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Abstract: In this paper, we propose a new type of hybrid synchronization combining
projective synchronization (PS), full state hybrid projective synchronization (FSHPS)
and generalized synchronization (GS). We present, based on nonlinear controllers, a
new control scheme to study the co-existence of (PS), (FSHPS) and (GS) between
general 3D hyperchaotic maps. The capability of the proposed approach is illustrated
by numerical example.
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1 Introduction

Historically, hyperchaos in discrete-time systems was firstly reported by Rössler [1]. A
hyperchaotic system is usually defined as a chaotic system with more than one posi-
tive Lyapunov exponent. The occurrence of hyperchaotic behavior has been found in
an electronic circuit [2], NMR laser [3], in a semi-conductor system [4] and in a chem-
ical reaction system [5]. Some interesting hyperchaotic systems in discrete-time were
presented in the past two decades such as Baier-Klain system [6], Hitzl-Zele map [7],
Stefanski map [8], Wang map [9], Rössler discrete-time system [10] and Grassi-Miller
map [11] etc. Since hyperchaotic maps are more complex than chaotic maps, their dy-
namics have been investigated extensively owing to their useful potential applications in
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secure communications [12–17]. Thus it is a more important subject to study hyperchaos
synchronization.

Recently, more and more attention has been paid to the synchronization of chaos (hy-
perchaos) in discrete-time dynamical systems [18–22]. Different synchronization types
have been proposed for discrete-time chaotic and hyperchaotic maps such as projective
synchronization [23], adaptive function projective synchronization [24, 25], function cas-
cade synchronization [26], generalized synchronization [27, 28], lag synchronization [29],
impulsive synchronization [30], hybrid synchronization [31], Q-S synchronization [32] and
full state hybrid projective synchronization [33, 34]. Among all synchronization types,
projective synchronization (PS), full-state hybrid projective synchronization (FSHPS)
and generalized synchronization (GS) are effective approaches for achieving the syn-
chronization of chaotic and hyperchaotic discrete-time systems. (PS) means that the
drive chaotic system and the response chaotic system synchronize up to scaling constant,
FSHPS means that each drive system state synchronizes with a linear combination of re-
sponse system states and (GS) appears when there exists functional relationship between
the states of the drive and the response chaotic systems.

In this paper, a new general scheme of synchronization which includes (PS), (FSHPS)
and (GS) between coupled 3D hyperchaotic maps is constructed. Based on stability
theory of linear discrete-time systems, Lyapunov stability theory and using nonlinear
controllers, a new criterion of co-existence of (PS), (FSHPS) and (GS) is derived. The
derived synchronization results can have an important effect in the application due to
complexity of the proposed scheme and the difficulty of the prediction of the scaling
factors. To validate the proposed approach numerically, we apply it to two hyperchaotic
maps: the hyperchoatic Wang map and the hyperchoatic Stefanski map.

This paper is organized as follows. In Section 2, the problem of co-existence of
synchronization types is introduced. Our approach of synchronization is described in
Section 3. In Section 4, numerical example is used to show the effectiveness of the
proposed synchronization method. In Section 5, conclusion is made.

2 Problem Statement

We consider the following drive and response chaotic systems

xi(k + 1) = fi(X(k)), 1 ≤ i ≤ 3, (1)

yi(k + 1) = gi(Y (k)) + ui, 1 ≤ i ≤ 3, (2)

where (x1(k), x2(k), x3(k))
T
, (y1(k), y2(k), y3(k))

T
are the states of the drive and the

response systems, respectively, fi, gi : R3 → R, 1 ≤ i ≤ 3, and ui, 1 ≤ i ≤ 3, are
controllers to be determined.

The error system between the drive system (1) and the response system (2) is defined
as

e1 (k) = y1 (k)− θx1 (k) , (3)

e2 (k) = y2 (k)−
3
∑

j=1

λjxj (k) ,

e3 (k) = y3 (k)− φ (x1, x2, x3) (k) ,

where θ ∈ R∗, λj ∈ R∗ j = 1, 2, 3, and φ : R3 → R is a continuously bounded function.
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We said that projective synchronization (PS), full-state hybrid projective synchro-
nization (FSHPS ) and generalized synchronization (GS) co-exist in the synchronization
of the systems (1) and (2), if there exist controllers ui, 1 ≤ i ≤ 3, such that the synchro-
nization errors (3) satisfy

lim
k−→+∞

ei(k) = 0, i = 1, 2, 3. (4)

3 Synchronization Approach

As the drive system, we consider the following hyperchaotic map

xi(k + 1) = fi(X(k)), 1 ≤ i ≤ 3, (5)

where X(k) = (x1(k), x2(k), x3(k))
T is the state vector of the drive system,

fi : R
3 −→ R, 1 ≤ i ≤ 3. As the response, we consider the following chaotic system

yi(k + 1) =

3
∑

j=1

bijyj(k) + gi(Y (k)) + ui, 1 ≤ i ≤ 3, (6)

where Y (k) = (y1(k), y2(k), y3(k))
T is the state vector of the response systems, (bij) ∈

R3×3 is the linear part of the response system, gi : R
3 −→ R, 1 ≤ i ≤ 3, are nonlinear

functions and ui, 1 ≤ i ≤ 3, are controllers to be designed.

