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1 Introduction

In this paper we continue our studies of a stochastic game of two players of a fully
antagonistic nature initiated in [1] by the same authors. The game evolves as a mutual
conflict involving two players A and B hitting each other at random and continued until
one of the players is “exhausted.” In short, the players attack each other in accordance
with two independent marked point processes

A :=
∑

j≥1

wjεsj , and B :=
∑

k≥1

zkεtk , s1, t1 > 0,

representing respective attacks to players A and B. Here εa is the Dirac point mass at
point a ∈ R,

∑

j≥1 εsj , and
∑

k≥1 εtk are underlying point random measures of the times
of attacks, while the marks wj ’s and zk’s represent respective damages to players A and
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B. Players A and B can sustain the attacks until their respective cumulative casualties
cross thresholds M and N (positive real numbers). At a time when it takes place (at
the first passage time), i.e., when one of the players loses the game, the game should
formally stop. However, the game was assumed to be tracked by a third party observer
upon random epochs of time τ1, τ2, . . . and consequently, the outcome of the game is
unknown in real time. The first passage time is then shifted to epoch τρ (called the first
observed passage time) that takes place upon one of the observation epochs. Thus, the
narrative of the game is delayed allowing the players to continue fighting even after one
of the players lost the game thereby letting the game to proceeed in a more realistic
scenario.

We further assumed in [1] that A and B are marked Poisson random measures and
τ :=

∑

i≥1 ετi, τ0 > 0 was a renewal process with interrenewal times being exponentially
distributed. If Xi and Yi are increments of the casualties to players A and B on (τi−1, τi]
observed at time τi, then

Ak = X0 +X1 + . . .+Xk, Bk = Y0 + Y1 + . . .+ Yk

form the cumulative damages to players A and B by time τk. With the exit indices

µ := inf{j ≥ 0 : Aj = X0 +X1 + . . . +Xj > M }

and
ν := inf{k ≥ 0 : Bk = Y0 + Y1 + . . .+ Yk > N },

Aµ and Bν are the respective cumulative damages to players A and B at their respective
observed or virtual ruin times. In [1], the functional of interest was

Φµν = Φµν(α, β, θ) = Ee−αAµ−βBµ−θτµ1{µ<ν}

giving the joint transform of the first observed passage time τµ (the ruin time of player
A), along with the status of the respective casualties to players A and B at τµ = τρ on the
confine σ-algebra F (Ω) ∩ {µ < ν}. This functional was obtained in terms of the double
Laplace-Carson and Laplace-Stieltjes transforms under the claim that it was analytically
invertible. We succeeded in doing this. The inverse formulas contained various special
functions but seemed to be cumbersome. We go on the further claim that the results are
numerically tame.

We ended [1] with obtaining the marginal functional Ee−αAµ1{µ<ν} in terms of mod-
ified Bessel functions and their integrals. The objective of this paper is to continue with
other marginal functionals and a subsequent inversion of their Laplace-Stieltjes trans-
forms to arrive at explicit probability distributions and then illustrate the result with
computational examples. Note that either the present paper and [1] are abridged and
their complete version is available in [2].

2 Further Cases of Marginal Functionals

Our next goal is to get the other marginal transforms. They are to be obtained from
Φµν(α, β, θ) = Ee−αAµ−βBµ−θτµ1{µ<ν} in (2.27) and (3.21-3.73) of [1]. In Case 1 [1], we
gave Φµν(α, 0, 0) = Ee−αAµ1{µ<ν}. We continue with the other cases.

Case 2. Setting α = θ = 0 in Φµν(α, β, θ) leads us to the marginal Laplace-Stieltjes
transform of the casualties to player B at the exit from the game to be lost by player A,



270 J.H. DSHALALOW, W. HUANG, H.-J. KE AND A. TREERATTRAKOON

Φµν(0, β, 0) := Ee−βBµ1{µ<ν}. After setting α = θ = 0 in (3.70-3.71) [1], we arrive at
the following.

