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Abstract: In the present paper, the following damped vibration problems

{ i(t) + q(t)a(t) — L(t)u(t) + VW (t,u(t)) =0,
w(0) — u(T) = u(0) — u(T) =0,

are studied, where T' > 0, ¢ € C(R,R) is T—periodic with fOT q(t)dt = 0, L(t)
is a continuous T'—periodic and symmetric N X N matrix-valued function and
W € C'(R x RN, R) is T—periodic in the first variable. We use a new kind of su-
perquadratic condition instead of the global Ambrosetti-Rabinowitz superquadratic
condidition and we obtain a nontrivial T'—periodic solution for the above system. The
main idea here lies in the application of a variant of generalized weak linking theorem
for strongly indefinite problem developed by Schechter and Zou.

Keywords: periodic solutions; damped vibration problems; superquadradicity; weak
linking theorem.
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1 Introduction
Consider the following damped vibration problems

(DY) { i(t) + q(t)u(t) — L(t)u(t) + VW (t, u(t)) =0,

w(0) — u(T) = a(0) — a(T) = 0,

where T" > 0, ¢ : R — R is a continuous T—periodic function with fOT q(t)dt = 0,
Q) = fot q(s)ds, L(t) is a continuous T'—periodic and symmetric N x N matrix-valued
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function and W : R x RY — R is a continuous function, T—periodic in the first variable
and differentiable in the second variable with continuous derivative VW (¢, z) = %—VX (t,x).
Equation (DV) is a basic mathematical model for the representation of damped nonlinear
oscillatory phenomena.

When ¢(t) = 0 for all t € R, (DV) is just the following second-order Hamiltonian
system

(HS) ii(t) — Lt)u(t) + VW (¢, u(t)) = 0,

which is a classical equation describing many mechanical systems, such as a pendulum.
The system (HS) has been thoroughly studied and a lot of existence results have been
obtained, for example see [1-6] and references therein.

As far as the case ¢(t) # 0 is concerned, to our best knowledge, there are few research
about the existence of periodic solutions for (DY), see [7-9]. Recently, the existence of
periodic solutions for (DV) has been studied in [9] when W has a superquadratic growth
at infinity satisfying the global Ambrosetti-Rabinowitz superquadratic condition: there
exist constants p > 2 and R > 0 such that

(AR) 0 < puW(t,z) < VW(t,z).x

for allt € R and |z| > R, where 2.y denotes the Euclidean inner product of z,y € R and
|.| denotes the corresponding Euclidean norm. Our paper is motivated by the following
reason: when dealing with superlinear differential equations, one often meets functionals
which do not satisfy (AR )-condition. Without (AR )-condition, we do not know whether
a Palais-Smale sequence is bounded. In the present paper, we shall study the existence of
periodic solutions for (DV) under a new kind of superquadratic condition given in [10] by
Ding and Luan for Schrodinger’s equation. Our approach is based on an application of
a variant of generalized weak linking theorem for strongly indefinite problem developed
by Schechter and Zou [11], where the authors developed the idea of monotonicity tric for
strongly indefinite problems; the original idea is due to Struwe [12].
Our main result reads as follows:

Theorem 1.1 Assume the following assumptions hold:
L) Zero is not an eigenvalue of L= —2 + L(t);

(
(W) VW (t,z) = o(|z]) as |x| — 0, uniformly on t € [0,T];
(W2) —‘;"zm — 400, as x| — oo, Vt € [0,T];
(W3) W(t,z) >0 and W(t,x) = AVW (t,2).x — W(t,z) >0, Vt € [0,T),x € RN — {0};
(Wy) There exist constants ¢, > 0 and o > 1 such that
Wit g ~
(w) < cW(t,x), Y|z| >r, Vt€0,T].
x

Then (DY) has at least one nontrivial T— periodic solution.