The error system, according to (3), between the drive system (5) and the response
system (6) can be derived as

e1 (k + 1) = y1(k + 1)− θx1(k + 1), (7)

e2 (k + 1) = y2(k + 1)−

3
∑

j=1

λjxj (k + 1) ,

e3 (k + 1) = y3(k + 1)− φ (X (k + 1)) .

Then, the error system (7) can be written as

e1 (k + 1) =

3
∑

j=1

b1jyj(k) + g1(Y (k)) + u1 − θf1(X(k)), (8)

e2 (k + 1) =

3
∑

j=1

b2jyj(k) + g2(Y (k)) + u2 −

3
∑

j=1

λjfj(X(k)),

e3 (k + 1) =

3
∑

j=1

b3jyj(k) + g3(Y (k)) + u2 − φ (f1(X(k)), f2(X(k)), f3(X(k))) .

To achieve synchronization between the drive system (5) and the response system



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (3) (2016) 312–321 315

(6), we propose the following synchronization controllers

u1 = N1 − b11θx1(k)− b12





3
∑

j=1

λjxj(k)



 −

3
∑

j=1

l1jej (k) , (9)

u2 = N2 − b21θx1(k)− b22





3
∑

j=1

λjxj(k)



 −
3
∑

j=1

l2jej (k) ,

u3 = N3 − b31θx1(k)− b32





3
∑

j=1

λjxj(k)



 −
3
∑

j=1

l3jej (k) ,

where

N1 = θf1(X(k))− b13φ (X(k))− g1(Y (k)), (10)

N2 =

3
∑

j=1

λjfj(X(k))− b23φ (X(k))− g2(Y (k)),

N3 = φ (f1(X(k)), f2(X(k)), f3(X(k)))− b33φ (X(k))− g3(Y (k)),

and (lij) ∈ R3×3 are control constants to be determined later.
By substituting the control law (9) into (8), the error system can be described as

e1 (k + 1) =

3
∑

j=1

(b1j − l1j) ej(k), (11)

e2 (k + 1) =

3
∑

j=1

(b2j − l2j) ej(k),

e3 (k + 1) =

3
∑

j=1

(b3j − l3j) ej(k).

Now, rewrite the error system described in (11) in the compact form

e (k + 1) = (B − L) e(k), (12)

where e(k) = (e1(k), e2(k), e3(k))
T
, B = (bij)3×3

and L = (lij)3×3
.

Hence, we have the following result.

Theorem 3.1 If the control matrix L is chosen such that one of the following con-
ditions is satisfied:

(i) All eigenvalues of B − L are strictly inside the unit disk.
(ii) (B − L)T (B − L)− I is negative definite matrix.
(iii) (lij)1≤i, j≤3

are chosen such that

3
∑

i=1

(bip − lip) (biq − liq) = 0, p, q = 1, 2, 3, p 6= q, (13)

3
∑

i=1

(bij − lij)
2
< 1, j = 1, 2, 3.
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Then, (PS), (FSHPS) and (GS) co-exist between the drive system (5) and the response
system (6).

Proof. Firstly, according to stability theory of linear discrete-time systems, we can
conclude that if condition (i) is satisfied it is immediate that lim

k−→+∞
ei(k) = 0, i = 1, 2, 3.

Therefore, systems (5) and (6) are globally synchronized.
Secondly, we construct the Lyapunov function in the form V (e(k)) = eT (k)e(k), we

obtain

∆V (e(k)) = eT (k + 1)e(k + 1)− eT (k)e(k)

= eT (k)(B − L)T (B − L)e(k)− eT (k)e(k)

= eT (k)
[

(B − L)T (B − L)− I
]

e(k),

and by using condition (ii) we get ∆V (e(k)) < 0. Thus, from the Lyapunov stability
theory, it is immediate that lim

k−→+∞
ei(k) = 0 (i = 1, 2, 3) then the synchronization is

achieved between systems (5) and (6).

Finally, consider the candidate Lyapunov function: V (e(k)) =
∑3

i=1
e2i (k) , we get

∆V (e(k)) =
3
∑

i=1

e2i (k + 1)−
3
∑

i=1

e2i (k)

=
3
∑

j=1

(

3
∑

i=1

(bij − lij)
2 − 1

)

e2j(k)

+

3
∑

p, q=1

p6=q

(

3
∑

i=1

(bip − lip) (biq − liq)

)

ep(k)eq(k),

and by using conditions (iii), we obtain ∆V (e(k)) < 0. Then, it is immediate that
lim

k−→+∞
ei(k) = 0 (i = 1, 2, 3) , and we conclude that the systems (4) and (5) are globally

synchronized.

