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Abstract: In the present paper, the following damped vibration problems

{

ü(t) + q(t)u̇(t)− L(t)u(t) +∇W (t, u(t)) = 0,
u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

are studied, where T > 0, q ∈ C(R,R) is T−periodic with
∫

T

0
q(t)dt = 0, L(t)

is a continuous T−periodic and symmetric N × N matrix-valued function and
W ∈ C1(R × R

N ,R) is T−periodic in the first variable. We use a new kind of su-
perquadratic condition instead of the global Ambrosetti-Rabinowitz superquadratic
condidition and we obtain a nontrivial T−periodic solution for the above system. The
main idea here lies in the application of a variant of generalized weak linking theorem
for strongly indefinite problem developed by Schechter and Zou.
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1 Introduction

Consider the following damped vibration problems

(DV)

{

ü(t) + q(t)u̇(t)− L(t)u(t) +∇W (t, u(t)) = 0,
u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

where T > 0, q : R −→ R is a continuous T−periodic function with
∫ T

0 q(t)dt = 0,

Q(t) =
∫ t

0 q(s)ds, L(t) is a continuous T−periodic and symmetric N ×N matrix-valued
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function and W : R×RN −→ R is a continuous function, T−periodic in the first variable
and differentiable in the second variable with continuous derivative∇W (t, x) = ∂W

∂x
(t, x).

Equation (DV) is a basic mathematical model for the representation of damped nonlinear
oscillatory phenomena.

When q(t) = 0 for all t ∈ R, (DV) is just the following second-order Hamiltonian
system

(HS) ü(t)− L(t)u(t) +∇W (t, u(t)) = 0,

which is a classical equation describing many mechanical systems, such as a pendulum.
The system (HS) has been thoroughly studied and a lot of existence results have been
obtained, for example see [1-6] and references therein.

As far as the case q(t) 6= 0 is concerned, to our best knowledge, there are few research
about the existence of periodic solutions for (DV), see [7-9]. Recently, the existence of
periodic solutions for (DV) has been studied in [9] when W has a superquadratic growth
at infinity satisfying the global Ambrosetti-Rabinowitz superquadratic condition: there
exist constants µ > 2 and R > 0 such that

(AR) 0 < µW (t, x) ≤ ∇W (t, x).x

for all t ∈ R and |x| ≥ R, where x.y denotes the Euclidean inner product of x, y ∈ RN and
|.| denotes the corresponding Euclidean norm. Our paper is motivated by the following
reason: when dealing with superlinear differential equations, one often meets functionals
which do not satisfy (AR)-condition. Without (AR)-condition, we do not know whether
a Palais-Smale sequence is bounded. In the present paper, we shall study the existence of
periodic solutions for (DV) under a new kind of superquadratic condition given in [10] by
Ding and Luan for Schrödinger’s equation. Our approach is based on an application of
a variant of generalized weak linking theorem for strongly indefinite problem developed
by Schechter and Zou [11], where the authors developed the idea of monotonicity tric for
strongly indefinite problems; the original idea is due to Struwe [12].

Our main result reads as follows:

Theorem 1.1 Assume the following assumptions hold:

(L) Zero is not an eigenvalue of L = − d2

dt2
+ L(t);

(W1) ∇W (t, x) = o(|x|) as |x| −→ 0, uniformly on t ∈ [0, T ];

(W2)
W (t,x)

|x|2 −→ +∞, as |x| −→ ∞, ∀t ∈ [0, T ];

(W3) W (t, x) ≥ 0 and W̃ (t, x) = 1
2∇W (t, x).x −W (t, x) > 0, ∀t ∈ [0, T ], x ∈ RN − {0};

(W4) There exist constants c, r > 0 and σ > 1 such that

( |∇W (t, x)|

|x|

)σ

≤ cW̃ (t, x), ∀ |x| ≥ r, ∀t ∈ [0, T ].

Then (DV) has at least one nontrivial T− periodic solution.

