇Tk(uǫ) −→ a(x,∇Tk(u)).∇Tk(u) a.e. in Ω and strongly in L1(Ω).

(iv) ∇Tk(uǫ) −→ ∇Tk(u) strongly in
(
Lp(.)(Ω)

)N
.

Proof. The proof can be carried out in the same way as the proof of Proposition 4.5
in [16]. The following lemmas are useful for the subsequent presentation.

Lemma 4.2 For any h ∈ C1
c (R) and ϕ ∈ W 1,p(.)(Ω) ∩ L∞(Ω),

∇[h(uǫ)ϕ] −→ ∇[h(u)ϕ] strongly in (Lp(.)(Ω))N as ǫ→ 0.

Proof. For any h ∈ C1
c (R) and ϕ ∈ W 1,p(.)(Ω) ∩ L∞(Ω), we have

∇[h(uǫ)ϕ]−∇[h(u)ϕ] = (h(uǫ)− h(u))∇ϕ+ h′(uǫ)ϕ[∇uǫ −∇u]
+(h′(uǫ)− h′(u))ϕ∇u := ψǫ

1 + ψǫ
2 + ψǫ

3.
(15)

For the term ψǫ
1, we consider ρp(.)(ψ

ǫ
1) =

∫

Ω

|(h(uǫ)− h(u))∇ϕ|p(x) dx.

Set Θǫ
1(x) = |(h(uǫ) − h(u))∇ϕ|p(x). We have Θǫ

1(x) → 0 a.e. x ∈ Ω as ǫ → 0 and
|Θǫ

1(x)| ≤ C(h, p−, p+)|∇ϕ|
p(x) ∈ L1(Ω). Then, by the Lebesgue dominated convergence

theorem, we get that lim
ǫ→0

ρp(.)(ψ
ǫ
1) = 0. Hence,

‖ψǫ
1‖Lp(.)(Ω) → 0 as ǫ→ 0. (16)

For the term ψǫ
2 we consider ρp(.)(ψ

ǫ
2) =

∫

Ω

|h′(uǫ)ϕ(∇Tl(uǫ) − ∇Tl(u))|
p(x) dx for

some l > 0 such that supp(h) ⊂ [−l, l].
Set Θǫ

2(x) = |h′(uǫ)ϕ(∇Tl(uǫ)−∇Tl(u))|
p(x). We have Θǫ

2(x) → 0 a.e. x ∈ Ω as ǫ→
0 and |Θǫ

2(x)| ≤ C(h, p−, p+, ‖ϕ‖∞)|∇Tl(uǫ) − ∇Tl(u)|
p(x). Since ∇Tl(uǫ) → ∇Tl(u)

strongly in
(
Lp(.)(Ω)

)N
, we get ρp(.)(∇Tl(uǫ)−∇Tl(u)) → 0 as ǫ→ 0, which is equivalent

to, say

lim
ǫ→0

∫

Ω

|∇Tl(uǫ)−∇Tl(u)|
p(x) dx = 0.

Then |∇Tl(uǫ)−∇Tl(u)|
p(.) → 0 strongly in L1(Ω).

By the Lebesgue generalized convergence theorem, one has

lim
ǫ→0

∫

Ω

Θǫ
2(x) dx = lim

ǫ→0
ρp(.)(ψ

ǫ
2) = 0.
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Hence,

‖ψǫ
2‖Lp(.)(Ω) → 0 as ǫ→ 0. (17)

For the term ψǫ
3 we consider ρp(.)(ψ

ǫ
3) =

∫

Ω

|(h′(uǫ)− h′(u))ϕ∇u|p(x) dx.