4 Numerical Example

We consider hyperchaotic Stefanski map as the drive system and the controlled hyper-
chaotic Wang map as the response system. The drive system is described as

x1 (k + 1) = 1 + x3 (k)− αx2
2 (k) , (14)

x2 (k + 1) = 1 + βx2 (k)− αx2
1 (k) ,

x3 (k + 1) = βx1 (k) ,

which has a chaotic attractor, when (α, β) = (1.4, 0.2) [36]. The hyperchaotic attractor
of Stefanski map is shown in Figure 1. The response system can be defined as

y1 (k + 1) = a3δy2 (k) + (a4δ + 1) y1 (k) + u1, (15)

y2 (k + 1) = a1δy1 (k) + y2 (k) + a2δy3 (k) + u2,

y3 (k + 1) = (a7δ + 1) y3 (k) + a6δy2 (k) y3 (k) + a5δ + u3,
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Figure 1: Hyperchaotic attractor of Stefanski map.

where U = (u1, u2, u3)
T

is the vector controller. The hyperchaotic
Wang map has a chaotic attractor, when (a1, a2, a3, a4, a5, a6, a7, δ) =
(−1.9, 0.2, 0.5,−2.3, 2,−0.6,−1.9, 1) [35]. The hyperchaotic attractor of Wang map is
shown in Figure 2. According to our control scheme proposed in the previous section

Figure 2: Hyperchaotic attractor of Wang map.

the synchronization errors between the drive system (14) and the response system (15)
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are defined as follows

e1 (k + 1) = y1 (k + 1)− θx1 (k + 1) , (16)

e2 (k + 1) = y2 (k + 1)−

3
∑

j=1

λjxj (k + 1) ,

e3 (k + 1) = y3 (k + 1)− φ (x1 (k + 1) , x2 (k + 1) , x3 (k + 1)) .

In this example, the scaling constants θ, λ1, λ2 and λ3 are chosen as














θ = 2,
λ1 = 1,
λ2 = 2,
λ3 = 3,

(17)

and the map φ : R3 → R is selected as

φ (x1(k), x2(k), x3(k)) = x1(k)− x2(k)x3(k). (18)

Then, the errors system (16) can be described as

e1 (k + 1) = (a4δ + 1) e1 (k) +R1 + u1, , (19)

e2 (k + 1) = e2 (k) +R2 + u2,

e3 (k + 1) = (a7δ + 1) e3 (k) + u3,

where

R1 = a3δy2 (k) +
3
∑

j=1

µ1jxj (k) + 2αx2
2 (k)− 2, (20)

R2 = a1δy1 (k) + a2δy3 (k) +

3
∑

j=1

µ2jxj (k) + αx2
2 (k) + 2αx2

1 (k)− 3,

R3 = a6δy2(k)y3(k) +

3
∑

j=1

µ3jxj (k)− (a7δ + 1)x2(k)x3(k) + βx1(k)x2(k)

− αβx3
1(k) + αx2

2(k) + a5δ − 1,

where µ11 = 2 (a4δ + 1) , µ12 = 0, µ13 = −2, µ21 = −3β + 1, µ22 = 2 (1− β) , µ23 = 2,
µ31 = a7δ + 1− β, µ31 = a7δ + 1 + β, µ32 = 0, and µ33 = −1.

To achieve synchronization between systems (14) and (15), we choose the synchro-
nization controllers ui (i = 1, 2, 3) , as

ui = −Ri − liei, i = 1, 2, 3, (21)

where the control constants (li)1≤i≤3
are selected as follows

l1 = a4δ, (22)

|l2| < 1,

l3 = a7δ.
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Theorem 4.1 The hyperchaotic Stefanski map (14) and the controlled hyperchaotic
Wang map (15) are globally synchronized under the controllers (21).

Proof. By substituting (21) into (19), the synchronization errors can be written as

e1 (k + 1) = e1 (k) , (23)

e2 (k + 1) = (1− l2) e2 (k) ,

e3 (k + 1) = e3 (k) .

To prove the zero-stability of synchronization errors (23), we consider the quadratic

Lyapunov function V (e (k)) =
∑3

i=1
e2i (k) , then we obtain

∆V (e(k)) =

3
∑

i=1

e2i (k + 1)−

3
∑

i=1

e2i (k)

= e21 (k) + (1− l2)
2
e22 (k) + e23 (k)− e21 (k)− e22 (k)− e23 (k)

= (1− l2)
2
e22 (k) < 0.

Thus, by Lyapunov stability it is immediate that limk→∞ ei (k) = 0 (i = 1, 2, 3) .
Finally, we get the numeric results that are shown in Figure 3.

Figure 3: Time evolution of errors between systems (14) and (15).

5 Conclusion

In this paper, the co-existence of some synchronization types in general 3D coupled
hyperchaotic maps has been investigated. Sufficient conditions have been derived for
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achieving a new synchronization scheme of co-existence of (PS), (FSHPS) and (GS)
between hyperchaotic maps. The new synchronization criterion has been demonstrated
using nonlinear controllers, stability theory of linear discrete-time systems and Lyapunov
stability theory. An example of application and numerical simulations have been used to
show the effectiveness of the derived result.
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