Example 1.1 [10] LetW (t, x) = a(t)(|x|µ+(µ−2) |x|µ−ǫ
sin2( |x|

ǫ

ǫ
)), where a : R −→

R∗
+ is a continuous T− periodic function, µ > 2 and 0 < ǫ < µ − 2. A straigborhood

calculation shows that W satisfies the conditions of Theorem 1.1, but does not satisfy
the (AR) condition.
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2 Abstract Critical Point Theorem [11]

For the existence of periodic solutions for (DV), we appeal to the following abstract
critical point theorem. Let E be a Hilbert space with norm ‖.‖ and have an orthogonal
decomposition E = N ⊕ N⊥, N ⊂ E is a closed and separable subspace. Since N is
separable, there exists a norm |.|ω that satisfies |v|ω ≤ ‖v‖ for all v ∈ N and induces a
topology equivalent to the weak topology of N on bounded subset of N . For u = v+ z ∈
N ⊕ N⊥ with v ∈ N , z ∈ N⊥, we define |u|2ω = |v|2ω + |z|2ω, then |u|ω ≤ ‖u‖, ∀u ∈ E.
Particularly, if (un = vn + zn) is ‖.‖−bounded and un −→|.|ω u, then vn ⇀ v weakly in
N , zn −→ z strongly in N⊥, un ⇀ v+z weakly in E. Next, let us recall some definitions:
(i) A functional f : E −→ R is said to be |.|ω −upper semi-continuous, i.e., un −→|.|ω u
in E implies lim supn−→∞ f(un) ≤ f(u).
(ii) Let f ∈ C1(E,R). f ′ is said to be weakly sequentially continuously, i.e., un −→ u
in E implies limn−→∞ f ′(un)w = f ′(u)w for all w ∈ E.
Let E = E+ ⊕ E−, z0 ∈ E+ with ‖z0‖ = 1. Let N = E− ⊕ Rz0 and E+

1 = N⊥ =
(E− ⊕Rz0)

⊥. For R > 0, let

M =
{

u = u− + sz0/s ∈ R+, u− ∈ E−, ‖u‖ < R
}

with P0 = s0z0 ∈ M , s0 > 0. We define

D =
{

u = sz0 + z+/s ∈ R, z+ ∈ E+
1 ,

∥

∥sz0 + z+
∥

∥ = s0
}

.

For f ∈ C1(E,R), let Γ be the set of γ : [0, 1]× M̄ −→ E satisfying














γ is |.|ω − continuous,
γ(0, u) = u and f(γ(s, u)) ≤ f(u) for all u ∈ M̄,
for any (s0, u0) ∈ [0, 1]× M̄, there is a |.|ω − neighborhood
U(s0,u0) s.t.

{

U − γ(s, u)/(t, u) ∈ U(s0,u0) ∩ ([0, 1] ∩ M̄)
}

⊂ Efin,

where Efin denotes various finite dimensional subspaces of E, Γ is not empty since id ∈ Γ.

Theorem 2.1 Let (fλ) be a family of C1−functionals having the form

fλ(u) = g(u)− λh(u), u ∈ E, λ ∈ [1, 2].

a) h(u) ≥ 0, ∀u ∈ E, f1 = f ;

b) g(u) −→ +∞ or h(u) −→ +∞ as ‖u‖ −→ ∞;

c) fλ is |.|ω − upper semi− continuous, f
′

λ is weakly sequentially continuous on E.

Moreover, fλ maps bounded sets into bounded sets;

d) sup
∂M

fλ < inf
D

fλ, ∀λ ∈ [1, 2].

Then for almost all λ ∈ [1, 2], there exists a sequence (un) such that

sup
n

‖un‖ < ∞, fλ(un) −→ cλ, f
′

λ(un) −→ 0 as n −→ ∞,

where

cλ = inf
γ∈Γ

sup
u∈M

fλ(γ(1, u)) ∈ [inf
D

fλ, sup
M̄

f ].
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As usual, we say f ∈ C1(E,R) satisfies the Palais-Smale condition ((PS) in short)
if any sequence (un) ⊂ E for which (f(un)) is bounded and f ′(un) −→ 0 as n −→ ∞,
possesses a convergent subsequence.

3 Proof of Theorem 1.1

For 1 ≤ s < ∞, let Ls
Q(0, T ;R

N) be the Banach space of measurable functions u defined

on [0, T ] with values in RN satisfying
∫ T

0 eQ(t) |u(t)|s dt < ∞, with the norm

‖u‖Ls
Q
= (

∫ T

0

eQ(t) |u(t)|s dt)
1
s

and L∞
Q (0, T ;RN) denote the Banach space of measurable functions u defined on [0, T ]

with values in RN under the norm

‖u‖L∞

Q
= esssupt∈[0,T ]e

Q(t)
2 |u(t)| .

