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Dwell Time Stability Analysis

for Nonlinear Switched Difference Systems

A.Yu. Aleksandrov 1∗, A.A. Martynyuk 2 and A.V. Platonov 1

1 Saint Petersburg State University, 7/9 Universitetskaya Nab., St. Petersburg, 199034, Russia
2 Institute of Mechanics, National Academy of Science of Ukraine, Nesterov Str. 3, Kyiv,

03057, Ukraine

Received: January 31, 2016; Revised: June 8, 2016

Abstract: This paper addresses the stability problem for a set of switched nonlinear
difference equations with parametric uncertainties. For the corresponding family
of subsystems, a regularization procedure is suggested, and a multiple Lyapunov
function is constructed. With the aid of the Lyapunov function, classes of switching
signals are determined for which the asymptotic stability of a stationary solution of a
given set of equations may be guaranteed. An application of the proposed approach
to the stability analysis of multiconnected switched difference systems by nonlinear
approximation is presented. An example is given to illustrate our results.

Keywords: difference systems; switching law; stability; comparison equations; dwell-
time; multiple Lyapunov functions; complex systems.

Mathematics Subject Classification (2010): 39A22, 39A30.

1 Introduction

A general outline of the theory of set equations is presented in the monograph [18], where
it is shown that classical results of qualitative theory of equations under an appropriate
adaptation can be applied to the analysis of equations in metric spaces. The most effective
methods are the method of integral inequalities [19], the Lyapunov direct method [22,
28] and the comparison method based on the use of scalar [11, 12], vector [25] and
matrix-valued Lyapunov functions [22].

Difference equations are of great interest due to their wide applications in the model-
ing of real world processes in which states of systems are measured not continuously but
at some fixed instants of time [1, 3, 16, 20]. Sets of difference equations with switching are

∗ Corresponding author: mailto:a.u.aleksandrov@spbu.ru

c© 2016 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua221

mailto: a.u.aleksandrov@spbu.ru
http://e-ndst.kiev.ua


222 A.Yu. ALEKSANDROV, A.A. MARTYNYUK AND A.V. PLATONOV

a new subject for research designed to describe more accurately situations where the phe-
nomena under study possess variable structure. This paper focuses on the development
of methods for analysis of such systems.

The stability problem of a stationary solution for a set of nonlinear switched difference
equations with parametric uncertainties is studied. First, for the corresponding family
of subsystems, a regularization procedure and an approach for finding partial Lyapunov
functions are proposed. Next, with the aid of these partial functions, a multiple Lyapunov
function [10] is constructed for the original set of switched equations. On the basis
of a development of dwell-time approach [2, 10, 29], restrictions on the switching law
are determined under which the asymptotic stability of the stationary solution can be
guaranteed.

Furthermore, it is shown that the proposed approaches can be applied to the stability
analysis of multiconnected switched difference systems describing interaction of essen-
tially nonlinear homogeneous subsystems, and, for these systems, sufficient conditions of
the asymptotic stability by nonlinear approximation can be obtained.

2 Preliminaries

Further we shall need the following notions and results, see [18] and the references cited
therein.

Let KC(R
q) denote a family of all nonempty compact and convex subsets in the

Euclidean space R
q; K(Rq) contain all nonempty compact subsets in R

q, and C(Rq) be
a subset of all nonempty closed subsets in R

q. The distance between nonempty closed
subsets A and B of the space R

q is specified by the formula

D[A,B] = max {dH(A,B), dH(B,A)} ,

where dH(B,A) = sup {d(b, A) : b ∈ B} is a Hausdorff separation of the sets A and B,
and d(b, A) = inf{‖b− a‖ : a ∈ A} is a distance from the point b to the set A, ‖ · ‖ is
the Euclidean norm of a vector.

The following operations can be defined on KC(R
q):

A+B = {a+ b : a ∈ A, b ∈ B}, λA = {λa : a ∈ A},

where A,B ∈ KC(R
q), and λ is an arbitrary nonnegative number.

The pair (C(Rq), D) is a complete separable metric space, where K(Rq) and KC(R
q)

are closed subsets.
The set W ∈ KC(R

q) is called the Hukuhara difference for the sets A,B ∈ KC(R
q),

if A = B +W .
Let F be a mapping of the domain Q of the space R

q into the metric space
(KC(R

q), D), i.e., F : Q→ KC(R
q), which is equivalent to the inclusion F (t) ∈ KC(R

q)
for all t ∈ Q. Such mappings are called the multivalued mappings of Q into R

q.
Let R

q
+ be the nonnegative cone of Rq; N denote a set of positive integers, N+ =

N ∪ {0}, and we designate by Nn0 the set

Nn0 = {n0, n0 + 1, . . . , n0 + k, . . .},

where k ∈ N and n0 ∈ N+.
Next, let us introduce the concept of homogeneity, see [27, 30], for the following

analysis.
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Definition 2.1 A function f(x) : Rq → R is called homogeneous of the order ν with
respect to the dilation (m1, . . . ,mq), where ν,m1, . . . ,mq are positive rationals with the
odd denominators, if

f(λm1x1, . . . , λ
mqxq) = λνf(x) (1)

for all λ ∈ R and x ∈ R
q. In the case when ν,m1, . . . ,mq are positive real numbers, and

equality (1) holds for λ ≥ 0 and x ∈ R
q, the function f(x) is called positive homogeneous

of the order ν with respect to the dilation (m1, . . . ,mq).

Definition 2.2 A vector field F(x) = (f1(x), . . . , fq(x))
T : Rq → R

q is called positive
homogeneous of the order µ with respect to the dilation (m1, . . . ,mq), where mi > 0 and
µ+mi > 0, i = 1, . . . , q, if fi(λ

m1x1, . . . , λ
mqxq) = λµ+mifi(x1, . . . , xq), i = 1, . . . , q, for

all λ ≥ 0 and x ∈ R
q.

