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1 Introduction

Higher-order nonlinear differential equations are frequently encountered in mathematical
models of most dynamic processes in electromechanical systems in physics and engineer-
ing. The notions of stability and boundedness of solutions are fundamental in the theory
and application of differential equations. In this way, both concepts lead to the real
world applications. Many results relative to stability, boundedness, square integrability
of solutions to differentiel equations have been obtained. See for instance ( [1]– [42]). In
discussing stability and boundedness of a nonlinear differential system, Lyapunov’s direct
method perhaps is the most effective method. Numerous methods have been proposed
in the literature to derive suitable Lyapunov functions, but finding a proper Lyapunov’s
function in general is a big challenge.

The study of fourth order nonlinear differential equations has attracted the interest
of many researchers. Many results concerning the stability and boundedness of solutions
of fourth order differential equations have been obtained in view of various methods,
especially, Lyapunov’s method, see, the book of Reissig et al. [28] as a survey and the
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papers of Adesina and Ogundare [2], Cartwright [6], Chukwu [9], Abou-El-Ela and
Sadek [1], Ezeilo [12], [14] Ezeilo and Tejumola [15], Harrow [17], Hu [18], Tejumola [30],
Tunç [35], [36], [37], [38], Wu and Xiong [42], Vlček [41] and the references cited therein.

In 1956, Cartwright [6] investigated the asymptotic stability of zero solution of var-
ious linear and nonlinear fourth order differential equations. In [6], she considered the
following differential equations

x′′′′ + a1x
′′′ + a2x

′′ + a3x
′ + f(x) = 0, (1)

x′′′′ + a1x
′′′ + ψ(x′)x′′ + a3x

′ + a4x = 0, (2)

x′′′′ + a1x
′′′ + a2x

′′ + ψ(x)x′ + f(x) = 0. (3)

In [22] and [23], Omeike by using the Cauchy formula for the particular solution of
nonlinear differential equations, has proved that every solution of the equations

x′′′′ + ax′′′ + bx′′ + cx′ + h(x) = p(t), (4)

x′′′′ + ax′′′ + ψ(x′′) + g(x′) + h(x) = p(t), (5)

and its derivatives up to order three are bounded.

In [31], and [39] Tunç established sufficient conditions for the asymptotic stability of
the zero solution of the equations and the boundedness of the following equations

x′′′′ + a1x
′′′ + ψ(x, x′)x′′ + a4x

′ + h(x) = 0, (6)

x′′′′ + a1x
′′′ + ψ(x, x′)x′′ + g(x′) + a4x = 0, (7)

x′′′′ + ax′′′ + ψ(x, x′, x′′) + g(x, x′) + h(x) = p(t). (8)

The solution which is in L2[0,∞) for higher order nonlinear differential equations
was also of great interest, but it should be noted that only a few results are related to
the fourth order nonlinear differential equations. Namely, in 1989, Andres and Vlček [3],
established some sufficient conditions, when all the solutions of (4) are in L2[0,∞).

In this paper, we develop the conditions under which all the solutions of the following
equation (9) are bounded and are square integrable

x′′′′ + a (t)
(

p
(

x(t)
)

x′′(t)
)

′

+b (t)
(

q
(

x(t)
)

x′(t)
)

′

+ c (t) f
(

x(t)
)

x′(t) + d (t)h
(

x(t)
)

= e(t), (9)

where the primes in (9) denote differentiation with respect to t; the functions a, b, c, d, are
continuously differentiable functions. The functions f, h, p, q, and e are continuous func-
tions depending only on the arguments shown. It is also supposed that the derivatives,
p′(x), q′(x), f ′(x) and h′(x) exist and are continuous.

Equation (9) is equivalent to the system


















x′ = y

y′ = z

z′ = w

w′ = −a(t)p (x)w −
(

b(t)q (x)+a(t)θ1

)

z −
(

b(t)θ2+c (t) f (x)
)

y − d (t)h (x) + e(t),

(10)
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such that
θ1 (t) = p′ (x (t))x′ (t) , θ2 (t) = q′ (x (t)) x′ (t) .