The space L2
Q(0, T ;R

N) provided with the inner product

< u, v >L2
Q
=

∫ T

0

eQ(t)u(t).v(t)dt, u, v ∈ L2
Q(0, T ;R

N)

is a Hilbert space. Let E be the space defined by

E =
{

u ∈ L2
Q(0, T ;R

N) : u̇ ∈ L2
Q(0, T ;R

N), u(0) = u(T )
}

.

The space E provided with the inner product

< u, v >0=

∫ T

0

eQ(t)[u(t).v(t) + u̇(t).v̇(t)]dt, u, v ∈ E

and the associated norm

‖u‖0 = (

∫ T

0

eQ(t)[|u(t)|2 + |u̇(t)|2]dt)
1
2 , u ∈ E

is a Hilbert space. Define an operator K : E −→ E by

< Ku, v >0=

∫ T

0

eQ(t)(IN×N − L(t))u(t).v(t)dt

for all u, v ∈ E, where IN×N is the N ×N identity matrix. Then it is easy to check that
K is a bounded self-adjoint linear operator. By the assumption (L) and the classical
spectral theory, we can decompose E into the orthogonal sum of invariant subspaces
for I −K: E = E− ⊕ E+, where E− (respectively E+) is the subspace of E on which
I −K is negative (respectively positive) definite. Here, I denotes the identity operator.
Besides, E− is finite dimensional since K is compact. Furthermore, we introduce on E
the equivalent new inner product

< u, v >=< (I −K)u+, v+ >0 − < (I −K)u−, v− >0
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for u = u− + u+ and v = v− + v+ ∈ E and the equivalent norm ‖.‖ =< ., . >
1
2 . It is

well known that E is compactly embedded in Ls
Q(0, T ;R

N) for all s ∈ [1,∞] and as a
consequence for all s ∈ [1,∞], there exists a constant µs > 0 such that

‖u‖Ls
Q
≤ µs ‖u‖ , ∀u ∈ E. (3.1)

By definition of < ., . >, E− and E+ we have

< (I −K)u, u >0= ±‖u‖2 , ∀u ∈ E±.

For (DV), we consider the functional f(u) = χ(u)− g(u) defined on the space E, where
χ is the quadratic form

χ(u) =
1

2

∫ T

0

eQ(t)[|u̇(t)|2 + L(t)u(t).u(t)]dt

and

g(u) =

∫ T

0

eQ(t)W (t, u)dt.

By the definition of K, the functional f can be rewritten as

f(u) =
1

2
< (I −K)u, u >0 −g(u) =

1

2
(
∥

∥u+
∥

∥

2
−
∥

∥u−∥
∥

2
)− g(u), u ∈ E.

By (W4), for |x| ≥ r and t ∈ [0, T ], we have

|∇W (t, x)|σ ≤ cW̃ (t, x) |x|σ ≤
c

2
|∇W (t, x)| |x|σ+1

,

thus
|∇W (t, x)| ≤ (

c

2
)

1
σ−1 |x|p−1 ,

where p = 2σ
σ−1 . Let c1 = maxt∈[0,T ],|x|≤r |∇W (t, x)|, then

|∇W (t, x)| ≤ c1 + (
c

2
)

1
σ−1 |x|p−1 , ∀t ∈ [0, T ], x ∈ RN . (3.2)

By (W1), for all ǫ > 0, there exists rǫ > 0 such that

|∇W (t, x)| ≤ 2ǫ |x| , ∀t ∈ [0, T ], |x| ≤ rǫ. (3.3)

For |x| ≥ rǫ, we have by (3.2), |∇W (t, x)| ≤ pCǫ |x|
p−1, where Cǫ = 1

p
( c1
r
p−1
ǫ

+ ( c2 )
1

σ−1 ).

So
|∇W (t, x)| ≤ 2ǫ |x|+ pCǫ |x|

p−1 , ∀t ∈ [0, T ], x ∈ RN . (3.4)

Hence, for all t ∈ [0, T ] and x ∈ RN

W (t, x) =

∫ 1

0

∇W (t, sx).xds ≤ ǫ |x|2 + Cǫ |x|
p
, ∀t ∈ [0, T ], x ∈ RN . (3.5)

By Proposition B.37 in [13], the inequality (3.4) implies that the functional g is contin-
uously differentiable on E and for all u, v ∈ E

g′(u)v =

∫ T

0

eQ(t)∇W (t, u).vdt.
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It is easy to see that the quadratic form χ is continuously differentiable and for all
u, v ∈ E, we have

χ′(u)v =

∫ T

0

eQ(t)[u̇.v̇ + L(t)u.v]dt.