Let the system of differential equations

ẋ(t) = F(x(t)) (2)

be given, where x(t) ∈ R
q is the state vector, and components of the vector F(x) are

continuous for all x ∈ R
q.

Definition 2.3 System (2) is called positive homogeneous if its vector field F(x) is
positive homogeneous.

Moreover, we will use the following lemmas, see [6] and [14] respectively.

Lemma 2.1 If a sequence {vn} satisfies the condition 0 ≤ vn+1 ≤ vn − αv1+ξ
n ,

n ∈ N+, with α > 0, ξ > 0, v0 ≥ 0, and α(1 + ξ)vξ0 ≤ 1, then

vn ≤ v0

(

1 + αξvξ0n
)− 1

ξ

for n ∈ N+.

Lemma 2.2 For any positive numbers x, y and ζ the estimate

(x + y)ζ ≥ 2ω
(

xζ + yζ
)

holds, where ω = min{ζ − 1; 0}.

3 Statement of the Problem

Consider a set of switched difference equations

Xn+1 = F (σ)(n,Xn, α) (3)

with initial conditions Xn0 = X0, where Xn ∈ KC(R
q) for all n ≥ n0; the function σ =

σ(n), with σ(n) ∈ {1, . . . , S}, defines the switching law; α ∈ ℑ ⊂ R
d is the uncertainty

parameter; the mappings F (s) : N+ × KC(R
q) × ℑ → KC(R

q) are continuous with
respect to Xn for every n ∈ N+ and α ∈ ℑ.

Thus, we assume that the system under consideration depends on an uncertain param-
eter. Moreover, while operating, the system switches between several operation modes,
and, for every n ≥ n0, one of the subsystems

Xn+1 = F (s)(n,Xn, α), s = 1, . . . , S, (4)

is active.
Let Xn(n0, X0) be the solution of (3) satisfying the condition Xn0 = X0.
For the set of equations (3) we introduce the following assumptions:
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H1. For equations (3) there exists a set of stationary solutions Θ0 ∈ KC(R
q), i.e.,

F (s)(n,Θ0, α) = Θ0 for all n ∈ N+, α ∈ ℑ, s = 1, . . . , S.
H2. For any X0 ∈ KC(R

q) and Y0 ∈ KC(R
q) there exists the Hukuhara difference

W0 ∈ KC(R
q).

Definition 3.1 The stationary solution Θ0 of the set of equations (3) is

(i) stable, if for any n0 ∈ N+ and ε > 0 there exists a δ = δ(n0, ε) > 0 such that
the inequality D[W0,Θ0] < δ implies the estimate D[Xn,Θ0] < ε for all n ≥ n0,
where W0 = X0 − Y0, X0 ∈ KC(R

q), Y0 ∈ KC(R
q), and Xn = Xn(n0, X0 − Y0) =

Xn(n0,W0) is the solution of (3);
(ii) attractive, if for any n0 ∈ N+ there exists δ̃(n0) > 0, and for any ξ > 0 there exists

τ(n0,W0, ξ) ∈ N+ such that the inequality D[W0,Θ0] < δ̃(n0) implies the estimate
D[Xn,Θ0] < ξ for any n ≥ n0 + τ(n0,W0, ξ);

(iii) asymptotically stable, if it is both stable and attractive.

We will look for stability conditions for a stationary solution Θ0 of the set of switched
systems of difference equations (3).

It should be noted that the general stability theory of classical difference equations is
well-developed, see [1, 3, 8, 15–17, 20] and references cited therein, whereas the stability
theory of a set of difference equations is in a primitive state.

In particular, in [9] and [18] an extension of some results obtained for a set of contin-
uous systems with Hukuhara derivative was proposed for a set of difference equations.
Unsolved problem is that of constructing an appropriate Lyapunov function satisfying
special properties providing the stability of a stationary solution.

In [4], an approach to the stability analysis for sets of difference equations of the form
(3) has been developed in the case of absence of switching. In the present paper, we will
extend this approach to the set of switched difference equations.

4 Construction of Matrix Lyapunov Functions and Comparison Equations

Let the symbol co mean the closure of convex shell of the corresponding set.
Together with subsystems (4) we will consider the following families of sets of differ-

ence equations

Xn+1 = F
(s)
M (n,Xn), s = 1, . . . , S, (5)

where F
(s)
M (n,Xn) = co

⋃

α∈ℑ

F (s)(n,Xn, α);

Xn+1 = F (s)
m (n,Xn), s = 1, . . . , S, (6)

where F
(s)
m (n,Xn) = co

⋂

α∈ℑ

F (s)(n,Xn, α);

Xn+1 = F
(s)
β (n,Xn), s = 1, . . . , S, (7)

where F
(s)
β (n,Xn) = F

(s)
M (n,Xn)β + F

(s)
m (n,Xn)(1 − β), β ∈ [0, 1].

In what follows it is assumed that F
(s)
m , F

(s)
M and F

(s)
β ∈ Kc(R

q).
For every s ∈ {1, . . . , S}, we introduce an auxiliary matrix function, see [4],

U(s)(n, β,Xn) = [U
(s)
ij (n, β,Xn)], i, j = 1, 2, (8)
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where the element U
(s)
11 (n,Xn) is associated with the s-th set from the family (5),

U
(s)
22 (n,Xn) is associated with the s-th set from the family (6), U

(s)
12 (n, β,Xn) =

U
(s)
21 (n, β,Xn) is associated with the s-th set from the family (7).
In terms of function (8) we construct a scalar function [22]

Vs(n,Xn, β, θs) = θTs U
(s)(n, β,Xn)θs, θs ∈ R

2
+, (9)

and assume that Vs : N+ ×KC(R
q)× [0, 1]× R

2
+ → R+.