Set Θǫ
3(x) = |(h′(uǫ)− h′(u))ϕ∇u|p(x). We have Θǫ

3(x) → 0 a.e. x ∈ Ω as ǫ→ 0 and
|Θǫ

3(x)| ≤ C(h, p−, p+, ‖ϕ‖∞)|∇Tl(u)|
p(x) ∈ L1(Ω), with some l > 0 such that supp(h) ⊂

[−l, l]. Then, by the Lebesgue dominated convergence theorem, we get lim
ǫ→0

ρp(.)(ψ
ǫ
3) = 0.

Hence,

‖ψǫ
3‖Lp(.)(Ω) → 0 as ǫ→ 0. (18)

According to (16)-(18), we get
∥∥ψǫ

1 + ψǫ
2 + ψǫ

3

∥∥
Lp(.)(Ω)

→ 0 as ǫ → 0 and the lemma is

proved.

Lemma 4.3 For any h ∈ C1
c (R) and ϕ ∈ W 1,p(.)(Ω) ∩ L∞(Ω),

lim
ǫ→0

∫

Ω

h(uǫ)ϕdµǫ =

∫

Ω

h(u)ϕdµ.

Proof. We have

∫

Ω

h(uǫ)ϕdµǫ =

∫

Ω

E
(
h(uǫ)ϕ

)
dµǫ =

〈
µǫ, E

(
h(uǫ)ϕ

)〉

=

∫

UΩ

fǫE
(
h(uǫ)ϕ

)
dx+

∫

UΩ

F̃ǫ.∇E
(
h(uǫ)ϕ

)
dx

=

∫

UΩ

χΩT 1
ǫ
(f)E

(
h(uǫ)ϕ

)
dx+

∫

UΩ

(χΩFǫ).∇E
(
h(uǫ)ϕ

)
dx

=

∫

Ω

T 1
ǫ
(f)h(uǫ)ϕdx +

∫

UΩ

Fǫ.∇E
(
χΩh(uǫ)ϕ

)
dx. (19)

By the Lebesgue dominated convergence theorem, we have for the first term of the right
hand side of (19),

lim
ǫ→0

∫

Ω

T 1
ǫ
(f)h(uǫ)ϕdx =

∫

Ω

fh(u)ϕdx. (20)

Furthermore, the sequence
(
E
(
χΩh(uǫ)ϕ

))

ǫ>0
is bounded in W

1,p̃(.)
0 (UΩ). Indeed,

(
χΩh(uǫ)ϕ

)
ǫ>0

is bounded in W 1,p(.)(Ω) and we use the inequality

‖E(v)‖
W

1,p̃(.)
0 (UΩ)

≤ C‖v‖W 1,p(.)(Ω), ∀v ∈W 1,p(.)(Ω).

We also have E
(
χΩh(uǫ)ϕ

)
= χΩh(uǫ)ϕ a.e. in UΩ and χΩh(uǫ)ϕ →

χΩh(u)ϕ a.e. in UΩ as ǫ → 0. Hence E
(
χΩh(uǫ)ϕ

)
→ E

(
χΩh(u)ϕ

)
a.e. in UΩ as ǫ → 0.

Then,

∇E
(
χΩh(uǫ)ϕ

)
⇀ ∇E

(
χΩh(u)ϕ

)
in

(
Lp̃(.)(UΩ)

)N
.

Finally, we get for the second term in the right hand side of (19)

lim
ǫ→0

∫

UΩ

Fǫ.∇E
(
χΩh(uǫ)ϕ

)
dx =

∫

UΩ

F.∇E
(
χΩh(u)ϕ

)
dx. (21)
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Using (20) and (21), we get from (19),

lim
ǫ→0

∫

Ω

h(uǫ)ϕdµǫ =

∫

Ω

fh(u)ϕdx+

∫

UΩ

F.∇E
(
χΩh(u)ϕ

)
dx

=

∫

UΩ

fE
(
χΩh(u)ϕ

)
dx+

∫

UΩ

F.∇E
(
χΩh(u)ϕ

)
dx

=
〈
µ,E

(
χΩh(u)ϕ

)〉
=

∫

UΩ

E
(
χΩh(u)ϕ

)
dµ =

∫

Ω

h(u)ϕdµ.

