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Abstract: This paper is concerned with the existence and uniqueness of extremal
mild solutions for nonlocal semilinear differential equations with finite delay in an or-
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1 Introduction

In this paper, we consider the following nonlocal semilinear differential equations with
finite delay in an ordered Banach space:

{

d
dt
x(t) = Ax(t) + f(t, xt, Bx(t)), t ∈ J = [0, b],
x(t) = φ(t) + g(x)(t), t ∈ [−a, 0],

(1)

where the state x(·) takes values in the Banach space X endowed with norm ‖ · ‖;
A : D(A) ⊂ X → X is a closed linear densely defined operator and an infinitesimal
generator of strongly continuous semigroup {T (t)}t≥0 of bounded linear operator in X ;
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the nonlinear function f : [0, b] × D × X → X is continuous, here D = C([−a, 0], X);

the term Bx(t) is given by Bx(t) =
∫ t

0
K(t, s)x(s)ds, here K ∈ C(Σ,R+) is the set of

all positive functions which are continuous on Σ = {(t, s)|0 ≤ s ≤ t ≤ T }; φ(·) ∈ D
and g : C([−a, b], X) → D is a continuous operator. If x : [−a, b] → X is a continuous
function, then xt denotes the function in D defined as xt(ν) = x(t + ν) for ν ∈ [−a, 0],
here xt(·) represents the time history of the state from the time t − a up to the present
time t.

It is well known that time delays are frequently encountered in various industrial and
practical systems, such as chemical processing, bio engineering, fuzzy systems, automatic
control, neural networks, circuits, vehicle suspension systems and so on. Hence, in recent
years, the researchers have paid more attention to delay differential equations (see [1–7]).
Some authors have studied differential equations with nonlocal initial conditions, see for
instance, [7–13]. Nonlocal initial condition, in many cases, is more suitable and produces
better results in applications of physical problems than the classical initial value of the
type x(0) = x0.

The monotone iterative technique based on lower and upper solutions provides an ef-
fective way to investigate the existence of solutions for the nonlinear differential equations
(fractional or non-fractional ordered), see for instance, [6,14–18]. It constructs monotone
sequences of lower and upper solutions that converge uniformly to the extremal mild
solutions between the lower and upper solutions.

This paper is motivated by recent works [6, 7, 16]. We extend a monotone iterative
technique for nonlocal semilinear differential equations with finite delay (1) to study the
existence and uniqueness of extremal mild solutions in an ordered Banach space. We
use the semigroup theory and measures of noncompactness to obtain the results. The
existence results are discussed by assuming compact or non compact semigroup. To the
best of our knowledge, up to now, no work has been reported on nonlocal semilinear
differential equations with finite delay by using the monotone iterative technique.

The rest of the paper is organized as follows: In the next section, we introduce some
basic definitions, notations and preliminary results. In Section 3, we prove the existence
and uniqueness of extremal mild solutions of the delay system (1) by using monotone
iterative technique. Finally, in Section 4, we present an example to show the application
of the main result.

2 Preliminaries

Throughout this paper, we assume that X is a Banach space with the norm ‖ · ‖ and
P = {y ∈ X : y ≥ θ} (θ is a zero element of X) is a positive cone in X which defines
a partial ordering in X by x ≤ y if and only if y − x ∈ P . If x ≤ y and x 6= y, we
write x < y. The cone P is said to be normal if there exists a positive constant N such
that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖. We also assume that A : D(A) ⊂ X → X is a
closed linear densely defined operator that generates a strongly continuous semigroup
{T (t), t ≥ 0}. By Pazy [19], there exists a constant M ≥ 1 such that supt∈J ‖T (t)‖ ≤ M .