Function (9) is a partial Lyapunov function for the s-th subsystem from (4) if, together
with the first difference

∆Vs(n,Xn, β, θs) = Vs(n+ 1, Xn+1, β, θs)− Vs(n,Xn, β, θs),

it solves the problem of stability of the stationary solution Θ0 for the s-th subsystem.
Let the following assumptions be fulfilled.

H3. For every s ∈ {1, . . . , S}, there exists θ̃s ∈ R
2
+ such that for the function

Vs(n,Xn, β, θ̃s) and for its first difference along trajectories of the s-th set of equa-
tions from (4) the estimates

as(D[Xn,Θ0]) ≤ Vs(n,Xn, β, θ̃s) ≤ bs(D[Xn,Θ0]), (10)

∆Vs ≤ w(s)(n, Vs) (11)

are valid for n ∈ N+, Xn ∈ S(ρ), β ∈ [0, 1]. Here ρ = const > 0; S(ρ) = {X ∈
Kc(R

q) : D[X,Θ0] < ρ}; a(·) and b(·) are class K (in the sense of Hahn) functions
[28]; functions w(s)(n, r) are continuous with respect to r ∈ [0, ρ̃] for every value of
n ∈ N+, and w

(s)(n, r)/r → 0 as r → 0; ρ̃ = const > 0.
H4. The zero solutions of the equations

un+1 = un + w(s)(n, un), s = 1, . . . , S, (12)

are asymptotically stable.

Equations (12) are comparison ones for subsystems from the family (4). It is known,
see [4], that under assumptions H3 and H4 the stationary solution Θ0 of each subsystem
is asymptotically stable.

To obtain stability conditions for the set of switched systems of difference equations
(3), we will use multiple Lyapunov functions and the dwell-time approach.

5 Dwell Time Stability Analysis

Let us impose additional restrictions on the Lyapunov functions (9) and on the compar-
ison equations (12).

H5. There exist positive numbers csl such that

Vs(n,Xn, β, θ̃s) ≤ cslVl(n,Xn, β, θ̃l) (13)

for n ∈ N+, Xn ∈ S(ρ), β ∈ [0, 1]; s, l = 1, . . . , S.
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H6. Let equations (12) be of the form

un+1 = un − α(s)u1+ξ(s)

n , s = 1, . . . , S, (14)

where α(s) and ξ(s) are positive constants.

Remark 5.1 Equations (14) can be considered as equations of the nonlinear approx-
imation for (12).

Remark 5.2 The case where ξ(s) = 0, s = 1, . . . , S, is well-investigated, see, for
instance, [10, 13, 21]. Therefore, in this section we assume that ξ(s) > 0, s = 1, . . . , S,
i.e., the switched comparison equations (14) are essentially nonlinear.

Remark 5.3 Using Lemma 2.1 and taking into account Assumptions H3, H4 and
H6, one can obtain estimates for solutions of subsystems (4).

Without loss of generality, we assume that the interval (0,+∞) contains an infinite
number of switching instants. Let τi, i ∈ N, be the switching times, 0 < τ1 < τ2 < . . .,
and τ0 = 0.

Denote, for brevity, ξ̂i = ξ(σ(τi)), α̂i = α(σ(τi)), i ∈ N+; ĉi = cσ(τi)σ(τi−1), i ∈ N.
For every m ∈ N and Lm ∈ R+, define a sequence χn(Lm,m) by the formulae

χ0(Lm,m) = Lm,

χn(Lm,m) = ĉ
−ξ̂m+n−1

m+n−1 (χn−1(Lm,m))
ξ̂m+n−1/ξ̂m+n−2 + α̂m+n−1ξ̂m+n−1Tm+n

for n ∈ N, where Ti = τi − τi−1, i ∈ N.

Theorem 5.1 Let Assumptions H1–H6 be fulfilled. If there exists a positive constant

L such that

χn(L, 1) → +∞ as n→ +∞, (15)

then the stationary solution Θ0 of the set of equations (3) is asymptotically stable.

Proof. Using partial Lyapunov functions V1(n,Xn, β, θ̃1), . . . , VS(n,Xn, β, θ̃S), con-
struct a multiple Lyapunov function Vσ(n)(n,Xn, β, θ̃σ(n)) corresponding to the switching
law σ(n).

Choose a number ε such that 0 < ε < ρ, and

α(s)
(

1 + ξ(s)
)

V ξ(s)

s (n,Xn, β, θ̃s) ≤ 1, s = 1, . . . , S,

for n ∈ N+, Xn ∈ S(ε), β ∈ [0, 1].
Consider the solution Xn of (3) satisfying the condition Xn0 = W0, where n0 ∈ N+,

W0 ∈ S(ε). Find a positive integer m such that n0 ∈ [τm−1, τm). Let Xn ∈ S(ε) for
n = n0, . . . , ñ.

If n0 < ñ ≤ τm, then applying Lemma 2.1 to the σ(τm−1)-th inequality from (11), we
obtain that

V
−ξ̂m−1

σ(τm−1)

(

ñ, Xñ, β, θ̃σ(τm−1)

)

≥ V
−ξ̂m−1

σ(τm−1)

(

n0,W0, β, θ̃σ(τm−1)

)

+ α̂m−1ξ̂m−1(ñ− n0)

≥ V
−ξ̂m−1

σ(τm−1)

(

n0,W0, β, θ̃σ(τm−1)

)

. (16)
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In the case of ñ > τm, there exists a positive integer p satisfying the condition
τm+p−1 < ñ ≤ τm+p. It should be noted that p → +∞ as ñ → +∞. Applying succes-
sively Lemma 2.1 to the corresponding inequalities from (11) and taking into account
estimates (13), we obtain

V
−ξ̂m+p−1

σ(τm+p−1)

(

ñ, Xñ, β, θ̃σ(τm+p−1)

)

≥ V
−ξ̂m+p−1

σ(τm+p−1)

(

τm+p−1, Xτm+p−1, β, θ̃σ(τm+p−1)

)