Therefore the functional f is continuously differentiable on E and for all u, v ∈ E

f ′(u)v =

∫ T

0

eQ(t)[u̇.v̇ + L(t)u.v −∇W (t, u).v]dt

=< u+, v+ > − < u−, v− > −

∫ T

0

eQ(t)∇W (t, u).vdt.

Lemma 3.1 If u is a T−periodic solution of the Euler equation f ′(u) = 0, then u is

a solution of problem (DV).

Proof. Since f ′(u) = 0, then for all v ∈ E

0 = f ′(u)v =

∫ T

0

eQ(t)u̇.v̇dt+

∫ T

0

eQ(t)[L(t)u−∇W (t, u)].vdt.

By the fundamental lemma and remarks in ([14], pages 6,9), we know that eQu̇ has a
weak derivative and

d

dt
(eQu̇) = eQ(L(t)u−∇W (t, u)) a.e. t ∈ [0, T ], (3.6)

eQ(t)u̇(t) =

∫ t

0

eQ
(s)

[L(s)u(s)−∇W (s, u(s))]ds+ c a.e. t ∈ [0, T ], (3.7)

∫ T

0

eQ(s)[L(s)u(s)−∇W (s, u(s))]ds = 0, (3.8)

where c is a constant. We identify the equivalence class eQ(t)u̇(t) and its continuous

representation
∫ t

0 eQ(s)[L(s)u(s) − ∇W (s, u(s))]ds + c. Thus by (3.7), (3.8) and the
existence of u̇, one has

u̇(0)− u̇(T ) = u(0)− u(T ) = 0.

In order to apply Theorem 2.1, we consider the family of functionals

fλ(u) =
1

2

∥

∥u+
∥

∥

2
− λ(

1

2

∥

∥u+
∥

∥

2
+

∫ T

0

eQ(t)W (t, u)dt),

λ ∈ [1, 2]. It is easy to see that fλ satisfies conditions a), b) in Theorem 2.1. To verify
condition c), let un −→|.|ω u, then u+

n −→ u+ and u−
n ⇀ u− in E. Taking a subsequence

if necessary, we have un −→ u a.e. on [0, T ]. By (W3), Fatou’s lemma and the weak
lower semi-continuity of the norm, we have

lim sup
n−→∞

fλ(un) ≤ fλ(u),

which means that fλ is |.|ω −upper semi-continuous. f
′

λ is weakly sequentially continuous
on E is due to [15].

To continue the discussion, it remains to verify condition d) in Theorem 2.1.



328 M. TIMOUMI

Lemma 3.2 Under assumptions (L), (W1)− (W4), we have

(i) There exists ρ > 0 independent of λ ∈ [1, 2] such that m = inf fλ(S
+
ρ ) > 0, where

S+
ρ =

{

u ∈ E+/ ‖u‖ = ρ
}

.

(ii) For fixed z0 ∈ E+ with ‖z0‖ = 1 and any λ ∈ [1, 2], there is R > ρ > 0 such that

sup fλ(∂M) ≤ 0, where

M =
{

u = u− + sz0/s ∈ R+, u− ∈ E−, ‖u‖ < R
}

.

Proof. (i) By (3.5) and (2.1), for any u ∈ E+, we have

fλ(u) ≥
1

2
‖u‖2 − λǫ ‖u‖2L2

Q
− λCǫ ‖u‖

p

L
p
Q

≥
1

2
‖u‖2 − 2ǫµ2

2 ‖u‖
2 − 2Cǫµ

p
p ‖u‖

p
.

Taking ǫ = 1
8µ2

2
, we get

fλ(u) ≥
1

4
‖u‖2 − 2Cǫµ

p
p ‖u‖

p .