For the sake of convenience, we write B∗ = supt∈J

∫ t

0
K(t, s)ds.

C([−a, b], X) is the Banach space of all continuous X-valued functions on inter-
val [−a, b] with norm ‖ · ‖C = supt∈[−a,b] ‖x(t)‖. Then C([−a, b], X) is an ordered
Banach space whose partial ordering ≤ is induced by positive cone PC = {x ∈
C([−a, b], X) | x(t) ≥ θ, t ∈ [−a, b]}. Similarly D is also an ordered Banach space
with norm ‖ · ‖D = supt∈[−a,0] ‖x(t)‖ and partial ordering ≤ induced by PD = {x ∈
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C([−a, 0], X) | x(t) ≥ θ, t ∈ [−a, 0]}. If the cone P is normal with a normal constant N ,
then PC and PD are also normal cones with the same normal constant N . For x, y ∈
C([−a, b], X) with x ≤ y, denote the ordered interval [x, y] = {z ∈ C([−a, b], X), x ≤
z ≤ y} in C([−a, b], X), and [x(t), y(t)] = {u ∈ X : x(t) ≤ u ≤ y(t)} (t ∈ [−a, b]) in X .

Let us recall some basic definitions and lemmas which are used to prove our main
results.

Definition 2.1 A C0-semigroup {T (t)}t≥0 is called a positive semigroup, if T (t)x
≥ θ for all x ≥ θ and t ≥ 0.

Lemma 2.1 (see [19]) If h ∈ C1(J,X), then for every x0 ∈ D(A) the following
initial value problem

{

d
dt
x(t) = Ax(t) + h(t), t ∈ J,

x(0) = x0,
(2)

has a unique solution x on J given by

x(t) = T (t)x0 +

∫ t

0

T (t− s)h(s)) ds, t ∈ J.

Definition 2.2 (see [19]) A continuous function x : [−a, b] → X is said to be a mild
solution of the system (1) if x(t) = φ(t) + g(x)(t) on [−a, 0] and the following integral
equation is satisfied:

x(t) = T (t)(φ(0) + g(x)(0)) +

∫ t

0

T (t− s)f(s, xs, Bx(s)) ds, t ∈ J.

Lemma 2.2 (see [19]) If h ∈ L1((0, b), X), then for every x0 ∈ X the initial value
problem (2) has a unique mild solution.

Let C1([−a, b], X) = {u ∈ C([−a, b], X) : u′ exists on J , u′|J ∈ C(J,X) and u(t) ∈
D(A) for t ≥ 0}. An abstract function u ∈ C1([−a, b], X) is called a solution of (1) if
u(t) satisfies the equation (1).

Definition 2.3 (see [16]) The function x ∈ C1([−a, b], X) is called a lower solution
of the system (1) if it satisfies the following inequalities

{

d
dt
x(t) ≤ Ax(t) + f(t, xt, Bx(t)), t ∈ J,

x(ν) ≤ φ(ν) + g(x)(ν), ν ∈ [−a, 0].
(3)

If all inequalities of (3) are reversed, we call x an upper solution of the system (1).

Now we recall the definition of Kuratowski’s measure of noncompactness and its
properties.

Definition 2.4 (see [20, 21]) Let X be a Banach space and B(X) be a family of
bounded subset of X . Then µ : B(X) → R

+, defined by

µ(S) = inf{δ > 0: S admits a finite cover by sets of diameter ≤ δ},

where S ∈ B(X), is called the Kuratowski measure of noncompactness. Clearly 0 ≤
µ(S) < ∞.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (3) (2016) 300–311 303

Lemma 2.3 (see [20, 21]) Let S, S1 and S2 be bounded sets of a Banach space X.
Then

(i) µ(S) = 0 if and only if S is a relatively compact set in X.

(ii) µ(S1) ≤ µ(S2) if S1 ⊂ S2.

(iii) µ(S1 + S2) ≤ µ(S1) + µ(S2).

(iv) µ(λS) ≤ |λ|µ(S) for any λ ∈ R.

Lemma 2.4 (see [20, 21]) If S ⊂ C([c, d], X) is bounded and equicontinuous on
[c, d], then µ(S(t)) is continuous for t ∈ [c, d] and

µ(S) = sup{µ(S(t)), t ∈ [c, d]}, where S(t) = {x(t) : x ∈ S} ⊆ X.

Remark 2.1 (see [20,21]) If S is a bounded set in C([c, d], X), then S(t) is bounded
in X , and µ(S(t)) ≤ µ(S).