The continuity of the functions a, b, c, d, e, p, q, f, p′, q′, f ′ and h guarantees the existence
of the solutions of (9) ( see [11], p. 15). It is assumed that the right hand side of the
system (10) satisfies a Lipschitz condition in x(t), y(t), z(t), and w(t). This assumption
guarantees the uniqueness of solutions of (9) ( [11], p. 15). The present work was
motivated by the papers [3], [23], [31], [39] and the papers mentioned above, where the
boundedness and square integrability of solutions for a fourth order nonlinear differential
equation was studied. Using Lyapunov’s method, we show that every solution x(t) of
equation (9) and its derivatives are bounded and square integrable.

2 Assumptions and Main Results

First, we state some assumptions on the functions that appeared in (9). Suppose that
there are positive constants a0, b0, c0, d0, f0, p0, q0, a1, b1, c1, d1, f1, p1, q1,m,M, δ, and
η1, such that the following conditions are satisfied

i) 0 < a0 ≤ a (t) ≤ a1; 0 < b0 ≤ b (t) ≤ b1; 0 < c0 ≤ c (t) ≤ c1;
0 < d0 ≤ d (t) ≤ d1 for t ≥ 0.

ii) 0 < f0 ≤ f (x) ≤ f1; 0 < p0 ≤ p (x) ≤ p1; 0 < q0 ≤ q (x) ≤ q1 for x ∈ R and
0 < m < min

{

f0, p0, 1
}

, M > max
{

f1, p1, 1
}

.

iii)
h(x)

x
≥ δ > 0 ( for x 6= 0) ; h (0) = 0.

iv)

∫ +∞

0

(|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|) dt < η1.

The following lemma will be useful in the proof of the next theorem.

Lemma 2.1 [20] Let h(0) = 0, xh(x) > 0 (x 6= 0) and δ(t)−h′(x) ≥ 0 (δ(t) > 0),
then

2δ(t)H(x) ≥ h2(x), where H(x) =

∫ x

0

h(s)ds.

Theorem 2.1 In addition to conditions (i)-(iv) being satisfied, suppose that there
are positive constants h0, δ0, δ1, η2 and η3 such that the following conditions hold

H1) h0 −
a0mδ0

d1
≤ h′ (x) ≤ h0

2
for x ∈ R.

H2) δ1 =
d1h0a1M

c0m
+
c1M + δ0

a0m
< b0q0.

H3)

∫ +∞

−∞

(|p′ (s)|+ |q′ (s)|+ |f ′ (s)|) ds < η2.

H4)

∫ +∞

0

|e (t)| dt < η3.

Then any solution x(t) of (9) and its derivatives x′(t), x′′(t) and x′′′(t) are bounded and
satisfy

∫

∞

0

(

x2(s) + x′2(s) + x′′2(s) + x′′′2(s)
)

ds <∞.
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Remark 2.1 Equation (9) can be rewritten as

x′′′′(t) + a(t)p(x)x′′′ + ϕ1(t, x, x
′)x′′ + ϕ2(t, x, x

′)x′ + d(t)h(x) = e(t),

where

ϕ1(t, x, x
′) = b(t)q(x) +

1

2
a(t)p′(x)x′, and ϕ2(t, x, x

′) = b(t)q′(x)x′ + c(t)f(x).

If we apply Tunç theorem [39] to show that every solution x(t) of (9) is bounded, we must
take ψ(x, x′, x′′) = ϕ1(t, x, x

′)x′′ and g(x, x′) = ϕ2(t, x, x
′)x′ then the boundedness of

ψ(x,y,z)
z

and g(x,y)
y

is needed. However in our theorem this latter condition is not required

since we just need to deal with the boundedness of a(t), b(t), p(x), and q(x).

Proof. Boundedness of solutions.
First we proof the boundedness of solutions. The proof of this theorem depends on
properties of the continuously differentiable function W =W (t, x, y, z, w) defined as

W = e
−1

η

∫ t

0

γ (s) ds
V, (11)

where
γ (t) = |a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|+ |θ1(t)|+ |θ2(t)|+ |θ3(t)|,

θ3 (t) = f ′ (x (t))x′ (t)

and

2V = 2βd (t)H (x) + c (t) f (x) y2 + αb (t) q(x)z2 + a (t) p(x)z2 + 2βa (t) p(x)yz

+ [βb (t) q(x) − αh0d (t)] y
2 − βz2 + αw2 + 2d (t)h (x) y + 2αd (t)h (x) z

+2αc (t) f (x) yz + 2βyw + 2zw,

with H(x) =
∫ x

0
h(s)ds, α =

1

a0m
+ ǫ , β =

d1h0

c0m
+ ǫ, ǫ, and η are positive constants to

be determined later in the proof. We rewrite 2V as

2V = a (t) p(x)