Since p > 2, there exists a constant ρ > 0 independent of λ ∈ [1, 2] satisfying inf fλ(S
+
ρ ) >

0.
(ii) Assume by contradiction that there exists un ∈ E−⊕R+z0 such that fλ(un) > 0 for
all n and ‖un‖ −→ ∞ as n −→ ∞. Let vn = un

‖un‖ = snz0 + v−n , then

0 <
fλ(un)

‖un‖
=

1

2
(s2n − λ

∥

∥v−n
∥

∥

2
)− λ

∫ T

0

eQ(t)W (t, un)

|un|
2 |vn|

2
dt. (3.9)

It follows from (W3) that

∥

∥v−n
∥

∥

2
≤ λ

∥

∥v−n
∥

∥

2
< s2n = 1−

∥

∥v−n
∥

∥

2
,

therefore ‖v−n ‖
2
≤ 1√

2
and 1 − 1√

2
≤ sn ≤ 1. Taking a subsequence if necessary, we can

assume that sn −→ s 6= 0, vn ⇀ v and vn −→ v almost everywhere on [0, T ]. Hence
v = sz0+v− 6= 0, and since |un| −→ ∞ almost everywhere on [0, T ], it follows from (W2)
and Fatou’s lemma that

∫ T

0

eQ(t)W (t, un)

|un|
2 |vn|

2
dt −→ ∞ as n −→ ∞

which contradicts (3.9). The proof is finished.
Under assumptions (L) and (W1) − (W4), we obtain by applying Theorem 2.1, that

for all λ ∈ [1, 2], there exists a sequence (un) such that

sup
n

‖un‖ < ∞, f
′

λ(un) = 0, fλ(un) −→ cλ ∈ [m, sup
M̄

f ]. (3.10)

Lemma 3.3 Under assumptions (L) and (W1)− (W4), for all λ ∈ [1, 2], there exists

uλ ∈ E − {0} such that

f
′

λ(uλ) = 0, fλ(uλ) ≤ sup
M̄

f. (3.11)
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Proof. Let (un) be the sequence obtained in (3.10), write un = u−
n + u+

n with
u±
n ∈ E±. Since (un) is bounded, then (u+

n ) is bounded, so un ⇀ uλ and u+
n ⇀ u+

λ in E,
after going to a subsequence.
We claim that u+

λ 6= 0. If not, then after going to a subsequence, we can assume that
u+
n −→ 0 in Ls(R,RN ) for all s ∈ [1,∞] since E is compactly embedded in Ls(R,RN ).

It follows from inequality (3.4) and Hölder’s inequality that

0 ≤

∫ T

0

eQ(t)
∣

∣∇W (t, u).u+
n

∣

∣ dt ≤ 2ǫ

∫ T

0

|un|
∣

∣u+
n

∣

∣ dt+ ρCǫ

∫ T

0

eQ(t) |un|
p−1 ∣

∣u+
n

∣

∣ dt

≤ 2ǫ ‖un‖L2
Q

∥

∥u+
n

∥

∥

L2
Q

+ ‖un‖
p−1
L

p

Q

∥

∥u+
n

∥

∥

L
p

Q

−→ 0

as n −→ ∞. Hence by (3.10), we get

fλ(un) ≤
∥

∥u+
n

∥

∥

2
= f

′

λ(un)u
+
n + λ

∫ T

0

eQ(t)∇W (t, u).u+
n dt −→ 0

as n −→ ∞, which contradicts the fact that fλ(un) ≥ m > 0. Therefore u+
λ 6= 0 and

thus uλ 6= 0. Note that fλ is weakly sequentially continuous on E, thus

f
′

λ(uλ)w = lim
n−→∞

f
′

λ(un)w = 0, ∀w ∈ E,

which implies that f
′

λ(uλ) = 0. By (3.10), (W3) and Fatou’s lemma, we have

sup
M̄

f ≥ cλ = lim
n−→∞

(fλ(un)−
1

2
f

′

λ(un)un)

= lim
n−→∞

λ

∫ T

0

eQ(t)(
1

2
∇W (t, un).un −W (t, un))dt

≥ λ

∫ T

0

eQ(t)(
1

2
∇W (t, uλ).uλ −W (t, uλ))dt = fλ(uλ).

Thus we get fλ(uλ) ≤ supM̄ f .

Lemma 3.4 Assume (L) and (W1)− (W4) hold, then there exist a sequence (λn) of
[1, 2] converging to 1 and a bounded sequence (uλn

) on E such that

f
′

λn
(uλn

) = 0, fλn
(uλn

) ≤ sup
M̄

f.

Proof. Let (λn) ⊂ [1, 2] be a sequence such that λn −→ 1. By Lemma 3.3, there
exists a sequence (uλn

) such that

f
′

λn
(uλn

) = 0, fλn
(uλn

) ≤ sup
M̄

f.