Lemma 2.5 (see [20, 21]) Let S = {un} ⊂ C([c, d], X)(n = 1, 2, . . .) be a bounded
and countable set. Then µ(S(t)) is Lebesgue integrable on [c, d], and

µ

({

∫ d

c

un(t) dt | n = 1, 2, . . .

})

≤ 2

∫ d

c

µ(S(t)) dt. (4)

3 Main Result

In this section, we prove the existence and the uniqueness of extremal mild solutions of
the system (1).

Theorem 3.1 Let X be an ordered Banach space, whose positive cone P is normal
with a normal constant N . Also assume that A is the infinitesimal generator of a positive
and compact C0-semigroup {T (t)}t≥0 on X. If the system (1) has a lower solution
x(0) ∈ C([−a, b], X) and an upper solution y(0) ∈ C([−a, b], X) with x(0) ≤ y(0) and
satisfies the following assumptions:

(H1) The function f : J ×D×X → X satisfies that f(t, ·, ·) : D×X → X is continuous
for t ∈ J , and f(·, ϕ, x) is strongly measurable for all (ϕ, x) ∈ D ×X.

(H2) For any t ∈ J , the function f(t, ·, ·) : D ×X → X satisfies the following

f(t, ϕ1, u1) ≤ f(t, ϕ2, u2),

where u1, u2 ∈ X with Bx(0)(t) ≤ u1 ≤ u2 ≤ By(0)(t) and ϕ1, ϕ2 ∈ D with

x
(0)
t ≤ ϕ1 ≤ ϕ2 ≤ y

(0)
t .

(H3) The function g : C([−a, b], X) → D is increasing, continuous and compact.

Then the delay system (1) has minimal and maximal mild solutions between x(0) and
y(0).
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Proof. Let B = [x(0), y(0)] = {x ∈ C([−a, b], X) | x(0) ≤ x ≤ y(0)}. Define Q : B →
C([−a, b], X) by

Qx(t) =

{

T (t)(φ(0) + g(x)(0)) +
∫ t

0
T (t− s)f(s, xs, Bx(s)) ds, t ∈ [0, b],

φ(t) + g(x)(t), t ∈ [−a, 0].
(5)

For any x ∈ B and in view of (H2), we have

f(t, x
(0)
t , Bx(0)(t)) ≤ f(t, xt, Bx(t))

≤ f(t, y
(0)
t , By(0)(t)).

By the normality of the positive cone P , there exists a constant k > 0 such that

‖f(t, xt, Bx(t))‖ ≤ k, x ∈ B. (6)

Firstly we prove that Q is a continuous and monotonically increasing operator from
B to B. Let x, y ∈ B with x ≤ y, then x(t) ≤ y(t), t ∈ [−a, b]. Therefore xt ≤ yt in D
for all t ∈ [0, b]. By the positivity of the semigroup T (t) and the assumptions (H2) and
(H3), we get

Qx ≤ Qy. (7)

Let d
dt
x(0)(t) = Ax(0)(t) + h(t), t ∈ J . In view of Lemma 2.2 and Definition 2.3, we get

x(0)(t) =T (t)x(0)(0) +

∫ t

0

T (t− s)h(s)ds

≤T (t)(φ(0) + g(x(0))(0)) +

∫ t

0

T (t− s)f(s, x(0)
s , Bx(0)(s))ds

=Qx(0)(t), t ∈ J.

Also x(0)(t) ≤ φ(t) + g(x(0))(t) = Qx(0)(t), t ∈ [−a, 0]. Thus x(0)(t) ≤ Qx(0)(t), t ∈
[−a, b]. Similarly we can show that Qy(0)(t) ≤ y(0)(t), t ∈ [−a, b]. Now let {x(n)} ⊂ B

with x(n) → x ∈ B as n → ∞. By (6), (H1) and (H3) for any t ∈ J , we have

(i) f(t, x
(n)
t , Bx(n)(t)) → f(t, xt, Bx(t)).

(ii) g(x(n)) → g(x).

(iii) ‖f(t, x
(n)
t , Bx(n)(t))− f(t, xt, Bx(t))‖ ≤ 2k.