[

w

a (t) p(x)
+ z + βy

]2

+ c (t) f (x)

[

d (t)h (x)

c (t) f (x)
+ y + αz

]2

+
d2 (t)h2 (x)

c (t) f (x)
+ 2ǫd (t)H (x) + V1 + V2 + V3,

where

V1 = 2d (t)

∫ x

0

h (s)

[

d1h0

c0m
− 2

d (t)

c (t) f (x)
h′ (s)

]

ds,

V2 =
[

αb (t) q(x) − β − α2c (t) f (x)
]

z2,

V3 =
[

βb (t) q(x) − αh0d (t)− β2a (t) p(x)
]

y2 +

[

α− 1

a (t) p(x)

]

w2.

Now, we will prove that V is positive definite. Take

ǫ < min

{

1

a0m
,
d1h0

c0m
,

b0q0 − δ1

M (a1 + c1)

}

, (12)
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then
1

a0m
< α <

2

a0m
,

d1h0

c0m
< β < 2

d1h0

c0m
. (13)

Using conditions (i)-(iii), (H1), (H2) and inequalities (12), (13) we get

V1 ≥ 4d (t)
d1

c0m

∫ x

0

h (s)

[

h0

2
− h′ (s)

]

ds ≥ 0,

V2 =

(

α

(

b (t) q(x) − βa (t)− αc (t) f (x)

)

+ β
(

αa (t)− 1
)

)

z2

≥ α

(

b0q0 −
d1h0a1

c0m
− c1M

a0m
− ǫ(a1 + c1M)

)

z2 + β
( 1

m
− 1
)

z2

≥ α
(

b0q0 − δ1 − ǫM(a1 + c1)
)

z2 ≥ 0,

and

V3 ≥ β

(

b0q0 −
α

β
h0d1 − βa1M

)

y2 +

(

α− 1

a0m

)

w2

≥ β

(

b0q0 −
c0

a0
− a1

d1h0M

c0m
− ǫ(c0m+ a1M)

)

y2 + ǫw2

≥ β
(

b0q0 − δ1 − ǫM(c1 + a1)
)

y2 + ǫw2 ≥ 0.

Hence, it is evident from the terms contained in the last inequalities, that there exists
positive constant D0 such that

2V ≥ D0

(

y2 + z2 + w2 +H(x)
)

. (14)

By Lemma 2.1 and conditions (iii) and (H1) it follows that there is a positive constant
D1 such that

2V ≥ D1

(

x2 + y2 + z2 + w2
)

. (15)

Thus V is positive definite. From (i)-(iii), it is not difficult to see that there is a positive
constant U1 such that

V ≤ U1

(

x2 + y2 + z2 + w2
)

.

By (H3), we have

∫ t

0

(

|θ1(s)|+ |θ2(s)|+ |θ3(s)|
)

ds =

∫ α2(t)

α1(t)

(

|p′(u)|+ |q′(u)|+ |f ′(u)|
)

du

≤
∫ +∞

−∞

(

|p′(u)|+ |q′(u)|+ |f ′(u)|
)

du < η2 <∞,

(16)

where α1(t) = min{x(0), x(t)}, and α2(t) = max{x(0), x(t)}. From inequalities (11),
(15), and (16), it follows that

W ≥ D2(x
2 + y2 + z2 + w2), (17)

where D2 =
D1

2
e−

η1+η2
η . Also, it is easy to see that there is a positive constant U2 such

that
W ≤ U2(x

2 + y2 + z2 + w2), (18)
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for all x, y, z and w, and all t ≥ 0.
Next we show that Ẇ is negative definite function. The derivative of the function

V, along any solution (x(t), y(t), z(t), w(t)) of system (10), with respect to t is after
simplifying

2
.

V (10) = −2ǫc (t) f(x)y2 + V4 + V5 + V6 + V7 + 2(βy + z + αw)e(t) + 2
∂V

∂t
,

where

V4 =− 2

(

d1h0

c0m
c (t) f(x) − d (t)h′ (x)

)

y2 − 2αd (t)
(

h0 − h′ (x)
)

yz,

V5 =− 2
(

b (t) q(x)− αc (t) f(x)− βa (t) p(x)
)

z2,

V6 =− 2
(

αa (t) p(x) − 1
)

w2,

V7 =− a(t)θ1

(

z2 + 2αzw
)

− b(t)θ2

(

αz2 + 2αzw + βy2 + 2yz
)

+ c(t)θ3

(

y2 + 2αyz
)

.