+α̂m+p−1ξ̂m+p−1(ñ− τm+p−1)

≥ ĉ
−ξ̂m+p−1

m+p−1

(

V
−ξ̂m+p−2

σ(τm+p−2)

(

τm+p−1, Xτm+p−1, β, θ̃σ(τm+p−2)

))ξ̂m+p−1/ξ̂m+p−2

≥ . . . ≥ ĉ
−ξ̂m+p−1

m+p−1

(

χp−1

(

V
−ξ̂m−1

σ(τm−1)

(

n0,W0, β, θ̃σ(τm−1)

)

,m
))ξ̂m+p−1/ξ̂m+p−2

. (17)

From (10), (16) and (17), it follows that

D[Xñ,Θ0] ≤ max
s=1,...,S

a(−1)
s (bs (D[W0,Θ0])) (18)

for ñ = n0, . . . , τm, and

D[Xñ,Θ0] ≤ max
s,k,j=1,...,S

a(−1)
s

(

csk

(

χp−1

(

b−ξ(j)

j (D[W0,Θ0]) ,m
))−1/ξ(k)

)

(19)

for ñ = τm+p−1 + 1, . . . , τm+p and p ≥ 1. Here a
(−1)
s (·) is inverse of the function as(·),

s = 1, . . . , S.
Let there exist a positive constant L such that condition (15) is fulfilled. It is easy to

check that if Lm = χm−1(L, 1), then χn(Lm,m) = χn+m−1(L, 1). Hence, χn(Lm,m) →
+∞ as n→ +∞.

Find a number δ1 such that 0 < δ1 < ε, and b−ξ(j)

j (D[W0,Θ0]) ≥ Lm for W0 ∈ S(δ1),
j = 1, . . . , S. Using estimate (19), one can choose a positive integer p0 satisfying the
following condition: if W0 ∈ S(δ1) and p ≥ p0, then Xñ ∈ S(ε).

From (17) it follows that

D[Xñ,Θ0] ≤ max
s,j=1,...,S

a(−1)
s (c̄pbj (D[W0,Θ0])) (20)

for ñ = τm+p−1 + 1, . . . , τm+p and p ≥ 1. Here c̄ = max
s,k=1,...,S

csk. Taking into account

(18) and (20), one can find a number δ2, 0 < δ2 < ε, such that if W0 ∈ S(δ2) and p < p0,
then Xñ ∈ S(ε).

Let δ = min{δ1; δ2}. We obtain that D[W0,Θ0] < δ implies the estimate D[Xn,Θ0] <
ε for all n ≥ n0.

Moreover, from (19) it follows that D[Xn,Θ0] → 0 as n→ +∞. Thus, the stationary
solution Θ0 of the set of equations (3) is asymptotically stable. This completes the proof.

Corollary 5.1 Let Assumptions H1–H6 be fulfilled. If there exists a positive constant

L such that χn(L,m) → +∞ as n → +∞ uniformly with respect to m ∈ N, then the

stationary solution Θ0 of the set of equations (3) is uniformly asymptotically stable.

Corollary 5.2 Let Assumptions H1–H6 be fulfilled. If Ti → +∞ as i → +∞, then

the stationary solution Θ0 of the set of equations (3) is uniformly asymptotically stable.
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Next, let us show that the use of Lemma 2.2 permits us to replace condition (15) in
Theorem 5.1 by a condition though more conservative but more convenient for applica-
tions.

Construct a sequence ψn by the formulae ψ1 = α̂1ξ̂1T2,

ψn = α̂nξ̂nTn+1 +

n−1
∑

i=1

2ωn,n−1+...+ωn,n−i (ĉn . . . ĉn−i+1)
−ξ̂n

(

α̂n−iξ̂n−iTn−i+1

)ξ̂n/ξ̂n−i

for n = 2, 3, . . ., where ωn,j = min{ξ̂n/ξ̂j − 1; 0}, j = 1, . . . , n− 1.

Corollary 5.3 Let Assumptions H1–H6 be fulfilled. If

ψn → +∞ as n→ +∞, (21)

then the stationary solution Θ0 of the set of equations (3) is asymptotically stable.

Proof. With the aid of Lemma 2.2, it is easy to check that χn(L, 1) ≥ ψn for any
L > 0 and for any n ∈ N.

Really, χ0(L, 1) = L > 0,

χ1(L, 1) = ĉ−ξ̂1
1 (χ0(L, 1))

ξ̂1/ξ̂0 + α̂1ξ̂1T2 = ĉ−ξ̂1
1 Lξ̂1/ξ̂0 + ψ1 ≥ ψ1,

and, for n > 1, we obtain

χn(L, 1) = ĉ−ξ̂n
n (χn−1(L, 1))

ξ̂n/ξ̂n−1 + α̂nξ̂nTn+1

= ĉ−ξ̂n
n

(

ĉ
−ξ̂n−1

n−1 (χn−2(L, 1))
ξ̂n−1/ξ̂n−2 + α̂n−1ξ̂n−1Tn

)ξ̂n/ξ̂n−1

+ α̂nξ̂nTn+1

≥ 2ωn,n−1 (ĉnĉn−1)
−ξ̂n (χn−2(L, 1))

ξ̂n/ξ̂n−2 + 2ωn,n−1 ĉ−ξ̂n
n

(

α̂n−1ξ̂n−1Tn

)ξ̂n/ξ̂n−1

+α̂nξ̂nTn+1 ≥ . . . ≥ 2ωn,n−1+...+ωn,1 (ĉn . . . ĉ1)
−ξ̂n Lξ̂n/ξ̂0 + ψn ≥ ψn.

Hence, from (21) follows the fulfilment of condition (15). This completes the proof.

Remark 5.4 The results of the present section can be extended to the case where
Assumtion H5 is replaced by the following one:

H′
5. There exist positive numbers csl and νsl such that

Vs(n,Xn, β, θ̃s) ≤ cslV
νsl
l (n,Xn, β, θ̃l)

for n ∈ N+, Xn ∈ S(ρ), β ∈ [0, 1]; s, l = 1, . . . , S.