€

Example 1.1 [10] Let W (t,z) = a(t)(|z|*+(u—2) |z[* " sin?(12")), where a : R —
R7 is a continuous T'— periodic function, g > 2 and 0 < € < p — 2. A straigborhood
calculation shows that W satisfies the conditions of Theorem 1.1, but does not satisfy
the (AR) condition.
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2 Abstract Critical Point Theorem [11]

For the existence of periodic solutions for (DV), we appeal to the following abstract
critical point theorem. Let E be a Hilbert space with norm ||.|] and have an orthogonal
decomposition £ = N @ N+, N C E is a closed and separable subspace. Since N is
separable, there exists a norm |.| , that satisfies [v|, < ||v|| for all v € N and induces a
topology equivalent to the weak topology of N on bounded subset of N. For u =v+2 €
N @ Nt with v € N, z € N*, we define |[ul>, = o> + 2|2, then |u|, < |ul, Yu € E.
Particularly, if (u,, = v, + 2,) is ||.|| =bounded and wu,, —lv u, then v, — v weakly in
N, z, — z strongly in N+, u,, — v+ 2z weakly in E. Next, let us recall some definitions:
(i) A functional f : E — R is said to be |.| , —upper semi-continuous, i.e., uy — oy
in E implies limsup,, . f(un) < f(u).

(ii) Let f € CY(E,R). f'is said to be weakly sequentially continuously, i.e., u, — u
in F implies lim,,—, o0 f/(un)w = f/(u)w for all w € E.

Let E = E+ & E—, z € E* with ||z = 1. Let N = E~ & Rz and Bff = N+ =
(B~ ®Rz)t. For R >0, let

M={u=u" +sz/scR",u” € E~,|ul| < R}
with Py = sgzg € M, sg > 0. We define
D= {u =sz+2"/seR, 2T € B, HszoJerrH = so} .
For f € CY(E,R), let I" be the set of vy : [0,1] x M — F satisfying

v is |.|, — continuous, B

Y(0,u) = w and f(y(s,u)) < f(u) for all u€ M,

for any (so,uo) € [0,1] x M, there is a |.|, — neighborhood
Utsoruo) St {U —(s,u)/(t,u) € Uisy ) N ([0,1] N M)} C Efin,

where Fy;, denotes various finite dimensional subspaces of F, I' is not empty since id € T'.

Theorem 2.1 Let (f)) be a family of C1—functionals having the form
Hin(u) =g(u) — Ah(u), ue E, A€ ll,2].

a) h(u) >0, Vu e E, fi = f;
b) g(u) — 400 or h(u) — 400 as |ju]| — oo;
c) fxis ||, — upper semi— continuous, f; is weakly sequentially continuous on E.

Moreover, f\ maps bounded sets into bounded sets;
d) sup fi < inf fi, VA € [1,2].
oM D
Then for almost all X € [1,2], there exists a sequence (uy,) such that
sup ||un|| < 0o, fialun) — ea, f;(un) — 0 as n — o0,
where

cx = inf sup fa(y(1,u)) € [inf f,sup f].
€T e M D M
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As usual, we say f € C'(E,R) satisfies the Palais-Smale condition ((PS) in short)
if any sequence (up) C E for which (f(uy)) is bounded and f'(u,) — 0 as n — oo,
possesses a convergent subsequence.

3 Proof of Theorem 1.1

For 1 < s < oo, let LZ’Q(O, T;R™) be the Banach space of measurable functions u defined
on [0, 7] with values in RY satisfying fOT eQW |u(t)|* dt < oo, with the norm

T
Jullg, = ([ €@ ut)"dt)*
0

and L (0,75 RY) denote the Banach space of measurable functions u defined on [0, 7]
with values in RY under the norm

Q)
[ull g = esssupreo,me = u(t)]-

The space Lé(O, T;RY) provided with the inner product

T
<u,v>pz= / eQWy(t).v(t)dt, u,v e L4(0,T; RN)
0

is a Hilbert space. Let E be the space defined by
E={uecLj(0,T;RY): 0 e L§H0,T;RY), u(0) =u(T)}.
The space E provided with the inner product

<u,v >g= / ! QO u(t).o(t) + u(t).o(t))dt, u,v € E
0

and the associated norm
T 2 27 21
lully = ([ 2O 1P +1iOPlan?, we B
is a Hilbert space. Define an operator K : E — E by
T
< Ku,v >o= / eQW (Inwn — L(t))u(t).v(t)dt
0

for all u,v € F, where I« is the N x N identity matrix. Then it is easy to check that
K is a bounded self-adjoint linear operator. By the assumption (£) and the classical
spectral theory, we can decompose E into the orthogonal sum of invariant subspaces
for [ — K: E=FE~ ® E", where E~ (respectively ET) is the subspace of E on which
I — K is negative (respectively positive) definite. Here, I denotes the identity operator.
Besides, E~ is finite dimensional since K is compact. Furthermore, we introduce on F
the equivalent new inner product

<u,v>=< (I - K)ut,v" > —< (I —K)u",v~ >g
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for u=u"+ut and v = v~ + vt € E and the equivalent norm |.|| =< .,. >2. It is
well known that E is compactly embedded in L (0, 7;RY) for all s € [1,00] and as a
consequence for all s € [1,00], there exists a constant s > 0 such that

[ellps, < ps llull, Vu € E. (3.1)
By definition of < .,. >, E~ and ET we have
< (I - K)u,u>o=+ |u||®, Yu e E*.