(i) Case δ 6= λA. Proceeding as in Case 1 (see more details in [2]) we have

Φ(1)
µν (0, β, 0) =

{

λAδ

(λA + λB)(δ + λB)
· e−Nβe

−(
λBg

λA+λB
)(M−X0)e

−(
λAh

λA+λB
)(N−Y0)

× I0
(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2
)

+

∫ N−Y0

z=0

[

( λAδβ

(λA + λB)(δ + λB)
+

λAh(δ
2 + 2λBδ)

(λA + λB)(δ + λB)2
+

λAλ
2
Bh

2δ

(λA + λB)(δ + λB)3

×
1

β + hδ
δ+λB

)

e−(Y0+z)βe
−(

λBg

λA+λB
)(M−X0)e

−(
λAh

λA+λB
)z

× I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

]

dz +
−λAλ

2
Bh

2δ

(λA + λB)(δ + λB)3
·

1

β + hδ
δ+λB

× e−Nβe
−(

λBg

λA+λB
)(M−X0)e

−( hδ
δ+λB

)(N−Y0)

×

∫ N−Y0

z=0

e
(

λBh(δ−λA)

(λA+λB)(δ+λB )
)z
I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

dz

}

× 1(X0,∞)(M)1(Y0,∞)(N). (2.1)

(ii) Case δ = λA. Furthermore,

Φ(2)
µν (0, β, 0) =

{

λ2
A

(λA + λB)2
· e−Nβe

−(
λBg

λA+λB
)(M−X0)e

−(
λAh

λA+λB
)(N−Y0)

× I0
(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2
)

+

∫ N−Y0

z=0

[

( λ2
Aβ

(λA + λB)2
+

λAh(λ
2
A + 2λAλB)

(λA + λB)3
+

λ2
Aλ

2
Bh

2

(λA + λB)4
·

1

β + λAh
λA+λB

)

× e−(Y0+z)βe
−(

λBg

λA+λB
)(M−X0)e

−(
λAh

λA+λB
)z
I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

]

dz

+
−λ2

Aλ
2
Bh

2

(λA + λB)3

√

N − Y0

λAλBhg(M −X0)
·

1

β + λAh
λA+λB

· e−Nβe
−(

λBg

λA+λB
)(M−X0)

× e
−(

λAh

λA+λB
)(N−Y0)I1

(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2
)

}

× 1(X0,∞)(M)1(Y0,∞)(N). (2.2)

Case 3. With α = β = 0 we obtain the Laplace-Stieltjes transform of the exit time
of the game to be lost by player A, Φµν(0, 0, θ) := Ee−θτµ1{µ<ν}.
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(i) Case δ 6= λ
A
.

Φ(1)
µν (0, 0, θ) =

{

λAδ

Λ(δ + θ + λB)
· e−(g−

λAg

Λ )(M−X0)e−(h−
λBh

Λ )(N−Y0)

× I0
(

2

√

λAλBhg(M −X0)(N − Y0)

Λ2

)

+
λAhδ

Λ(δ + θ)
· e−(g−

λAg

Λ )(M−X0)

×

∫ N−Y0

z=0

e−(h−
λBh

Λ )zI0
(

2

√

λAλBhg(M −X0)z

Λ2

)

dz

+
−λAλ

2
Bhδ

Λ(δ + θ)(δ + θ + λB)2
· e−(g−

λAg

Λ )(M−X0) · e
−(h−

λBh

δ+θ+λB
)(N−Y0)

×

∫ N−Y0

z=0

e
(
λBh

Λ −
λBh

δ+θ+λB
)z
I0
(

2

√

λAλBhg(M −X0)z

Λ2

)

dz

}

× 1(X0,∞)(M)1(Y0,∞)(N). (2.3)

(ii) Case δ = λA.

Φ(2)
µν (0, 0, θ) =

{

λ2
A

Λ2
· e−(g−

λAg

Λ )(M−X0)e−(h−
λBh

Λ )(N−Y0)

× I0
(

2

√

λAλBhg(M −X0)(N − Y0)

Λ2

)

+
λ2
Ah

Λ(θ + λA)
· e−(g−

λAg

Λ )(M−X0)

×

∫ N−Y0

z=0

e−(h−
λBh

Λ )zI0
(

2

√

λAλBhg(M −X0)z

Λ2

)

dz

+
−λ2

Aλ
2
Bh

Λ2(θ + λA)

√

N − Y0

λAλBhg(M −X0)
· e−(g−

λAg

Λ )(M−X0)e−(h−
λBh

Λ )(N−Y0)

× I1
(

2

√

λAλBhg(M −X0)(N − Y0)

Λ2

)

}

1(X0,∞)(M)1(Y0,∞)(N). (2.4)

Here Ij ’s are modified Bessel functions.