These, together with Lebesgue’s dominated convergence theorem, imply that

‖Qx(n)(t)−Qx(t)‖ ≤M‖g(x(n))(0)− g(x)(0)‖ +M

∫ t

0

‖f(s, x(n)
s , Bx(s))

− f(s, xs, Bx(s))‖ ds

→ 0 as n → ∞.

In view of (H3), for any t ∈ [−a, 0], we have ‖Qx(n)(t)−Qx(t)‖ = ‖g(x(n))(t)−g(x)(t)‖ →
0 as n → 0. Therefore Q : B → B is a monotonically increasing and continuous operator.
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Next we show that Q(B) is equicontinuous on [−a, b]. Since semigroup T (t) is compact
for t > 0, T (t) is continuous in uniform operator topology for t > 0. For any x ∈ B and
t1, t2 ∈ J with t1 < t2, we have that

‖Qx(t2)−Qx(t1)‖ ≤‖T (t2)(φ(0) + g(x)(0))− T (t1)(φ(0) + g(x)(0))‖

+
∥

∥

∥

∫ t1

0

[T (t2 − s)− T (t1 − s)] f(s, xs, Bx(s)) ds
∥

∥

∥

+
∥

∥

∥

∫ t2

t1

T (t2 − s)f(s, xs, Bx(s)) ds
∥

∥

∥

≤‖T (t2)(φ(0) + g(x)(0))− T (t1)(φ(0) + g(x)(0))‖

+ k

∫ t1−ǫ

0

‖T (t2 − s)− T (t1 − s)‖ ds

+ k

∫ t1

t1−ǫ

‖T (t2 − s)− T (t1 − s)‖ ds+Mk(t2 − t1)

≤‖T (t2)(φ(0) + g(x)(0))− T (t1)(φ(0) + g(x)(0))‖

+ k(t1 − ǫ) sup
s∈[0,t1−ǫ]

‖T (t2 − s)− T (t1 − s)‖

+ 2Mkǫ+Mk(t2 − t1),

where ǫ ∈ (0, t1) is arbitrary. Therefore ‖Qx(t2) − Qx(t1)‖ → 0 as t1 → t2 and ǫ → 0
independently of x ∈ B. Thus Q(B) is equicontinuous on J . Since g : C([−a, b], X) → D
is continuously compact operator and φ ∈ D, Q(B) is equicontinuous on [−a, 0]. Hence
Q(B) is equicontinuous on [−a, b].

Further we show that for each t ∈ [−a, b], the set G(t) = {Qx(t) : x ∈ B} is
relatively compact in X . Let t ∈ (0, b] be a fixed real number and κ be a given real
number satisfying 0 < κ < t. For x ∈ B, we define

Qκx(t) =T (t)
(

φ(0) + g(x)(0)
)

+

∫ t−κ

0

T ((t− s)f(s, xs, Bx(s)) ds

=T (κ)

[

T (t− κ)
(

φ(0) + g(x)(0)
)

+

∫ t−κ

0

T (t− κ− s)f(s, xs, Bx(s)) ds

]

.

By (6), (H3) and the compactness of T (κ), the set {Qκx(t) : x ∈ B} is relatively compact
in X for each t ∈ (0, b]. Also

‖Qx(t)−Qκx(t)‖ ≤
∥

∥

∥

∫ t

t−κ

T (t− s)f(s, xs, Bx(s)) ds
∥

∥

∥

≤Mkκ → 0 as κ → 0+.

Thus there are relatively compact sets {(Qκx)(t) : x ∈ B} arbitrary close to the set G(t)
for each t ∈ (0, b]. Also G(t), t ∈ [−a, 0], is relatively compact in X as g : C([−a, b], X) →
D is a continuously compact operator and φ(·) ∈ D. Hence the set G(t) is relatively
compact in X for all t ∈ [−a, b].

In view of Ascoli-Arzela theorem, we conclude that Q(B) is relatively compact. Now
we define the sequences as

x(n) = Qx(n−1) and y(n) = Qy(n−1), n = 1, 2, . . . , (8)
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and from (7), we have

x(0) ≤ x(1) ≤ . . . x(n) ≤ . . . ≤ y(n) ≤ . . . ≤ y(1) ≤ y(0). (9)

Since Q(B) is relatively compact, the sequence {x(n)} has a convergent subsequence
{x(nj)}. Let x∗ be its limit. Then for each ε > 0 there exists an nj (depending upon ε)
such that

‖x(nj) − x∗‖C <
ε

1 +N
.