6 Stability Analysis of Multiconnected Switched Systems

Consider the system

xi(n+ 1) = xi(n) + F
(σ)
i (xi(n)) +

k
∑

j=1

Ψ
(σ)
ij (n,x(n)), i = 1, . . . , k, (22)
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which describes the dynamics of a complex system composed of k interconnected systems
[19, 22]. Here xi(n) = (xi1(n), . . . , xiqi(n))

T
, x(n) = (xT

1 (n), . . . ,x
T
k (n))

T ; n ∈ N+;
function σ = σ(n), with σ(n) ∈ {1, . . . , S}, defines the switching law; vector fields

F
(s)
i (xi) are continuous for xi ∈ R

qi and positive homogeneous of the order µ
(s)
i with

respect to the dilation (mi1, . . . ,miqi), where µ
(s)
i ,mi1, . . . ,miqi are positive numbers;

vector functions Ψ
(s)
ij (n,x) =

(

Ψ
(s)
ij1(n,x), . . . ,Ψ

(s)
ijqi

(n,x)
)T

are defined for n ∈ N+,

‖x‖ < H , 0 < H ≤ +∞, and continuous with respect to x for every fixed n; i, j =
1, . . . , k; s = 1, . . . , S. We assume that the estimates

|Ψ
(s)
ijg(n,x)| ≤ c

(s)
ijgr

α
(s)
ijg

j (xj)

hold for n ∈ N+, ‖x‖ < H , where rj (xj) =
qj
∑

p=1
|xjp|

1/mjp , c
(s)
ijg ≥ 0, α

(s)
ijg > 0, g =

1, . . . , qi; i, j = 1, . . . , k; s = 1, . . . , S.
Thus, at each time instant, one of the subsystems

xi(n+ 1) = xi(n) + F
(s)
i (xi(n)) +

k
∑

j=1

Ψ
(s)
ij (n,x(n)), i = 1, . . . , k, s = 1, . . . , S, (23)

is active.
From the properties of the right-hand sides of (22) it follows that the system admits

the zero solution. We will look for conditions of asymptotic stability of the solution.
For every i ∈ {1, . . . , k}, consider the family of isolated difference subsystems

xi(n+ 1) = xi(n) + F
(s)
i (xi(n)), s = 1, . . . , S, (24)

and the corresponding family of subsystems of differential equations

żi(t) = F
(s)
i (zi(t)), s = 1, . . . , S. (25)

Let us impose some additional conditions on the right-hand sides of (22).

H7. There exist numbers h1, . . . , hk such that hi ≥ 2max{mi1, . . . ,miqi}, i = 1, . . . , k,
and, for every s ∈ {1, . . . , S}, the inequalities

α
(s)
ijg

hj + µ
(s)
j

≥
µ
(s)
i +mig

hi + µ
(s)
i

for c
(s)
ijg 6= 0, g = 1, . . . , qi, i, j = 1, . . . , k, (26)

hold.

Remark 6.1 Assumption H7 means that the orders of the right-hand sides of the
isolated subsystems (24) are, in a certain sense, less than or equal to the orders of
functions characterizing interconnections between the subsystems.

H8. For every i ∈ {1, . . . , k}, the zero solutions of all subsystems (25) are asymptotically
stable.

Remark 6.2 It is known, see [7, 26], that the fulfilment of Assumption H8 implies
that the zero solutions of all difference subsystems (24) are asymptotically stable as well.
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H9. For every i ∈ {1, . . . , k}, for the family of subsystems (25), Lyapunov functions
vi1(zi), . . . , viS(zi) are constructed so that vis(zi) is twice continuously differ-
entiable for zi ∈ R

qi positive definite and positive homogeneous of the order
γi ≥ 2max{mi1, . . . ,miqi} with respect to the dilation (mi1, . . . ,miqi) function,
and the derivative of vis(zi) with respect to the s-th subsystem from the family
(25) is negative definite, s = 1, . . . , S.

Remark 6.3 In [27, 30], it was proved that the fulfilment of Assumption H8 implies
the existence of the required Lyapunov functions.

Remark 6.4 In view of homogeneous functions properties, see [30], the estimates

a
(s)
1i r

γi

i (zi) ≤ vis(zi) ≤ a
(s)
2i r

γi

i (zi) ,

∣

∣

∣

∣

∂vis(zi)

∂zig

∣

∣

∣

∣

≤ a
(s)
3igr

γi−mig

i (zi) ,

(

∂vis(zi)

∂zi

)T

F
(s)
i (zi) ≤ −a

(s)
4i r

γi+µ
(s)
i

i (zi)

hold for zi ∈ R
qi , where a

(s)
1i , a

(s)
2i , a

(s)
3ig, a

(s)
4i , s = 1, . . . , S, are positive constants depend-

ing on chosen Lyapunov functions; g = 1, . . . , qi; i = 1, . . . , k.

In what follows, we will assume, without loss of generality, that γi = hi, i = 1, . . . , k,
where numbers h1, . . . , hk satisfy the conditions specified in Assumption H7.

H10. For every s ∈ {1, . . . , S}, the inequality system

−a
(s)
4i ξ

γi+µ
(s)
i

i +

qi
∑

g=1

a
(s)
3igξ

γi−mig

i

k
∑

j=1

c
(s)
ijgξ

α
(s)
ijg

j < 0, i = 1, . . . , k, (27)

admits a positive solution.

Remark 6.5 Assumption H10 is the Martynyuk-Obolenskii condition [23, 24] of
asymptotic stability for the zero solutions of the corresponding Wazewskij systems

żi(t) = −a
(s)
4i z

γi+µ
(s)
i

i (t) +

qi
∑

g=1

a
(s)
3igz

γi−mig

i (t)

k
∑

j=1

c
(s)
ijgz

α
(s)
ijg

j (t), i = 1, . . . , k, s = 1, . . . , S.