For (DV), we consider the functional f(u) = x(u) — g(u) defined on the space E, where
X is the quadratic form

x(u) = 5/ QO (a()* + L(t)u(t)u(t)dt

0

and -
g(u) = / eCOW (¢, u)dt.
0

By the definition of K, the functional f can be rewritten as

< (I-K)u,u>p—g(u) = %(Hu"’”2 - Hu_H2) —g(u), u € E.

N~

flu) =
By (Wy), for || > r and t € [0,T], we have

VW (t,2)|7 < W (t,z) |z]” < = [VW (¢t )] =],

c
-2
thus c )

VW ()| < (5)7

where p = 2;‘1 Let ¢1 = maxyc(o,7),|z|<r | VW (t, )], then

VW (t,2)| < e + (%)ﬁ 2”1, vt e [0,T], = € RY. (3.2)
By (Wh), for all € > 0, there exists 7. > 0 such that

VW (t,z)| < 2¢|z|, Vt €[0,T], |z| <re. (3.3)

For |z| > r., we have by (3.2), [VW(t,z)| < pC |z[P™", where C, = %(T,fil + (%)ﬁ)
So
VW (t,z)| < 2€|x| +pCe |z’ , vt €[0,T], z € RV. (3.4)

Hence, for all t € [0,7] and z € RY

1
W(t,z) = / VW (t,sz).xds < e|z|> + C. |z, Vt € [0,T], z € RV. (3.5)
0

By Proposition B.37 in [13], the inequality (3.4) implies that the functional g is contin-
uously differentiable on E and for all u,v € E

T
g’(u)v:/ eCOTW (¢, u).vdt.
0
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It is easy to see that the quadratic form x is continuously differentiable and for all
u,v € F, we have

X' (u)v = /O QO [i.0 + L(t)u.v]dt.

Therefore the functional f is continuously differentiable on E and for all u,v € E

f@ﬁ)téiﬂwwﬁ+LQMmVWﬁﬂﬁﬂﬁ

T
=<ut, vt > - <uT, 07 > —/ eQOVW (t,u).vdt.
0

Lemma 3.1 Ifu is a T—periodic solution of the Fuler equation f'(u) =0, then u is
a solution of problem (DV).

Proof. Since f'(u) =0, then for all v € F
T T
0=fww=/‘£@umu+/ eCOL(tyu — VW (t,u)).vdt.
0 0

By the fundamental lemma and remarks in ([14], pages 6,9), we know that e has a
weak derivative and

d

E(eQu) = eQ(L(t)u — VW (t,u)) a.e. t € [0,T], (3.6)
QW (t) = /t Q" [L(s)u(s) — VW (s,u(s))]ds + c a.e. t € [0,T], (3.7)
0
T
A e [L(s)u(s) — VW (s, u(s))]ds = 0, (3.8)

where ¢ is a constant. We identify the equivalence class e?®)u(t) and its continuous
representation fot eQG)[L(s)u(s) — VW (s,u(s))]ds + c. Thus by (3.7), (3.8) and the
existence of 1, one has

4(0) — w(T) = u(0) — u(T) = 0.

In order to apply Theorem 2.1, we consider the family of functionals
L 12—t 2 [ e@®
faw) = 2 o F =2 P+ [ eCOw e wan,
0

A € [1,2]. Tt is easy to see that f) satisfies conditions a),b) in Theorem 2.1. To verify
condition ¢), let u,, —!"lv u, then v}t — u* and u;; — u~ in E. Taking a subsequence
if necessary, we have u,, — u a.e. on [0,T]. By (W3), Fatou’s lemma and the weak
lower semi-continuity of the norm, we have

lim sup fx(un) < fa(u),

n—-o0o

which means that fy is |.|, —upper semi-continuous. f ;\ is weakly sequentially continuous
on E is due to [15].
To continue the discussion, it remains to verify condition d) in Theorem 2.1.
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Lemma 3.2 Under assumptions (L), (W1) — (Wy), we have
(i) There exists p > 0 independent of A € [1,2] such that m = inf fx(S}) > 0, where

S5 ={ue B/ |ul = p}.