To show that the sequence {x(n)} converges to x∗, take any n ≥ nj and in view of (9),
we have

x(nj) ≤ x(n) ≤ x∗,

that is

0 ≤ x(n) − x(nj) ≤ x∗ − x(nj).

By normality of cone P of X , we have

‖x(n) − x(nj)‖C ≤ N‖x∗ − x(nj)‖C .

This implies

‖x(n) − x∗‖C ≤‖x(n) − x(nj)‖C +N‖x(nj) − x∗‖C

≤(N + 1)‖x(nj) − x∗‖C

≤ε.

Hence the sequence {x(n)} converges to x∗. By (5) and (8), we have that

x(n)(t) =











T (t)(φ(0) + g(x(n−1))(0))

+
∫ t

0
T (t− s)f(s, x

(n−1)
s , Bx(n−1)(s)) ds, t ∈ [0, b],

φ(t) + g(x(n−1))(t), t ∈ [−a, 0].

In view of Lebesgue’s dominated convergence theorem and taking n → ∞, we get

x∗(t) =

{

T (t)(φ(0) + g(x∗)(0)) +
∫ t

0
T (t− s)f(s, x∗

s , Bx∗(s)) ds, t ∈ [0, b],

φ(t) + g(x∗)(t), t ∈ [−a, 0].

Thus x∗ ∈ C([−a, b], X) and x∗ = Qx∗. It means that x∗ is a mild solution of (1).
Similarly we can prove that there exists y∗ ∈ C([−a, b], X) such that y(n) → y∗ as n → ∞
and y∗ = Qy∗. Let x ∈ B be any fixed point of Q, then by (7), x(1) = Qx(0) ≤ Qx = x ≤
Qy(0) = y(1). By induction, x(n) ≤ x ≤ y(n). Using (9) and taking the limit as n → ∞,
we conclude that x(0) ≤ x∗ ≤ x ≤ y∗ ≤ y(0). Hence x∗, y∗ are the minimal and maximal
mild solutions of the nonlocal semilinear differential equations with finite delay (1) on
[x(0), y(0)] respectively.

In the next theorem, we again discuss the existence of extremal mild solution of (1)
with the help of the measure of noncompactness and the monotone iterative procedure.
In this result, semigroup {T (t)}t≥0 does not have to be compact.
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Theorem 3.2 Let X be an ordered Banach space whose positive cone P is nor-
mal with a normal constant N and A be the infinitesimal generator of a positive C0-
semigroup {T (t)}t≥0 on X. Also suppose that the delay system (1) has a lower solution
x(0) ∈ C([−a, b], X) and an upper solution y(0) ∈ C([−a, b], X) with x(0) ≤ y(0) and the
assumptions (H1)-(H3) hold. If the following hypotheses are satisfied

(H4) The operator T (t) is continuous in the sense of uniform operator topology for t > 0.

(H5) There exists a constant L ≥ 0 such that

µ(f(t, E, S)) ≤ L
[

sup
−a≤ν≤0

µ(E(ν)) + µ(S)
]

,

for t ∈ J and E ⊂ D, S ⊂ X, where E(ν) = {ϕ(ν) : ϕ ∈ E},

and 2MLb(1 + 2B∗) < 1, then the delay system (1) has minimal and maximal mild
solutions between x(0) and y(0).

Proof. Let B = [x(0), y(0)] = {x ∈ C([−a, b], X) | x(0) ≤ x ≤ y(0)}. We define a map
Q : B → C([−a, b], X) as defined in Theorem 3.1. Proceeding as in the proof of Theorem
3.1 and in view of (H4), we get that the operator Q : B → B is monotonically increasing
and continuous, and Q(B) is equicontinuous on [−a, b]. Also we define the sequences
x(n) and y(n) as defined by (8) in Theorem 3.1. Since x(0) ≤ Qx(0), Qy(0) ≤ y(0) and the
map Q is increasing, the equation (9) holds.