From the results of [5] it follows that if Assumptions H7–H10 are fulfilled, then, for

every s ∈ {1, . . . , S}, one can find positive numbers ζ
(s)
1 , . . . , ζ

(s)
k for which the first

difference of the function

Vs(z) =

k
∑

i=1

ζ
(s)
i vis(zi) (28)

with respect to solutions of the corresponding subsystem from family (23) will be negative
definite.

It is easy to show the existence of positive numbers β(1), . . . , β(S), α(1), . . . , α(S) and
H̄ such that H̄ ∈ (0, H), and for the first difference of Vs(z) with respect to solutions of
the s-th subsystem from (23) the inequalities

∆Vs
∣

∣

(s)
≤ −β(s)

k
∑

i=1

r
γi+µ

(s)
i

i (xi(n)) ≤ −α(s)V 1+ξ(s)

s (x(n))
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hold for ‖x(n)‖ < H̄ . Here ξ(s) = max
i=1,...,k

µ
(s)
i /γi, s = 1, . . . , S.

Thus, for subsystems (23) we obtain comparison equations of the form (14). Hence,
for the subsequent stability analysis of (22) one can use the results of Section 5.

7 Example

Let system (22) be of the form















x1(n+ 1) = x1(n) + x2(n),

x2(n+ 1) = x2(n)− aσx
3
1(n)− bσ|x2(n)|

1/2 x2(n) + ψ
(σ)
1 (x3(n)),

x3(n+ 1) = x3(n)− dσx
λσ

3 (n) + ψ
(σ)
2 (x2(n)).

(29)

Here x1(n), x2(n), x3(n) are scalar variables; σ = σ(n) ∈ {1, 2}; a1 = b2 = 2, a2 = b1 = 1,

d1 = 8, d2 = 4, λ1 = 3, λ2 = 5; functions ψ
(s)
1 (z3) and ψ

(s)
2 (z2) are continuous for |z3| < H

and |z2| < H respectively and satisfy the conditions

|ψ
(s)
1 (z3)| ≤ cs|z3|

αs , |ψ
(s)
2 (z2)| ≤ es|z2|

βs , s = 1, 2,

where α1 = 12/5, α2 = 4, β1 = 15/8, β2 = 31/8, and c1, c2, e1, e2 are positive parameters.
Thus, switching in (29) occurs between the subsystems















x1(n+ 1) = x1(n) + x2(n),

x2(n+ 1) = x2(n)− 2x31(n)− |x2(n)|
1/2 x2(n) + ψ

(1)
1 (x3(n)),

x3(n+ 1) = x3(n)− 8x33(n) + ψ
(1)
2 (x2(n)),

(30)

and














x1(n+ 1) = x1(n) + x2(n),

x2(n+ 1) = x2(n)− x31(n)− 2|x2(n)|
1/2 x2(n) + ψ

(2)
1 (x3(n)),

x3(n+ 1) = x3(n)− 4x53(n) + ψ
(2)
2 (x2(n)).

(31)

System (29) can be treated as a complex system describing the interaction of two
(k = 2) systems

{

x1(n+ 1) = x1(n) + x2(n),

x2(n+ 1) = x2(n)− aσx
3
1(n)− bσ|x2(n)|

1/2 x2(n),

and
x3(n+ 1) = x3(n)− dσx

λσ

3 (n).

The differential systems

{

ż1 = z2,

ż2 = −asz
3
1 − bs|z2|

1/2 z2, s = 1, 2,
(32)

are homogeneous ones of the order 1/2 with respect to the dilation (1/2, 1), and the
differential equations

ż3 = −dsz
λs

3 , s = 1, 2, (33)
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are homogeneous ones of the orders 2 and 4 with respect to the dilation 1.
Construct inequalities (26) corresponding to complex system (29). We obtain

max

{

8

5(h2 + 2)
;

5

3(h2 + 4)

}

≤
2

2h1 + 1
≤ min

{

8

5(h2 + 2)
;

8

3(h2 + 4)

}

.

These inequalities admit positive solutions. For example, one can choose h1 = h2 = 2.
Hence, Assumption H7 is fulfilled.

Lyapunov functions for systems (32) and equations (33) can be constructed in the
forms

v1s(z1, z2) =
as
4
z41 +

1

2
z22 +

1

10
|z1| z1z2, s = 1, 2,

and

v2s(z3) =
1

2
z23 , s = 1, 2,

respectively. Thus, Assumptions H8 and H9 are fulfilled as well.
In the present case inequalities (27) take the form

−0.1ξ
5/2
1 + c1ξ1ξ

12/5
2 < 0, −8ξ42 + e1ξ2ξ

15/8
1 < 0 (34)

for s = 1, and

−0.06ξ
5/2
1 + c2ξ1ξ

4
2 < 0, −4ξ62 + e2ξ2ξ

3
1 < 0 (35)

for s = 2. System (34) admits a positive solution if and only if

c1e
4/5
1 < 84/5/10 ≈ 0.52, (36)

whereas system (35) admits a positive solution for any positive values of c2 and e2.
Assume that inequality (36) is valid. Let, for instance, c1 = e2 = 1/2, c2 = e1 = 2/3.