(it) For fived 29 € ET with ||20]| = 1 and any X € [1,2], there is R > p > 0 such that
sup fA(OM) <0, where

M={u=u" +sz/scR", u" € E~, |lu]| <R}.

Proof. (i) By (3.5) and (2.1), for any u € ET, we have

1 2 2
Paw) 2 5 llull” = Aellully —AC ||U|\Zzg2

1 2 2
2 5 llull” - 2epts |Jul|” — 2Cepd ||ull” .

Taking € = we get

_1_
8uZ’
1 2
) = 2 llull” = 2Cepg [Jul” .
4
Since p > 2, there exists a constant p > 0 independent of A € [1, 2] satisfying inf fA(S;r) >

0.
(1) Assume by contradiction that there exists u, € E~ & R™ zo such that fy(uy) > 0 for

all n and ||u,|| — 0o as n — oco. Let v, = m = Sp20 + v, , then
n 1 T W t; n
o< Dln) Lo o |IP) — /\/ eQ<t>(7Z> v |2 dt. (3.9)
lunll 2 0 |t

It follows from (W3) that

_2 _2 9 2
lon ]l < Mo [” < sh =1 =[loa "

ol
therefore ||v,, H2 < % and 1 — % < s, < 1. Taking a subsequence if necessary, we can
assume that s, — s # 0, v, — v and v, — v almost everywhere on [0,7]. Hence

v = szo+v~ # 0, and since |u,| — 0o almost everywhere on [0, T'], it follows from (W3)
and Fatou’s lemma that

T
W (t, un
/ eQ(t)(i’t;) [on|® dt — 00 as n — oo
0 |un|
which contradicts (3.9). The proof is finished.
Under assumptions (£) and (W7) — (Wy), we obtain by applying Theorem 2.1, that
for all A € [1, 2], there exists a sequence (uy,) such that

sup [[un | < 00, fa(un) =0, fa(un) —> ex € [m,sup f]. (3.10)
n M

Lemma 3.3 Under assumptions (L) and (Wr) — (W), for all X € [1,2], there exists
uy € E— {0} such that

Falur) =0, fa(uy) < sup f. (3.11)
M
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Proof. Let (u,) be the sequence obtained in (3.10), write u, = u, + ul with
uf € E*. Since (uy) is bounded, then (u;}) is bounded, so u, — uy and u;} — u} in E,
after going to a subsequence.

We claim that uj\r # 0. If not, then after going to a subsequence, we can assume that
uf — 0 in L3(R,RY) for all s € [1,00] since F is compactly embedded in L*(R, RY).
It follows from inequality (3.4) and Hélder’s inequality that

T T T
0< / e@® |VW (t,u).f | dt < 26/ ] [u| dt + pCG/ €@ |y, |P7T || dt
0 0 0

< 2efunllg loitll g, + lualzy oy — 0

as n —» oo. Hence by (3.10), we get

T
faluy) < Hu,ﬂf = fy(un)uy + )\/ eCOVW (¢, u)utdt — 0
0

as n — 0o, which contradicts the fact that fx(u,) > m > 0. Therefore u}f # 0 and
thus uy # 0. Note that f) is weakly sequentially continuous on E, thus

f:\(u,\)w = nli_r}noo f:\(un)w =0, Ywe E,
which implies that fy(ux) = 0. By (3.10), (W3) and Fatou’s lemma, we have

sup [ > ex = T (falun) — 3 fi(un)u)

T
1
= lim )\/ eQ(t)(§VW(t,un).un—W(t,un))dt

n—>oo 0

T
> )\/ eQ<t>(1vvv(t,m).uA — W (t,uy))dt = fa(uy).
0 2

Thus we get fi(uy) < supy; f-

Lemma 3.4 Assume (L) and (W1) — (Wy) hold, then there exist a sequence (A,) of
[1,2] converging to 1 and a bounded sequence (uy,) on E such that

Fa, (wa,) =0, fa, (ux,) < sup f.
M

Proof. Let (A\,) C [1,2] be a sequence such that A\, — 1. By Lemma 3.3, there
exists a sequence (uy, ) such that

Fa (ua,) =0, fa, (ux,) < sup f.
M

It remains to prove the boundedness of (uy,). Arguing by contradiction, suppose that
llua, || — o0 as n — oco. Let vy, = ﬁ, then ||uy, || = 1. By going to a subsequence
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if necessary, we can assume that vy, — v in E and vy, —> v almost everywhere on
[0, T]. Since fy (uy,) =0, then for any w € F, we have