It remains to prove the boundedness of (uλn
). Arguing by contradiction, suppose that

‖uλn
‖ −→ ∞ as n −→ ∞. Let vλn

=
uλn

‖uλn‖ , then ‖vλn
‖ = 1. By going to a subsequence
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if necessary, we can assume that vλn
⇀ v in E and vλn

−→ v almost everywhere on
[0, T ]. Since f

′

λn
(uλn

) = 0, then for any w ∈ E, we have

< u+
λn
, w > −λn < u−

λn
, w >= λn

∫ T

0

eQ(t)∇W (t, uλn
).wdt. (3.12)

Consequently, (vλn
) satisfies

< v+λn
, w > −λn < v−λn

, w >= λn

∫ T

0

eQ(t)∇W (t, uλn
).w

‖uλn
‖

dt. (3.13)

Let w = v±λn
in (3.13) respectively. Then we have

∥

∥v+λn

∥

∥

2
= λn

∫ T

0

eQ(t)
∇W (t, uλn

).v+
λn

‖uλn
‖

dt,

∥

∥v−λn

∥

∥

2
= −

∫ T

0

eQ(t)
∇W (t, uλn

).v−
λn

‖uλn
‖

dt.

Since 1 = ‖vλn
‖2 =

∥

∥v+λn

∥

∥

2
+
∥

∥v−λn

∥

∥

2
, we have

1 =

∫ T

0

eQ(t)
∇W (t, uλn

).(λnv
+
λn

− v−λn
)

‖uλn
‖

dt. (3.14)

For s ≥ 0, let

ϕ(s) = inf
{

W̃ (t, x)/t ∈ [0, T ], x ∈ RN , |x| ≥ s
}

.

By (W3), we have ϕ(s) > 0 for all s > 0. By (W3) and (W4), we have for t ∈ [0, T ] and
|x| ≥ r

W̃ (t, x) ≥
1

c

( |∇W (t, x)|

|x|

)σ

≥
2σ

c

( |W (t, x)|

|x|2

)σ

,

so by (W2) we have ϕ(s) −→ +∞ as s −→ ∞. For 0 ≤ a < b, let

An(a, b) = {t ∈ [0, T ]/a ≤ |uλn
(t)| ≤ b} ,

ka,b = inf

{

W̃ (t, x)

|x|2
/t ∈ [0, T ], x ∈ RN , a ≤ |x| ≤ b

}

.

Since W (t, x) depends periodically on t, then by (W3), we have ka,b > 0 for a > 0 and

W̃ (t, uλn
(t)) ≥ ka,b |uλn

(t)|2 for all t ∈ An(a, b).

Since f
′

λn
(uλn

) = 0 and fλn
(uλn

) ≤ supM̄ f , there exists a constant c0 > 0 such that for
all n ∈ N

c0 ≥ fλn
(uλn

)−
1

2
f

′

λn
(uλn

)uλn
=

∫ T

0

eQ(t)W̃ (t, uλn
)dt

=

∫

An(0,a)

eQ(t)W̃ (t, uλn
)dt+

∫

An(a,b)

eQ(t)W̃ (t, uλn
)dt+

∫

An(b,∞)

eQ(t)W̃ (t, uλn
)dt
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≥

∫

An(0,a)

eQ(t)W̃ (t, uλn
)dt+ ka,b

∫

An(a,b)

eQ(t) |uλn
|2 dt+ ϕ(b)

∫

An(b,∞)

eQ(t)dt. (3.15)

Combining (3.15) with the fact that ϕ(s) −→ ∞ as s −→ ∞, yields

∫

An(b,∞)

eQ(t)dt −→ 0 as b −→ ∞, uniformly in n. (3.16)

Let γ ∈]p,∞[. By Hölder’s inequality and (2.1), we have

∫

An(b,∞)

eQ(t) |vλn
|p dt ≤ (

∫ T

0

eQ(t) |vλn
|γ dt)

p
γ (

∫

An(b,∞)

eQ(t)dt)1−
p
γ

≤ µp
γ(

∫

An(b,∞)

eQ(t)dt)1−
p
γ −→ 0 as b −→ ∞, uniformly in n. (3.17)

By (3.15), we have

∫

An(a,b)

eQ(t) |vλn
|2 dt =

1

‖uλn
‖2

∫

An(a,b)

eQ(t) |uλn
|2 dt ≤

c0

ka,b ‖uλn
‖2

−→ 0 (3.18)

as n −→ ∞.
Let 0 < ǫ < 1

3 . By (W1) there exists aǫ > 0 such that |∇W (t, x)| ≤ ǫ
2µ2

2
|x| for all

|x| ≤ aǫ. Consequently, by Hölder’s inequality and (2.1)