Let S = {x(n)}∞n=1. By (9) and the normality of positive cone PC , the set S is
bounded. As g is a continuously compact operator, we get

µ({S(t)}) = µ({φ(t) + g(x(n−1))(t)}∞n=1)

≤ µ({φ(t)}) + µ({g(x(n−1))(t)}∞n=1) = 0 for t ∈ [−a, 0].

Since S(t) = {x(1)(t)} ∪ {Q(S)(t)} for any t ∈ J , µ(S(t)) = µ(Q(S)(t)), t ∈ J . From
(H3), (H5), (5) and (8), we get for t ∈ J that

µ(S(t)) =µ
({

T (t)[φ(0) + g(x(n))(0)] +

∫ t

0

T (t− s)f(s, x(n)
s , Bx(n)(s)) ds

})

≤2M

∫ t

0

µ
({

f(s, x(n)
s , Bx(n)(s)) ds

})

≤2ML

∫ t

0

[

sup
−a≤ν≤0

µ
({

x(n)(s+ ν)
})

+ µ

({
∫ s

0

K(s, r)x(n)(r) dr

})]

ds

≤2ML

∫ t

0

[

sup
0≤r≤s

µ
({

x(n)(r)
})

+ 2

∫ s

0

K(s, r)µ
({

x(n)(r)
})

dr

]

ds

≤2ML(1 + 2B∗)

∫ t

0

sup
0≤r≤s

µ
({

x(n)(r)
})

ds

≤2MLb(1 + 2B∗) sup
−a≤r≤b

µ ({S(r)}) .

Since
{

Qx(n)
}∞

n=0
, i.e.

{

x(n)
}∞

n=1
, is equicontinuous on [−a, b] and by Lemma 2.4, we

get

µ(S) ≤ 2MLb(1 + 2B∗)µ(S).
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Since 2MLb(1 + 2B∗) < 1, this implies that µ(S) = 0, i.e. µ({x(n)}∞n=1) = 0. Therefore
the set {x(n) : n ≥ 1} is relatively compact in B. So the sequence {x(n)} has a convergent
subsequence in B. By the proof of Theorem 3.1, the sequence {x(n)} is itself convergent
sequence. So there exists x∗ ∈ B such that x(n) → x∗ as n → ∞. Similarly there exists
y∗ ∈ B such that y(n) → y∗ as n → ∞. Again by Theorem 3.1, x∗ and y∗ become
the minimal and maximal mild solutions of the nonlocal semilinear differential equations
with finite delay (1) in B respectively.

In the next theorem, we shall prove the uniqueness of the solution of the system
(1) by using monotone iterative procedure. For this purpose, we make the following
assumptions:

(H6) The function f : J × D ×X → X is continuous and there exists a constant η ≥ 0
such that for some ν ∈ [−a, 0],

f(t, ϕ2, u2)− f(t, ϕ1, u1) ≤ η[(ϕ2(ν)− ϕ1(ν)) + (u2 − u1)],

for any t ∈ J , u1, u2 ∈ X with Bx(0)(t) ≤ u1 ≤ u2 ≤ By(0)(t) and ϕ1, ϕ2 ∈ D with

x
(0)
t ≤ ϕ1 ≤ ϕ2 ≤ y

(0)
t .

(H7) For any t ∈ [−a, 0] and x, y ∈ B with x ≤ y, there exists a constant γ(0 ≤ γ < 1
N
)

such that

g(y)(t)− g(x)(t) ≤ γ(y(t)− x(t)).

Theorem 3.3 Let X be an ordered Banach space whose positive cone P is nor-
mal with a normal constant N and A be the infinitesimal generator of a positive C0-
semigroup {T (t)}t≥0 on X. Also suppose that the system (1) has a lower solution
x(0) ∈ C([−a, b], X) and an upper solution y(0) ∈ C([−a, b], X) with x(0) ≤ y(0). If
the assumptions (H2), (H3), (H4), (H6) and (H7) hold, and 2MLb(1+ 2B∗) < 1, where
L = Nη, then the delay system (1) has a unique mild solution between x(0) and y(0).