T
< u;\:,w > A <uy W >= /\n/ eCOVW (L, uy, ).wdt. (3.12)
0

Consequently, (v, ) satisfies

W(t
<Y w > =\, <oy, w>= )\n/ Q(t)wdt. (3.13)
" " 0 [, |
Let w = vi in (3.13) respectively. Then we have
T VW (t,uy, )oT
o = v [ e T
" [, |
VW (t,uy, )v_
oy [P = ,/ Q(t)%dt_
" [[u, |
Since 1 = |Juy, ||* = ||v)\ || + Hv/\ || we have
T VW (t,uy, ). Ao — vy
1 :/ catn YW wr)-Ony, = 0,) (3.14)
0 [, |

For s > 0, let
o(s) = inf{W(t,z)/t €[0,7T], x € RN, |z| > s} .

By (W3), we have ¢(s) > 0 for all s > 0. By (W3) and (Wy), we have for ¢ € [0,T] and

Wit2) > %(IVW(t,rwl)" > %(IW(@:@I)",

] |

so by (W) we have ¢(s) — 400 as s — 00. For 0 < a < b, let

An(a,b) ={t € [0,T]/a <fux, (t)] < b},

V(t
kap = inf{w|( |’2z>/t €07, zeRY, a<|a| < b}.
x

Since W (t, z) depends periodically on ¢, then by (W3), we have kqp > 0 for a > 0 and

W (t,ux, () > kap lux, )] for all t € A,(a,b).

Since f;n (ux,) =0 and fy, (uy,) < supj; f, there exists a constant ¢o > 0 such that for
alln e N
02 (i)~ S5, = [ QO
0

W
:/ eQOW (L, uy, )dt+/ eQOW (¢, uy, dtJr/ eCOW (L, uy, )dt
Ay (0,a) boo)
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2/ eQ(t)W(t,u,\n)dt—i—k:a,b/ eQ® |u,\n|2dt+<p(b)/ eQWdt. (3.15)
An,(O,a) An(aab) An(b,oo)

Combining (3.15) with the fact that p(s) — oo as s — oo, yields

/ eQWdt —s 0 as b —» oo, uniformly in n. (3.16)
Ay (b,00)

Let 7 €]p, co[. By Holder’s inequality and (2.1), we have

T
/ e oy, 7 dt < ( / ¥ Jox, [ di)* ( / QW )14
Ap (b,00) 0 A (b,oo)

< uz(/A ( )eQ(t)dt)l_% — 0 as b — o0, uniformly in n. (3.17)
n(b,00

By (3.15), we have
1
/ QW vy Pdt = 72/ QW fuy Pt < — " 50 (3.18)
An(ab) . * J 4 (a) Fap [[ux, |

as n — 00.
Let 0 < € < 3. By (W) there exists ac > 0 such that [VW(t,z)| < T |z| for all
2

|z] < a.. Consequently, by Holder’s inequality and (2.1)

L
/ eQ(t)VW(t’u’\")'()\"UM U’\")dt
An(oaae) Hu)\n”

t
< / eQ(t)M lux, | )\nv:r - vy ’dt
An(0,a0) lux, | " "

€ QW |y, |

< — AT — 0y ’dt
203 J A, (0.00) A

< LQ(/ Q) |%|2dt)é(/ Q)
205 ) 4,,(0,a0) An(0,ac)

< €
= 243

2 1
)\nv:rn - v;n’ dt)z

An ||mn||2% <e VneN. (3.19)

Now, by Hélder’s inequality, (Wy) and (3.17), we can take b. > r large enough so that

[ anTWemOu i),
A (be,00) [[ux, |

Aol — ’U;n‘ dt

n | An

|ux, |

vw t,u n g
< (/ eQ(t)(M) dtu(/ eQ(t)(lwnl
Ay (be,00) |ux, | Ay, (be,00)

<( / QO (t,uy, )dt) = ( / QW [uy 2 at)ze
Anp (be,00) Ay (be,00)

S/ Q) VW (t, ux,) lux
An(beaoo)

)7ty

+ _ —
)\nUM vy



332 M. TIMOUMI

20’