∫

An(0,aǫ)

eQ(t)
∇W (t, uλn

).(λnv
+
λn

− v−λn
)

‖uλn
‖

dt

≤

∫

An(0,aǫ)

eQ(t) |∇W (t, uλn
)|

|uλn
|

|vλn
|
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣
dt

≤
ǫ

2µ2
2

∫

An(0,aǫ)

eQ(t) |vλn
|
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣
dt

≤
ǫ

2µ2
2

(

∫

An(0,aǫ)

eQ(t) |vλn
|2 dt)

1
2 (

∫

An(0,aǫ)

eQ(t)
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣

2

dt)
1
2

≤
ǫ

2µ2
2

λn ‖vλn
‖2L2

Q
≤ ǫ, ∀n ∈ N . (3.19)

Now, by Hölder’s inequality, (W4) and (3.17), we can take bǫ ≥ r large enough so that

∫

An(bǫ,∞)

eQ(t)
∇W (t, uλn

).(λnv
+
λn

− v−λn
)

‖uλn
‖

dt

≤

∫

An(bǫ,∞)

eQ(t) |∇W (t, uλn
)|

|uλn
|

|vλn
|
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣
dt

≤ (

∫

An(bǫ,∞)

eQ(t)
( |∇W (t, uλn

)|

|uλn
|

)σ

dt
1
σ (

∫

An(bǫ,∞)

eQ(t)(|vλn
|
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣
)σ

′

dt)
1
σ′

≤ (

∫

An(bǫ,∞)

eQ(t)cW̃ (t, uλn
)dt)

1
σ (

∫

An(bǫ,∞)

eQ(t) |vλn
|2σ

′

dt)
1

2σ′
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·(

∫

An(bǫ,∞)

eQ(t)
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣

2σ′

dt)
1

2σ′

≤ (cc0)
1
σ (

∫

An(bǫ,∞)

eQ(t) |vλn
|p dt)

2
p < ǫ (3.20)

for all integer n, where 1
σ
+ 1

σ′
= 1. Since ∇W is continuous, there exists d = d(ǫ) such

that |∇W (t, x)| ≤ d |x| for all t ∈ [0, T ] and x ∈ [aǫ, bǫ]. So, for all t ∈ An(aǫ, bǫ), we
have |∇W (t, uλn

)| ≤ d |uλn
|. Hence by Hölder’s inequalitty and (3.18), there exists an

integer n0 such that

∫

An(aǫ,bǫ)

eQ(t)
∇W (t, uλn

).(λnv
+
λn

− v−λn
)

‖uλn
‖

dt

≤

∫

An(aǫ,bǫ)

eQ(t) |∇W (t, uλn
)|

|uλn
|

|vλn
|
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣
dt

≤ d

∫

An(aǫ,bǫ)

eQ(t) |vλn
|
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣
dt

≤ d(

∫

An(aǫ,bǫ)

eQ(t) |vλn
|2 dt)

1
2 (

∫

An(aǫ,bǫ)

eQ(t)
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣

2

dt)
1
2

≤ 2d

∫

An(aǫ,bǫ)

eQ(t) |vλn
|2 dt < ǫ (3.21)

for all integer n ≥ n0. Therefore, combining (3.19)− (3.21) yields for n ≥ n0

∫ T

0

eQ(t)
∇W (t, uλn

).(λnv
+
λn

− v−λn
)

‖uλn
‖

dt ≤ 3ǫ < 1,

which contradicts (3.14). Hence (uλn
) is bounded.

Lemma 3.5 Let (uλn
) be the sequence obtained in Lemma 3.4, then it is a (PS)

sequence of f satisfying

lim
n−→∞

f
′

(uλn
) = 0, lim

n−→∞
f(uλn

) ≤ sup
M̄

f.