3 The Probability Distribution of the Casualties Values to Players A and B

Here we will find the probability distribution function FA of the exit value of casualties to
player A (special case 1) by taking the inverse Laplace transform with respect to variable
α. The Laplace inverse formula that we use, along with (3.64-3.67) [1], is:

L−1
y (e−αy ·

1

(y + b)2
)(q) = (q − α)e−b(q−α)1(α,∞)(q). (3.1)

The above formula can be found in references [3,4] as well. After that, we apply the
Laplace inverse to Φµν(α, 0, 0) = Ee−αAµ1{µ<ν}, arriving at
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FA (t) = L−1
α

{

Φµν(α, 0, 0)

}

(t) =

{

λAgδ

(λA + λB)(δ + λA + λB)
· e

−
(

(δ+λB )g

δ+λA+λB

)

(t−M)

× e
−
(

λBg

λA+λB

)

(M−X0)
e
−
(

λAh

λA+λB

)

(N−Y0)
I0
(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2
)

+
λAhgδ

(λA + λB)(δ + λA)
e
−
(

gδ
δ+λA

)

(t−M)
e
−(

λBg

λA+λB
)(M−X0)

∫ N−Y0

z=0

e
−(

λAh

λA+λB
)z

× I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

dz +

∫ N−Y0

z=0

[

−λAλ
2
Bhgδ

(λA + λB)(δ + λA)(δ + λA + λB)2

× e
−(

(δ+λB)g

δ+λA+λB
)(t−M)

I0
(

2

√

λAλBhg(N − Y0 − z)(t−M)

(δ + λA + λB)2
)

+
−λ2

AλBhg
2δ

(λA + λB)(δ + λA)2(δ + λA + λB)
e
−( gδ

δ+λA
)(t−M)

∫ t−M

w=0

e
−(

λAλBg

(δ+λA)(δ+λA+λB)
)w

× I0
(

2

√

λAλBhg(N − Y0 − z)w

(δ + λA + λB)2
)

dw +
λ2
AλBhg

2δ

(λA + λB)(δ + λA + λB)2

×

√

t−M

λAλBhg(N − Y0 − z)
· e

−(
(δ+λB )g

δ+λA+λB
)(t−M)

I1
(

2

√

λAλBhg(N − Y0 − z)(t−M)

(δ + λA + λB)2

]

× e
−(

λBg

λA+λB
)(M−X0)e

−(
(δ+λA)h

δ+λA+λB
)(N−Y0) e

(
λBhδ

(λA+λB)(δ+λA+λB)
)z

× I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

dz

}

1(X0,∞)(M)1(Y0,∞)(N)1(M,∞)(t). (3.2)

4 The Loss Probability

Another special case is the probability that player A loses to player B. This can be directly
obtained from Φµν(α, β, θ) = Ee−αAµ−βBµ−θτµ1{µ<ν} by setting α = β = θ = 0:

Φµν(0, 0, 0) := E1{µ<ν} = P{µ < ν} = P{τµ < τν}. (4.1)

With α = β = θ = 0 in (3.70-3.73) [1], we have
(i) Case δ 6= λA,

Φ(1)
µν (0, 0, 0) =

{

λAδ

(λA + λB)(δ + λB)
· e

−
λBg(M−X0)

λA+λB e
−

λAh(N−Y0)

λA+λB

× I0
(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2
)

+
λAh

λA + λB

· e
−

λBg(M−X0)

λA+λB

×

∫ N−Y0

z=0

e
−

λAh

λA+λB
z
I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

dz
−λAλ

2
Bh

(λA + λB)(δ + λB)2

× e
−

λBg(M−X0)

λA+λB e
−

hδ(N−Y0)
δ+λB

∫ N−Y0

z=0

e
(

−λBh(λA−δ)