We continue the proof of Theorem 1.1. So we need to pass to the limit in the second
integral of (10). Since, for any k > 0, (hk(uǫ)βǫ(uǫ))ǫ>0 is bounded in L1(Ω), there exists
zk ∈ Mb(Ω), such that

hk(uǫ)βǫ(uǫ)
∗
⇀ zk in Mb(Ω) as ǫ→ 0.

Moreover, for any ϕ ∈ W 1,p(.)(Ω) ∩ L∞(Ω), we have
∫

Ω

ϕ dzk =

∫

Ω

ϕhk(u) dµ−

∫

Ω

a(x,∇u) · ∇(hk(u)ϕ)dx,

which implies that zk ∈ M
p(.)
b (Ω) and, for any k ≤ l, zk = zl on [|Tk(u)| < k].

Let us consider the Radon measure z defined by





z = zk, on [|Tk(u)| < k] for k ∈ N
∗,

z = 0 on
⋂

k∈N∗

[|Tk(u)| = k].
(22)

For any h ∈ C1
c (R), h(u) ∈ L∞(Ω, d|z|) and
∫

Ω

h(u)ϕ dz = −

∫

Ω

a(x,∇u) · ∇(h(u)ϕ)dx +

∫

Ω

h(u)ϕdµ,

for any ϕ ∈ W 1,p(.)(Ω) ∩ L∞(Ω). Indeed, let k0 > 0 be such that supp(h) ⊆ [−k0, k0],
∫

Ω

h(u)ϕ dz =

∫

Ω

h(u)ϕ dzk0 = − lim
ǫ→0

∫

Ω

a(x,∇uǫ) · ∇(h(uǫ)ϕ)dx + lim
ǫ→0

∫

Ω

h(uǫ)ϕdµǫ

= − lim
ǫ→0

∫

Ω

a(x,∇Tk0(uǫ)) · ∇(h(uǫ)ϕ)dx + lim
ǫ→0

∫

Ω

h(uǫ)ϕdµǫ

= −

∫

Ω

a(x,∇u) · ∇(h(u)ϕ)dx + lim
ǫ→0

∫

Ω

h(uǫ)ϕdµǫ

= −

∫

Ω

a(x,∇u) · ∇(h(u)ϕ)dx +

∫

Ω

h(u)ϕdµ.

(23)
Moreover, we have (see [16])

Lemma 4.4 The Radon-Nikodym decomposition of the measure z given by (22) with
respect to LN ,

z = w LN + ν with ν⊥LN , (24)

satisfies the following properties:
(i) w ∈ β(u) LN − a.e. in Ω, w ∈ L1(Ω),

(ii) ν ∈ M
p(.)
b (Ω), ν+ is concentrated on [u =M ] and ν− is concentrated on [u = m].
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To finish the proof of Theorem 1.1, we consider ϕ ∈ W 1,p(.)(Ω) ∩ L∞(Ω) and
h ∈ C1

c (R). Then, we take h(uǫ)ϕ as test function in (10). We get

∫

Ω

a(x,∇uǫ).∇[h(uǫ)ϕ]dx +

∫

Ω

βǫ(uǫ)h(uǫ)ϕdx =

∫

Ω

h(uǫ)ϕdµǫ. (25)

By Lemma 4.3, we have for the term in the right hand side of (25),

lim
ǫ→0

∫

Ω

h(uǫ)ϕdµǫ =

∫

Ω

h(u)ϕdµ.