Proof. We have

lim
n−→∞

f(uλn
) = lim

n−→∞
[fλn

(uλn
) + (λn − 1)(

1

2

∥

∥u−
λn

∥

∥

2
+

∫ T

0

eQ(t)W (t, uλn
)dt)]. (3.22)

By (3.5) and (2.1), we have

∫ T

0

eQ(t)W (t, uλn
)dt ≤ ǫµ2

2 ‖uλn
‖2 + Cǫµ

p
p ‖uλn

‖p . (3.23)

It follows from (3.22), (3.23) and the boundedness of (uλn
) that

lim
n−→∞

f(uλn
) = lim

n−→∞
fλn

(uλn
) ≤ sup

M̄

f.
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Similarly, for all w ∈ E, we have

lim
n−→∞

f ′(uλn
)w = lim

n−→∞
[f ′

λn
(uλn

)w+(λn−1)(
1

2
< u−

λn
, w > +

∫ T

0

eQ(t)∇W (t, uλn
).wdt)]

= lim
n−→∞

f ′
λn

(uλn
)w = 0,

for all w ∈ E. The proof is complete.
Now, let (uλn

) be the bounded sequence obtained in Lemma 3.4. Taking a subse-
quence if necessary, we can assume that uλn

⇀ u in E and uλn
−→ u in Ls

Q(0, T ) for all
s ∈ [1,∞] since E is compactly embedded in Ls

Q(0, T ). By f ′
λn

(uλn
) = 0, (3.4), Hölder’s

inequality and (2.1), we obtain

∥

∥u+
λn

∥

∥

2
= λn

∫ T

0

eQ(t)∇W (t, uλn
).u+

λn
dt

≤ 4ǫ

∫ T

0

eQ(t) |uλn
|
∣

∣u+
λn

∣

∣ dt+ 2pCǫ

∫ T

0

eQ(t) |uλn
|p−1 ∣

∣u+
λn

∣

∣ dt

≤ 4ǫ ‖uλn
‖L2

Q

∥

∥u+
λn

∥

∥

L2
Q

+ 2pCǫ ‖uλn
‖p−1
L

p
Q

∥

∥u+
λn

∥

∥

L
p

Q

≤ 4ǫ ‖uλn
‖L2

Q

∥

∥u+
λn

∥

∥

L2
Q

+ 2pCǫ ‖uλn
‖p−1
L

p

Q

∥

∥u+
λn

∥

∥

L
p
Q

≤ 4ǫµ2
2 ‖uλn

‖2 + 2pCǫµ
2
p ‖uλn

‖p−2
L

p

Q

‖uλn
‖2 . (2.24)

Similarly, we have

∥

∥u−
λn

∥

∥

2
≤ 4ǫµ2

2 ‖uλn
‖2 + 2pCǫµ

2
p ‖uλn

‖p−2
L

p

Q

‖uλn
‖2 . (2.25)

Combining (3.24) and (3.25) yields

‖uλn
‖2 ≤ 8ǫµ2

2 ‖uλn
‖2 + 4pCǫµ

2
p ‖uλn

‖p−2
L

p
Q

‖uλn
‖2 . (2.26)

Combining Lemma 3.3 and (3.26) yields

1− 8ǫµ2
2 ≤ 4pCǫµ

2
p ‖uλn

‖p−2
L

p

Q

. (3.27)

Taking ǫ = 1
16µ2

p
, we get ‖uλn

‖p−2
L

p
Q

≥ (8pµ2
pCǫ)

−1 > 0, for all n. Since uλn
−→ u in

Lp
Q([0, T ]) then u 6= 0. The fact that f ′ is weakly sequentially continuous on E and

uλn
⇀ u in E imply f ′(u) = 0.

Let K = {u ∈ E/f ′(u) = 0} be the critical set of f and m0 = inf {f(u)/u ∈ K − {0}}.
For any critical point u of f , assumption (W3) implies that

f(u) = f(u)−
1

2
f ′(u)u =

∫ T

0

eQ(t)[
1

2
∇W (t, u).u−W (t, u)]dt ≥ 0.

Therefore, m0 ≥ 0. Let (uj) ⊂ K − {0} be such that f(uj) −→ m0. Arguing as in the
proof of Lemma 3.4, we can prove that (uj) is bounded and by going to a subsequence
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if necessary, we can assume that uj ⇀ u in E and uj −→ u almost everywhere on [0, T ],
and as above u 6= 0. Thus by (W3) and Fatou’s lemma

m0 = lim
j−→∞

f(uj) = lim
j−→∞

∫ T

0

eQ(t)[
1

2
∇W (t, uj).uj −W (t, uj)]dt

≥

∫ T

0

eQ(t)[
1

2
∇W (t, u).u −W (t, u)]dt = f(u) ≥ m0.

So m0 = f(u) and m0 > 0 because u 6= 0.
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