(λA+λB)(δ+λB )
)z
I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

dz

}

× 1(X0,∞)(M)1(Y0,∞)(N). (4.2)
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(ii) Case δ = λA,

Φ(2)
µν (0, 0, 0) =

{

λ2
A

(λA + λB)2
· e

−
λBg(M−X0)

λA+λB e
−

λAh(N−Y0)

λA+λB

× I0
(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2
)

+
λAh

λA + λB

· e
−

λBg(M−X0)

λA+λB

×

∫ N−Y0

z=0

e
−

λAh

λA+λB
z
I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

dz

+
−λAλ

2
Bh

(λA + λB)2

√

N − Y0

λAλBhg(M −X0)
· e

−
λBg(M−X0)

λA+λB e
−

λAh(N−Y0)

λA+λB

× I1
(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2
)

}

1(X0,∞)(M)1(Y0,∞)(N). (4.3)

5 Numerical Results

Even though the above formulas are totally explicit, they may look quite bulky. We
would like to illustrate their tameness by means of simple computations. They also show
how changing input parameters alters the trend of the game. For a full version of these
computations including a MATLAB routine, see [2]. The program utilizes (4.2) and (4.3)
with the results placed in the tables below.

λA 45 45 45 45 45
λB 45 45 45 45 45
g 18 18 18 18 18
h 18 18 18 18 18
M 35 34 33 32 31
N 33 33 33 33 33
X0 13 13 13 13 13
Y0 13 13 13 13 13
δ 45 45 45 45 45
Probability of A losing 0.1708 0.3106 0.4895 0.6749 0.8279

λA 45 45 45 45 45
λB 45 45 45 45 45
g 18 18 18 18 18
h 18 18 18 18 18
M 33 33 33 33 33
N 33 33 33 33 33
X0 10 11.5 13 14.5 16
Y0 13 13 13 13 13
δ 45 45 45 45 45
Probability of A losing 0.0811 0.2345 0.4895 0.7574 0.9268
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λA 18 18 18 18 18
λB 20 20 20 20 20
g 14 14 14 14 14
h 16 12 11 10 6
M 20 20 20 20 20
N 24 24 24 24 24
X0 7 7 7 7 7
Y0 5 5 5 5 5
δ 100 100 100 100 100
Probability of A losing 0.9991 0.8014 0.5875 0.3324 0.0003

λA 18 18 18 18 18
λB 20 20 20 20 20
g 14 14 14 14 14
h 16 16 16 16 16
M 32 28 26 24 20
N 24 24 24 24 24
X0 7 7 7 7 7
Y0 5 5 5 5 5
δ 100 100 100 100 100
Probability of A losing 0.0129 0.2650 0.5910 0.8717 0.9991

λA 18 18 18 18 18
λB 20 20 20 20 20
g 14 14 14 14 14
h 16 16 16 16 16
M 20 20 20 20 20
N 24 24 24 24 24
X0 0.0001 0.01 1 2 7
Y0 5 5 5 5 5
δ 100 100 100 100 100
Probability of A losing 0.4191 0.4207 0.5910 0.7505 0.9991

λA 8 8 8 8 8
λB 10 10 10 10 10
g 28 28 28 28 28
h 24 32 35 38 46
M 10 10 10 10 10
N 12 12 12 12 12
X0 2 2 2 2 2
Y0 4 4 4 4 4
δ 50 50 50 50 50
Probability of A losing 0.0033 0.2419 0.4963 0.7431 0.9893
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λA 8 8 8 8 8
λB 10 10 10 10 10
g 28 28 28 28 28
h 24 24 24 24 24
M 10 10 10 10 10
N 12 12 12 12 12
X0 7 5 4.5 4 2
Y0 4 4 4 4 4
δ 50 50 50 50 50
Probability of A losing 0.9996 0.7190 0.4888 0.2712 0.0033

where

λA, λB = rates of strikes to player A by player B and player B to player A;

g−1, h−1 = mean magnitudes of strikes to A by B and B to A;

M,N = thresholds of players A and B;

X0, Y0 = initial casualties to players A and B;

δ−1 = observations frequency.
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