Thus, Assumption H10 is fulfilled.
It is easy to check that if

Vs(z) =
as
4
z41 +

1

2
z22 +

1

10
|z1| z1z2 +

1

4
z23 , s = 1, 2,

then there exists H̄ > 0 such that

∆V1
∣

∣

(30)
≤ −0.004V 2

1 (x(n)), ∆V2
∣

∣

(31)
≤ −0.32V 3

2 (x(n))

for ‖x(n)‖ < H̄. Here z = (z1, z2, z3)
T , x(n) = (x1(n), x2(n), x3(n))

T .
Moreover, the estimates V1(z) ≤ 2V2(z), V2(z) ≤ V1(z) hold for all z ∈ R

3.
Next, with the aid of the results of Section 5, it easy to derive sufficient conditions of

asymptotic stability of the zero solution of system (29).
Assume, for definiteness, that subsystem (30) is active for n = τ2i, . . . , τ2i+1 − 1,

whereas subsystem (31) is active for n = τ2i+1, . . . , τ2i+2 − 1; i ∈ N+.
Consider the sequence χ0 = L = const > 0,

χ2i+1 = (χ2i)
2
+ 0.64T2i+2, χ2i+2 =

1

2
(χ2i+1)

1/2
+ 0.004T2i+3, i ∈ N+.

If there exists L > 0 such that

χn → +∞ as n→ +∞, (37)
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then, by Theorem 5.1, the zero solution of system (29) is asymptotically stable.
For instance, condition (37) is fulfilled in the case when

T 2
1 + 0.64T2 ≥ 4 p21, (pi + 0.004T2i+1)

2 + 0.64T2i+2 ≥ 4 p2i+1, i ∈ N,

where {pi}
+∞

i=1 is a sequence of positive numbers, such that pi → +∞ as i→ +∞.

8 Conclusion

In the present paper, for a set of switched difference equations, a regularization procedure
with respect to the uncertainty parameter of the original system is developed. On the
basis of the procedure, an approach to constructing Lyapunov functions and compari-
son systems for the corresponding family of subsystems is suggested. By means of the
multiple Lyapunov function method, classes of switching law are determined for which
the asymptotic stability of a stationary solution of the set of switched equations can be
guaranteed. The developed approaches are applied to the stability analysis of a nonlinear
multiconnected switched difference system.

An interesting problem for further research is that of estimating attraction domains
of stationary solutions and finding restrictions on switching laws providing preassigned
estimates.
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Abstract: In this paper, a Sobolev type fractional differential equation with non-
local integral boundary condition is investigated. The theory of resolvent operators,
fractional calculus and fixed point techniques are used to study the existence results
to the given equation. In the end, an example is provided to illustrate the applications
of the abstract results.
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1 Introduction

In a few decades, fractional differential equations have received much attention of re-
searchers mainly due to their extensive interesting applications in physics, mechanics
and engineering such as electrochemistry, control theory, signal and image processing,
porous media, electromagnetism etc.(see [23], [24], [29]). The fact, that fractional deriva-
tive (integral) is an operator which includes integer order derivatives (integrals) as special
case and describes the hereditary properties and memory effects of various materials, is
the reason why fractional differential equations are more precise in the modeling of many
phenomena. Many physical phenomena such as seepage flow in porous media and in fluid
dynamic traffic models [20] and nonlinear oscillations of earthquakes [21] can be described
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by the fractional differential equations. For a good introduction and applications to frac-
tional differential equations we refer the reader to [25], [30] and [33]. Recently, boundary
value problems for nonlinear fractional differential equations have been investigated by
many researchers, see [1]- [5], [26]- [28], [34] and [36].

The Sobolev type fractional differential equations can be considered as an abstract
formulation of partial differential equations which occurs in various applications such as
the flow of fluid through fissured rocks [6], thermodynamics [14], and shear in second order
fluids [22], [35]. There are many papers dealing with the investigation on the existence
of solutions for Sobolev type differential equations in Banach spaces see [7]- [11].

In [18] Hernàndez et al. talked about an error in some papers regarding the problem of
existence of a solution for abstract fractional differential equation and proposed a different
approach to treat a general class of abstract fractional differential equation based on the
theory of resolvent operators. But the results in [18] were not relevant for the problems
with nonlocal conditions. Then in [19] Hernàndez et al. studied the theory of abstract
fractional differential equations with nonlocal conditions and proved the existence results
using resolvent operators. In [10], [11] Balachandran et al. studied the existence of mild
solution for fractional integro-differential equation with nonlocal conditions and abstract
fractional integro-differential equation of Sobolev type respectively by using the theory
of resolvent operator. In [12] Belmekki et al. established the sufficient conditions for
existence and uniqueness results for semilinear fractional differential equations with finite
delay via resolvent operators. In [13] Belmekki et al. extended the results given in [12]
to cover the case of infinite delay. Recently in [16] Chadha et al. discussed the existence
results of history valued neutral fractional differential equation with the help of the theory
of resolvent operators. For more details on resolvent operators see [15], [17], [31].

Up to now, to the best of our knowledge, there is a little gap in the literature on the
Sobolev type fractional differential equation of order 1 < β 6 2 with nonlocal integral
boundary condition using resolvent operators. Motivated by the above papers, to fill this
gap, in this paper we consider the following Sobolev type fractional differential equation
with nonlocal integral boundary conditions

{

CDβ [Bx(t)] = Ax(t) + F(t, x(t)), 1 < β 6 2, t ∈ (0, 1),

x(0) = 0, x(ε) = c
∫ 1

η
x(s)ds, 0 < ε < η < 1,

(1)

where CDβ is the Caputo fractional derivative of order β. A is a closed linear unbounded
operator, B is linear operator. F : [0, 1]×X → X is continuous function. c is a positive

real constant. The nonlocal integral boundary condition x(ε) = c
∫ 1

η x(s)ds shows that

the value of the unknown function at a nonlocal point ε ∈ (0, 1) with 0 < ε < η < 1 is
proportional to the integration over a sub-strip (η, 1) of an unknown function.