.(/A , )ecz(t)‘Anv;—u;ﬂ dt)7

< (cco)* ( / Q0 [y P dr)d < e (3.20)
Ay, (be,00)

for all integer n, where 2 + 2 = 1. Since VI is continuous, there exists d = d(€) such
that [VW (t,z)| < d|z| for all t € [0,T] and = € [ac, b]. So, for all t € A, (a,b.), we
have [VW (t,uy, )| < d|uy,|. Hence by Holder’s inequalitty and (3.18), there exists an
integer ng such that

.
/ Q) VW(t,u,\n).()\nvM UA")dt
An(aeabe) ||uAnH

< / eQ(t) |VW(ta uAn>| |U)\n|
An(acbe) |ux, |

< d/ Q) loa, |
An(a€1b5)

< d( / QW) [y 2 dt)} ( / Q)
An(aeabe) An(aeabe)

< 2d/ QW oy [P dt < e (3.21)
An(aeabe)

/\nv:rn — v;n‘ dt

/\nv; — v;n‘ dt

2 1
/\nv:rn - v;n‘ dt)z

for all integer n > ng. Therefore, combining (3.19) — (3.21) yields for n > ng

-
/T Q) VW (t, ux,)-(Anv] —0y)
0

dt < 3e < 1,
[,

which contradicts (3.14). Hence (uy,) is bounded.
Lemma 3.5 Let (uy,) be the sequence obtained in Lemma 3.4, then it is a (PS)
sequence of f satisfying

lim [ (ur,) =0, lim f(u,) <sup /.
n—oo M

n—mao0

Proof. We have

n—>oo n—oo

T
lim f(uy,)= lim [f,\n(u,\n)—l—()\n—l)(% HU;RHQJF/O eQOW (t,uy, )dt)]. (3.22)

By (3.5) and (2.1), we have

T
| ROt un, )t < e s, I+ Con o, (3.23)
0

It follows from (3.22), (3.23) and the boundedness of (uy, ) that

lim f(uy,)= lim fy, (ux,) <supf.
n——00 n—00 M
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Similarly, for all w € E, we have

1 T
tin_f(un, o=l (5, G, )t 1) (5 <5 w0 >+ [ @OV, )wdt)

n—->00 2 0

= nl'g{loo f;n (u/\n)w =0,

for all w € E. The proof is complete.

Now, let (uy,) be the bounded sequence obtained in Lemma 3.4. Taking a subse-
quence if necessary, we can assume that uy, — uin £ and uy, — u in L§,(0,7') for all
s € [1,00] since E is compactly embedded in Lg)(0,T). By f} (ux,) =0, (3.4), Holder’s
inequality and (2.1), we obtain

T
o, I = X [ eCOTW )

T T
< e [ fun, [[uf, e+ 20C, [ @O fus, P |
0 0

< de g, o, g, +2Cc Nl i (1o, I,
< delunalleg, 5, 1, + 20Ce Nuna i s,

2 —2 2
< deis [|un, | +2pCeM§HUAn||’£g lJux, 17+ (2.24)

Similarly, we have

— 12 2 —2 2
[Jux, I < ded [un, | +2pCeM§HUAnH’£g lJux, 17+ (2.25)

Combining (3.24) and (3.25) yields

—2 2
lux, I” < 8epsb lfux, |I* + 4pCeps; lluna llzz” a1 (2.26)

Combining Lemma 3.3 and (3.26) yields

1 — 8epy < 4pCepir, HUAnH}zg : (3.27)

Taking € = @, we get |\u>\n||i%22 > (8purCe)™" > 0, for all n. Since uy, — w in
LZ([O,T]) then u # 0. The fact that f’ is weakly sequentially continuous on E and
uy, — v in E imply f'(u) =0.

Let K = {u € E/f'(u) = 0} be the critical set of f and my = inf {f(u)/u € K — {0}}.
For any critical point u of f, assumption (W3) implies that

T
) = ) = 5 = [ COGIW )= Wt )t > .

Therefore, mg > 0. Let (u;) C K — {0} be such that f(u;) — mg. Arguing as in the
proof of Lemma 3.4, we can prove that (u;) is bounded and by going to a subsequence
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if necessary, we can assume that u; — w in F and u; — u almost everywhere on [0, 7],
and as above u # 0. Thus by (W3) and Fatou’s lemma

T
1
mo= lim f(u;)= lim eQ<t>[§VW(t,uj).uj—W(t,uj)]dt

Jj—00 j— Jq

T
QW 1 u).u — u)|dt = f(u) > m
2/0 [QVW(t, You — W (t,u)]dt = f(u) > mg.

So mg = f(u) and mg > 0 because u # 0.
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