By conditions (i), (ii), (H1), (H2) and inequality (12), (13) we obtain the following

V4 ≤ −2 [d (t)h0 − d (t)h′ (x)] y2 − 2αd (t) [h0 − h′ (x)] yz

≤ −2d (t) [h0 − h′ (x)] y2 − 2αd (t) [h0 − h′ (x)] yz

≤ −2d (t) [h0 − h′ (x)]

[

(

y +
α

2
z
)2

−
(α

2
z
)2
]

≤ α2

2
d (t) [h0 − h′ (x)] z2.

Therefore,

V4 + V5 ≤ −2

[

b (t) q(x) − αc (t) f(x)− βa (t) p(x)− α2

4
d (t) [h0 − h′ (x)]

]

z2

≤ −2

[

b0q0 −
( 1

a0m
+ ǫ
)

c1M −
(d1h0

c0m
+ ǫ
)

a1M − α2

4
(a0mδ0)

]

z2

≤ −2

[

b0q0 −
M

a0m
c1 −

d1h0a1M

c0m
− δ0

a0m
− ǫM (a1 + c1)

]

z2

≤ −2 [b0q0 − δ1 − ǫM (a1 + c1)] z
2 ≤ 0,

and
V6 ≤ −2 [αa0m− 1]w2 = −2ǫw2 ≤ 0.

Hence, there exists a positive constant D3 such that

−2ǫc (t) f(x)y2 + V4 + V5 + V6 ≤ −2D3

(

y2 + z2 + w2
)

.

From (14), and the Cauchy Schwartz inequality, we get

V7 ≤ a(t)|θ1|
(

z2 + α(z2 + w2)
)

+ b(t)|θ2|
(

αz2 + α(z2 + w2) + βy2 + (y2 + z2)
)

+ c(t)|θ3|
(

y2 + α(y2 + z2)
)

≤ λ1(|θ1|+ |θ2|+ |θ3|)
(

y2 + z2 + w2 +H (x)
)

≤ 2
λ1

D0

(

|θ1|+ |θ2|+ |θ3|
)

V,
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where λ1 = max
{

a1(1 + α), b1(1 + 2α+ β), c1(1 + α)
}

. We get also

2
∂V

∂t
= d′ (t)

[

2βH (x) − αh0y
2 + 2h (x) y + 2αh (x) z

]

+c′ (t)
[

f(x)y2 + 2αf(x)yz
]

+ b′ (t)
[

αq(x)z2 + βq(x)y2
]

+a′ (t)
[

p(x)z2 + 2βp(x)yz
]

.

Using condition (H1) and Lemma 2.1, we obtain

h2(x) ≤ h0H(x),

consequently,

2

∣

∣

∣

∣

∂V

∂t

∣

∣

∣

∣

≤ |d′ (t) |
[

2βH (x) + αh0y
2 +

(

h2 (x) + y2
)

+ α
(

h2 (x) + z2
)]

+|c′ (t) |
[

y2 + α
(

y2 + z2
)]

+ |b′ (t) |
[

αz2 + βy2
]

+|a′ (t) |
[

z2 + 2β
(

y2 + z2
)]

≤ λ2 [|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|]
(

y2 + z2 + w2 +H (x)
)

≤ 2
λ2

D0
[|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|]V,

such that λ2 = max
{

2β + αh0 + h0, αh0 + 1, α+ 1
}

. By taking
1

η
=

1

D0
max

{

λ1, λ2
}

,

we obtain

.

V (10) ≤−D3(y
2+z2+w2)+

1

η

(

|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|+ |θ1|+ |θ2|+ |θ3|
)

V

+
(

βy + z + αw
)

e(t). (19)

From (iv), (H3), (16), (17), (19) and the Cauchy Schwartz inequality, we get

.

W (10) =

(

.