The first term of (25) can be written as

∫

Ω

a(x,∇uǫ).∇[h(uǫ)ϕ]dx =

∫

Ω

a(x,∇Tl0+1(uǫ)).∇[h0(uǫ)ϕ]dx,

for some l0 > 0 so that, by Proposition 4.5-(i) and Lemma 4.2, we have

lim
ǫ→0

∫

Ω

a(x,∇uǫ).∇[h(uǫ)ϕ]dx = lim
ǫ→0

∫

Ω

a(x,∇Tl0+1(uǫ)).∇[h0(uǫ)ϕ]dx

=

∫

Ω

a(x,∇Tl0+1(u)).∇[h0(u)ϕ]dx

=

∫

Ω

a(x,∇u).∇[h(u)ϕ]dx.

Due to the convergence of Lemma 4.2 and Proposition 4.5-(i) we have from (25)

lim
ǫ→0

∫

Ω

βǫ(uǫ)h(uǫ)ϕdx =

∫

Ω

h(u)ϕdµ−

∫

Ω

a(x,∇u).∇[h(u)ϕ]dx.

=

∫

Ω

h(u)ϕdz =

∫

Ω

h(u)wϕdx +

∫

Ω

h(u)ϕdν.

Letting ǫ go to 0 in (25), we obtain

∫

Ω

a(x,∇u).∇[h(u)ϕ]dx +

∫

Ω

h(u)wϕdx +

∫

Ω

h(u)ϕdν =

∫

Ω

h(u)ϕdµ. (26)

In (26), we take h ∈ C1
c (R) such that [m,M ] ⊂ supp(h) ⊂ [−l, l] and h(s) = 1 for all

s ∈ [m,M ]. As u ∈ dom(β), then h(u) = 1 and it yields that (u,w, ν) is a solution of the
problem N(β, µ). �

5 Proof of Theorem 1.2

Proof. For u1, we choose ϕ = u1 − u2 as test function in (5) to get

∫

Ω

a(x,∇u1).∇(u1 − u2)dx+

∫

Ω

w1(u1 − u2)dx ≤

∫

Ω

(u1 − u2)dµ.

Similarly we get for u2,

∫

Ω

a(x,∇u2).∇(u2 − u1)dx+

∫

Ω

w2(u2 − u1)dx ≤

∫

Ω

(u2 − u1)dµ.
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Adding these two last inequalities yields

∫

Ω

(
a(x,∇u1)− a(x,∇u2)

)
.∇(u1 − u2)dx+

∫

Ω

(w1 − w2) (u1 − u2)dx. (27)

From (27) it yields

∫

Ω

(
a(x,∇u1)− a(x,∇u2)

)
.∇(u1 − u2)dx = 0 (28)

From (28), it follows that there exists a constant c such that u1 − u2 = c a.e. in Ω.
Now, let us see that w1 = w2 a.e. in Ω and ν1 = ν2. Indeed, for any ϕ ∈ D(Ω), taking ϕ
as a test function in (5) for the solutions (u1, w1, ν1) and (u1, w2, ν2), after substraction,
we get ∫

Ω

(w1 − w2)ϕdx +

∫

Ω

ϕd(ν1 − ν2) = 0.

Hence ∫

Ω

w1ϕdx+

∫

Ω

ϕdν1 =

∫

Ω

w2ϕdx+

∫

Ω

ϕdν2.

Therefore

w1L
N + ν1 = w2L

N + ν2.

Since the Radon-Nikodym decomposition of a measure is unique, we get w1 =
w2 a.e. in Ω and ν1 = ν2.

To complete the proof of Theorem 1.2, it remains to show that (7) and (8) hold. To
this aim, let us recall the following result.

Lemma 5.1 Let η ∈ W 1,p(.)(Ω), Z ∈ M
p(.)
b (Ω) and λ ∈ R be such that





η ≤ λ a.e. in Ω (respectively η ≥ λ),

Z = −div a(x,∇η) in D′(Ω).
(29)

Then ∫

[η=λ]

ξdZ ≥ 0
(
respectively

∫

[η=λ]

ξdZ ≤ 0
)
,

for any ξ ∈ C1
c (Ω), ξ ≥ 0.

Proof of Lemma 5.1 The proof of this lemma follows the same steps of [2].
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