Proof. Let {ϕn} ⊂ D and {un} ⊂ X be two monotone increasing sequences. Take
any m,n = 1, 2, . . . , with m > n. By (H2), (H3) and (H6), we get for some ν ∈ [−a, 0]
that

θ ≤ f(t, ϕm, um)− f(t, ϕn, un) ≤η
[

(ϕm(ν)− ϕn(ν)) + (um − un)
]

.

Using the normality of the positive cone P , we get

‖f(t, ϕm, um)− f(t, ϕn, un)‖ ≤ Nη
[

‖ϕm(ν) − ϕn(ν)‖ + ‖um − un‖
]

. (10)

By the definition of measure of noncompactness, we get

µ ({f (s, ϕn)}) ≤L [µ ({ϕn(ν)}) + µ ({un})]

≤L

[

sup
−a≤ν≤0

µ ({ϕn(ν)}) + µ ({un})

]

,

where L = Nη. Clearly the assumption (H5) is satisfied. The assumption (H1) is satisfied
by the inequality (10). Thus the assumptions (H1)-(H5) hold and 2MLb(1+2B∗) < 1. So
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by Theorem 3.2, the delay system (1) has minimal and maximal mild solutions between
x(0) and y(0).

Let x∗(t) and y∗(t) be the minimal and maximal solutions of the delay system (1)
respectively on the ordered interval B = [x(0), y(0)]. By (5) and H(7) for any t ∈ [−a, 0],
we have

θ ≤ y∗(t)− x∗(t) = Qy∗(t)−Qx∗(t)

= g(y∗)(t) − g(x∗)(t)

≤ γ(y∗(t)− x∗(t))

By using the normality of positive cone P , we get ‖y∗(t) − x∗(t)‖ ≤ Nγ‖y∗(t) − x∗(t)‖
for all t ∈ [−a, 0]. This implies that y∗(t) = x∗(t) for all t ∈ [−a, 0] as Nγ < 1. Let
t ∈ [0, b]. In view of (5) and (H6), we have

θ ≤y∗(t)− x∗(t) = Qy∗(t)−Qx∗(t)

=

∫ t

0

T (t− s) [f(s, y∗s , By∗(s))− f(s, x∗
s, Bx∗(s))] ds

≤η

∫ t

0

T (t− s)

[

(y∗s (ν) − x∗
s(ν)) +

∫ s

0

K(s, r)(y∗(r) − x∗(r)) dr

]

ds

where ν ∈ [−a, 0]. By applying the normality of the positive cone P , we get

‖y∗(t)− x∗(t)‖ ≤ Nη
∥

∥

∥

∫ t

0

T (t− s)
[

(y∗s (ν) − x∗
s(ν))

+

∫ s

0

K(s, r)(y∗(r) − x∗(r)) dr
]

ds
∥

∥

∥

≤ MNη

∫ t

0

[

‖y∗(s+ ν)− x∗(s+ ν)‖

+

∫ s

0

K(s, r)‖y∗(r) − x∗(r)‖ dr
]

ds

≤ MNηb(1 +B∗)‖y∗ − x∗‖C .

(11)

Since y∗(t) = x∗(t) for t ∈ [−a, 0] and due to the inequality (11), we get that ‖y∗ −
x∗‖C ≤ MNηb(1 + B∗)‖y∗ − x∗‖C . But MLb(1 + 2B∗) < 1

2 , so ‖y∗ − x∗‖C = 0, i.e.,
y∗(t) = x∗(t), t ∈ [−a, b]. Hence y∗ = x∗ is the unique mild solution of the delay system
(1) between x(0) and y(0).