V (10) −
1

η
γ (t)V

)

e
−1

η

∫ t

0

γ (s) ds

≤
(

−D3

(

y2 + z2 + w2
)

+
(

βy + z + αw
)

e(t)
)

e
−1

η

∫ t

0

γ (s) ds
(20)

≤ (β|y|+ |z|+ α|w|) |e(t)|
≤ D4 (|y|+ |z|+ |w|) |e(t)|
≤ D4

(

3 + y2 + z2 + w2
)

|e(t)|

≤ D4

(

3 +
1

D2
W

)

|e(t)|

≤ 3D4|e(t)|+
D4

D2
W |e(t)|, (21)

where D4 = max{α, β, 1}. Integrating (21) from 0 to t, and using the condition (H4)
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and the Gronwall inequality, we obtain

W (t, x, y, z, w) ≤ W
(

0, x(0), y(0), z(0), w(0)
)

+ 3D4η3

+
D4

D2

∫ t

0

W
(

s, x(s), y(s), z(s), w(s)
)

|e(s)|ds

≤
(

W
(

0, x(0), y(0), z(0), w(0)
)

+ 3D4η3

)

e

D4

D2

∫ t

0

|e(s)|ds

≤
(

W
(

0, x(0), y(0), z(0), w(0)
)

+ 3D4η3

)

e

D4

D2
η3

= K1 <∞. (22)

In view of inequalities (17) and (22), we get

(x2 + y2 + z2 + w2) ≤ 1

D2
W ≤ K2, (23)

where K2 =
K1

D2
. Clearly (23) implies that

|x(t)| ≤
√

K2, |y(t)| ≤
√

K2, |z(t)| ≤
√

K2, |w(t)| ≤
√

K2 for all t ≥ 0.

Hence,

|x(t)| ≤
√

K2, |x′(t)| ≤
√

K2, |x′′(t)| ≤
√

K2, |x′′′(t)| ≤
√

K2 for all t ≥ 0. (24)

Square integrable solutions.

Now, we proof the square integrability of solutions and their derivatives. We define
Ft = F (t, x(t), y(t), z(t), w(t)) as

Ft =W + ρ

∫ t

0

(

y2(s) + z2(s) + w2(s)
)

ds,

where ρ > 0. It is easy to see that Ft is positive definite, since W = W (t, x, y, z, w) is
already positive definite. Using the following estimate

e
−

η1 + η2

η ≤ e
−

1

η

∫ t

0

γ (s) ds
≤ 1,

by (20) we have the following

.

Ft(10) ≤ −D3

(

y2(t) + z2(t) + w2(t)
)

e
−η1 + η2

η (25)

+D4

(

|y(t)|+ |z(t)|+ |w(t)|
)

|e(t)|

+ρ
(

y2(t) + z2(t) + w2(t)
)

.



200 M. REMILI AND M. RAHMANE

By choosing ρ = D3e
−η1 + η2

η we obtain

.

Ft(10) ≤ D4

(

3 + y2(t) + z2(t) + w2(t)
)

|e(t)|

≤ D4

(

3 +
1

D2
W
)

|e(t)|

≤ 3D4|e(t)|+
D4

D2
Ft|e(t)|. (26)

Integrating the last inequality (26) from 0 to t, and using again the Gronwall inequality
and the condition (H4), we get

Ft ≤ F0 + 3D4η3 +
D4

D2

∫ t

0

Fs|e(s)|ds

≤
(

F0 + 3D4η3

)

e

D4

D2

∫ t

0

|e(s)|ds

≤
(

F0 + 3D4η3

)

e

D4

D2
η3

= K3 <∞. (27)

Therefore,
∫

∞

0

y2(s)ds < K3 ,

∫

∞

0

z2(s) < K3 and

∫

∞

0

w2(s)ds < K3,

which implies that
∫

∞

0

x′2(s)ds ≤ K3 ,

∫

∞

0

x′′2(s)ds ≤ K3 ,

∫

∞

0

x′′′2(s)ds ≤ K3. (28)

Next, multiply (9) by x(t) and integrate by parts from 0 to t, we obtain

∫ t

0

d(s)x(s)h(x(s))ds = I1(t) + I2(t) + I3(t) + I4(t) + I5(t) + L0, (29)

where

I1(t) = x′(t)x′′(t)− x(t)x′′′(t)−
∫ t

0

x′′2(s)ds,

I2(t) = −a(t)p(x(t))x(t)x′′(t) +
∫ t

0

a′(s)p(x(s))x(s)x′′(s)ds

+

∫ t

0

a(s)p(x(s))x′(s)x′′(s)ds,

I3(t) = −b(t)q(x(t))x(t)x′(t) +
∫ t

0

b′(s)q(x(s))x(s)x′(s)ds+

∫ t

0

b(s)q(x(s))x′2(s)ds,

I4(t) = −1

2
c(t)f(x(t))x2(t) +

1

2

∫ t

0

c′(s)f(x(s))x2(s)ds+
1

2

∫ t

0

c(s)f ′(x(s))x′(s)x2(s)ds,

I5(t) =

∫ t

0

e(s)x(s)ds,
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and

L0 = x(0)x′′′(0)− x′(0)x′′(0) + a(0)p(x(0))x(0)x′′(0)

+b(0)q(x(0))x(0)x′(0) +
1

2
c(0)f(x(0))x2(0).

From (24), (28) and the conditions (i), (ii), (iv), (H3) and (H4), we have

I1(t) ≤ 2K2 +

∫ t

0

x′′2(s)ds,

I2(t) ≤ a1MK2 +MK2

∫ t

0

|a′(s)|ds+ a1M

∫ t

0

x′(s)x′′(s)ds,

≤ 3

2
a1MK2 +MK2

∫ t

0

|a′(s)|ds,

I3(t) ≤ b1q1K2 + q1K2

∫ t

0

|b′(s)|ds+ b1q1

∫ t

0

x′2(s)ds,

I4(t) ≤ 1

2
c1MK2 +

1

2
MK2

∫ t

0

|c′(s)|ds,+1

2
c1K

3
2

2

∫ t

0

|f ′(s)|ds,

I5(t) ≤
√

K2

∫ t

0

|e(s)|ds.

It follows that

lim
t→+∞

I1(t) ≤ 2K2 +K3 = L1, lim
t→+∞

I2(t) ≤
3

2
a1MK2 +MK2η1 = L2,

lim
t→+∞

I3(t) ≤ b1q1K2 + q1K2η1 + b1q1K3 = L3,

lim
t→+∞

I4(t) ≤
1

2
c1MK2 +

1

2
MK2η1 +

1

2
c1K

3
2

2 η2 = L4, and lim
t→+∞

I5(t) ≤
√

K2η3 = L5.

Thus,

lim
t→+∞

(

I1(t) + I2(t) + I3(t) + I4(t) + I5(t)
)

≤
5
∑

i=1

Li <∞. (30)

Consequently, (29), (30) and condition iii) give

∫

∞

0

x2(s)ds ≤ 1

d0δ

∫

∞

0

d(s)x(s)h(x(s))ds ≤ 1

d0δ

5
∑

i=0

Li <∞,

which completes the proof of the theorem.

Remark 2.2 If e(t) = 0, similarly to the above proof, the inequality (3.10) becomes

.

W (10) =

(

.

V (10) −
1

η
γ (t) V

)

e
−1

η

∫ t

0

γ (s) ds

≤ −D3

(

y2 + z2 + w2
)

e
−1

η

∫ t

0

γ (s) ds

≤ −µ
(

y2 + z2 + w2
)

,
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where µ = D3e
−

η1+η2
η . It can also be observed that the only solution of system (10) for

which
.

W (10)(t, x, y, z, w) = 0 is the solution x = y = z = w = 0. The above discussion

guarantees that the trivial solution of equation (9) is uniformly asymptotically stable, and
the same conclusion as in the proof of Theorem 2.1 can be drawn for square integrability
of solutions of equation (9).

3 Example

We consider the following fourth order non-autonomous differential equation

x′′′′ +
(

e−t sin t+ 2
)

((

x+ 4ex + 4e−x

4 (ex + e−x)

)

x′′
)′

+

(

cos t+ 7t2 + 7

1 + t2

)((

sinx+ 6ex + 6e−x

ex + e−x

)

x′
)′

+
(

e−2t sin3 t+ 2
)

(

x cos x+ 5x4 + 5

5 (1 + x4)

)

x′

+

(

cos2 t+ t2 + 1

10 (1 + t2)

)(

x

x2 + 1

)

=
2 sin t

t2 + 1
, (31)

by taking

p (x) =
x+ 4ex + 4e−x

4 (ex + e−x)
, q (x) =

sinx+ 3ex + 3e−x

ex + e−x
, f (x) =

x cosx+ 5x4 + 5

5 (1 + x4)
,

h (x) =
x

x2 + 1
, a (t) = e−t sin t+ 2 , b (t) =

cos t+ 4t2 + 4

1 + t2
,

c (t) = e−2t sin3 t+ 2 , d (t) =
cos2 t+ t2 + 1

10 (1 + t2)
and e (t) =

2 sin t

t2 + 1
. It follows easily that

m =
9

10
, M =

11

10
, q0 =

5

2
, q1 =

7

2
, h0 =

11

5
, δ0 =

3

2
, a0 = 1 , a1 = 3 , b0 = 3 ,

b1 = 5 c0 = 1 , c1 = 3 , d0 =
1

10
, and d1 =

1

5
. We find h0 − a0mδ0

d1
= −4,

55 ≤ h′ (x) ≤ h0

2
= 1. 1 and b0q0 =

15

2
>

6 946 7

10000
=
d1h0a1M

c0m
+
c1M + δ0

c0m
= δ1.