4 Example

Consider the following nonlocal semilinear partial differential equations with finite delay
of the form:



















∂z(t,ξ)
∂t

= ∂2

∂ξ2
z(t, ξ) +

∫ 0

−a
(a+ ν)

−1

2 (−ν)
−1

2 z(t+ ν, ξ) dν

+
∫ t

0
z(s, ξ) ds, ξ ∈ [0, π], t ∈ [0, b],

z(t, 0) = z(t, π) = 0, t ∈ [0, b],

z(ν, ξ) = φ(ν, ξ) +
∫ b

0
ρ(s, ν) log(1 + |z(s, ξ)|)ds, −a ≤ ν ≤ 0,

(12)



310 KAMALJEET AND D. BAHUGUNA

where φ ∈ D = C([−a, 0] × [0, π] : R+), the operator ρ(s, ν) : [0, b] × [−a, 0] → R
+ is

continuous.
Let X = L2([0, π],R) and P = {v ∈ X : v(ξ) ≥ 0, ξ ∈ [0, π]}. Then P is a normal

cone in Banach space X . We define an operator A : X → X by Av = v′′ with domain

D(A) = {v ∈ X : v, v′ is absolutely continuous v′′ ∈ X, v(0) = v(π) = 0}.

It is well known that A is an infinitesimal generator of a strongly continuous semigroup
{T (t), t ≥ 0} of uniformly bounded linear operators in X . Now we define z(t)(ξ) =

z(t, ξ), zt(ν, ξ) = z(t + ν, ξ), φ(ν)(ξ) = φ(ν, ξ), Bz(t)(ξ) =
∫ t

0 z(s, ξ) ds, f(t, ϕ, u)(ξ) =
∫ 0

−a
(a + ν)

−1

2 (−ν)
−1

2 ϕ(ν, ξ) dν + u(ξ) and g(z)(ν)(ξ) = g(z(ν, ξ)) =
∫ b

0
ρ(s, ν) log(1 +

|z(s, ξ)|)ds. Therefore, the above nonlocal semilinear partial differential equations with
finite delay (12) can be written as the abstract form (1).

Since T (t) is continuous in the sense of uniform operator topology for t > 0, the
assumption (H4) is satisfied. We can also easily see that function f satisfies the as-
sumptions (H1) and (H2). For t ∈ [0, b], ϕ1, ϕ2 ∈ C([−a, 0], X) with 0 ≤ ϕ1 ≤ ϕ2 and
u1, u2 ∈ X with 0 ≤ u1 ≤ u2, then

0 ≤f(t, ϕ2, u2)(ξ)− f(t, ϕ1, u1)(ξ)

≤

∫ 0

−a

(a+ ν)
−1

2 (−ν)
−1

2 [ϕ2(ν)(ξ) − ϕ1(ν)(ξ)] dν + [u2(ξ)− u1(ξ)].

By normality of cone P , we have

‖f(t, ϕ2, u2)− f(t, ϕ1, u1)‖ ≤

∫ 0

−a

(a+ ν)
−1

2 (−ν)
−1

2 ‖ϕ2(ν)− ϕ1(ν)‖ dν + ‖u2 − u1‖.

Hence, for any bounded set E ⊂ C([−a, 0], X) and S ⊂ X , we have

µ(f(t, E, S)) ≤

[

π sup
−a≤ν≤0

µ(E(ν)) + µ(S)

]

.

Thus f satisfies the assumption H(5). Clearly the function g : PC([0, b], X) → X is
increasing, continuous and compact. Thus g satisfies the assumption (H3).

Let v(t, ξ) = 0, (t, ξ) ∈ [−a, b] × [0, π]. Then f(t, vt, Bv(t)) = 0 for t ∈ [0, b] and
v(ν, ξ) ≤ φ(ν, ξ) + g(v(ν, ξ)) for ν ∈ [−a, 0]. Now we assume that there is a function
w(t, ξ) ≥ 0 such that w(t, 0) = w(t, π) = 0,

∂w(t, ξ)

∂t
≥

∂2

∂y2
w(t, ξ) + f(t, wt, Bw(t)),

and w(ν, ξ) ≥ φ(ν, ξ) + g(w(ν, ξ)) for ν ∈ [−a, 0]. Thus v, w become lower and upper
solutions of the system (12) respectively and v ≤ w. If 2Mb(π + 2b) < 1, then all the
conditions of Theorem 3.2 are satisfied. Hence, by Theorem 3.2, the system (12) has the
minimal and maximal mild solutions lying between the lower solution 0 and the upper
solution w.
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