We have
∫ +∞

−∞

|p′ (x)| dx =
1

4

∫ +∞

−∞

∣

∣

∣

∣

∣

1

ex + e−x
+ x

e−x − ex

(ex + e−x)
2

∣

∣

∣

∣

∣

dx

≤ 1

4

∫ 0

−∞

(

1

ex + e−x
− x

e−x − ex

(ex + e−x)2

)

dx

+
1

4

∫ +∞

0

(

1

ex + e−x
− x

e−x − ex

(ex + e−x)
2

)

dx =
π

4
,

∫ +∞

−∞

|q′ (x)| dx =

∫ +∞

−∞

∣

∣

∣

∣

∣

(ex + e−x) cosx− (ex − e−x) sinx

(ex + e−x)
2

∣

∣

∣

∣

∣

dx

≤
∫ +∞

−∞

(

1

ex + e−x
+

x

(ex + e−x)
2

(

ex − e−x
)

)

dx = π, and
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∫ +∞

−∞

|f ′ (x)| dx =
1

5

∫ +∞

−∞

∣

∣

∣

∣

∣

(cosx− x sinx)
(

x4 + 1
)

− 4x4 cosx

(x4 + 1)
2

∣

∣

∣

∣

∣

dx

=
1

5

∫ +∞

−∞

∣

∣

∣

∣

∣

cosx

x4 + 1
− 4x4

cosx

(x4 + 1)
2 − x

sinx

x4 + 1

∣

∣

∣

∣

∣

dx

≤ 1

5

∫ +∞

−∞

(

5

x4 + 1
+

x2

x4 + 1

)

dx =
6

5

√
2π.

Consequently,
∫ +∞

−∞

(|p′ (s)|+ |q′ (s)|+ |f ′ (s)|) ds <∞.

A simple computation gives

∫ +∞

0

|e (t)| dt =
∫ +∞

0

∣

∣

∣

∣

2 sin t

t2 + 1

∣

∣

∣

∣

dt ≤
∫ +∞

0

2

t2 + 1
dt = π,

∫ +∞

0

|a′ (t)| dt =

∫ +∞

0

∣

∣ (cos t) e−t − (sin t) e−t
∣

∣ dt ≤
∫ +∞

0

2e−tdt = 2,

∫ +∞

0

|b′ (t)| dt =

∫ +∞

0

∣

∣

∣

∣

∣

− sin t

t2 + 1
− 2t

cos t

(t2 + 1)
2

∣

∣

∣

∣

∣

dt ≤
∫ +∞

0

(

1

t2 + 1
+

2 |t|
(t2 + 1)

2

)

dt

≤
∫ +∞

0

(

1

t2 + 1
+

t2 + 1

(t2 + 1)
2

)

dt =

∫ +∞

0

2

t2 + 1
dt = π,

∫ +∞

0

|c′ (t)| dt =

∫ +∞

0

∣

∣ 3
(

cos t sin2 t
)

e−2t − 2
(

sin3 t
)

e−2t
∣

∣ dt ≤
∫ +∞

0

5e−2tdt =
5

2
,

and

∫ +∞

0

|d′ (t)| dt =

∫ +∞

0

∣

∣

∣

∣

∣

−2 (cos t)
sin t

t2 + 1
− 2t

cos2 t

(t2 + 1)
2

∣

∣

∣

∣

∣

dt

≤
∫ +∞

0

(

2

t2 + 1
+

2 |t|
(t2 + 1)

2

)

dt ≤
∫ +∞

0

3

t2 + 1
dt =

3π

2
.

Therefore,
∫ +∞

0

(|a′ (t)|+ |b′ (t)|+ |c′ (t)|+ |d′ (t)|) dt < +∞.

Thus all the assumptions of Theorem 2.1 hold, so solutions of (31) are bounded and
square integrable.
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