2 Preliminaries

In this segment, we have some basic notations, definitions, theorems and lemmas of
fractional calculus and resolvent operators which will be used in the further sections. Let
(X, ‖.‖) be a Banach space and C = C([0, 1], X) be the Banach space of all continuous
functions from [0, 1] to X equipped with the norm ‖x‖ = sup

t∈[0,1]

‖x(t)‖X . XH denotes the

domain of H := B−1A endowed with the graph norm ‖x‖H = ‖x‖+ ‖Hx‖. Let Lp(J,X)
be the Banach space of all Bochner measurable functions x : J → X such that ‖x(t)‖pX
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is integrable equipped with the norm

‖x‖Lp(J,X) =

(
∫

J

‖x(s)‖pXds

)1/p

.

Definition 2.1 [33] The fractional integral of order β for a function F ∈ L1(R+) is
defined by

Iβ0+F(t) =
1

Γ(β)

∫ t

0

(t− s)β−1F(s)ds, t > 0, β > 0.

Definition 2.2 [24] The Caputo fractional derivative of order β for a function F ∈
Cm−1(R+) ∩ L1(R+) is defined by

cDβ
0+F(t) =

1

Γ(m− β)

∫ t

0

(t− s)m−β−1Fm(s)ds,

where m− 1 < β < m, m = [β] + 1 and [β] denotes the integral part of the real number
β.

Lemma 2.1 [30] Let q > 0, then

D−βDβF(t) = F(t) + C1t
β−1 + C2t

β−2 + . . .+ Cnt
β−1,

for some Ci ∈ R, i = 1, 2, . . . , n, n = [β] + 1.

To prove the existence results we admit the following hypotheses:

(H1) The linear unbounded operator A : D(A) ⊂ X → X and linear bijective operator
B : D(B) ⊂ D(A) ⊂ X → X are closed linear operators.

(H2) B−1 : X → D(B) is a continuous operator.

(H3) The function F : [0, 1]×X → X is a continuous function such that

‖F(t, x)−F(t, y)‖ 6 L‖x− y‖, (2)

for all x, y ∈ X , t ∈ [0, 1] and L is a positive constant.

Lemma 2.2 For any functions F ∈ C([0, 1] × X,X), the solution of Sobolev type
fractional boundary value problem

{

CDβ [Bx(t)] = Ax(t) + F(t, x(t)), 1 < β 6 2, t ∈ (0, 1),

x(0) = 0, x(ε) = c
∫ 1

η
x(s)ds, 0 < ε < η < 1,

(3)

is given by

x(t) = C1t+
1

Γβ

∫ t

0

(t− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ)))dτ, (4)

where

C1 =
1

Λ

{

c

Γβ

∫ 1

η

[
∫ s

0

(s− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ)))dτ

]

ds

−
1

Γβ

∫ ε

0

(ε− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ)))dτ

}

(5)

with Λ = ε− c
2 (1− η2) 6= 0.
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Proof. Using Lemma 2.1, the solution x of (3) can be written as

x(t) = C1t+ C2 +
1

Γβ

∫ t

0

(t− τ)β−1B−1Ax(τ)dτ +
1

Γβ

∫ t

0

(t− τ)β−1B−1F(τ, x(τ))dτ,

for some constants C1, C2 ∈ R.
On applying boundary conditions, we get C2 = 0 and

C1 =
1

Λ

{

c

Γβ

∫ 1

η

[
∫ s

0

(s− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ)))dτ

]

ds

−
1

Γβ

∫ ε

0

(ε− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ))dτ

}

.

Equation (4) can also be written as

x(t) = k(t) +
1

Γβ

∫ t

0

(t− τ)β−1B−1Ax(τ)dτ, (6)

where k(t) = C1t+
1
Γβ

∫ t

0
(t− τ)β−1B−1F(τ, x(τ))dτ .

Let B−1A = H . To demonstrate existence results, let us assume that integral equation
(6) has an associated resolvent operator {S(t), t > 0} on X .

Definition 2.3 [31] A one parameter family of bounded linear operators {S(t), t >
0} on X is called a resolvent operator for (6) if the following conditions are satisfied.

1. S(t) is strongly continuous on R+ and S(0) = I,

2. S(t)D(H) ⊂ D(H) and HS(t)x = S(t)Hx ∀x ∈ D(H) and t > 0,

3. for every x ∈ D(H) and t > 0,

S(t)x = x+
1

Γβ

∫ t

0

(t− τ)β−1HS(τ)xdτ. (7)

Definition 2.4 [31] A resolvent operator {S(t), t > 0} for (6) is called differentiable
if S(.)x ∈ W 1,1

loc (R
+, X) (W 1,1

loc (R
+, X) is the space of all functions having distributional

derivatives)for all x ∈ D(H) and there exists φH ∈ L1
loc(R

+) such that ‖S ′(t)x‖ 6

φH(t)‖x‖XH
∀x ∈ D(H).

Definition 2.5 [31] A resolvent operator {S(t), t > 0} for (6) is called analytic if the
operator S(t) : (0,∞) → L(X) (L(X) denotes the space of all bounded linear operators
from X to X) admits an analytic extension to a sector Σ0,θ = {λ ∈ C : |arg(λ)| < θ0}
for some 0 < θ0 6 π/2.

Definition 2.6 A function x ∈ C is called a mild solution of the integral equation
(6) if

∫ t

0
(t− τ)β−1x(τ)dτ ∈ D(H) for all t ∈ [0, 1], k(t) ∈ C and

x(t) = k(t) +
H

Γβ

∫ t

0

(t− τ)β−1x(τ)dτ. (8)

Lemma 2.3 [31] If S(t) is the resolvent operator for (6).
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(i) If x is a solution of (6) on [0, 1], then the function t →
∫ t

0
S(t− s)k(s)ds is continu-

ously differential on [0, 1] and

x(t) =
d

dt

∫ t

0

S(t− s)k(s)ds, ∀t ∈ [0, 1]. (9)

(ii) If S(t) is analytic and k ∈ Cα([0, 1], X) for some α ∈ (0, 1), then the function defined
by

x(t) = S(t)(k(t) − k(0)) +

∫ t

0

S ′(t− s)[k(s)− k(t)]ds+ S(t)k(0), ∀t ∈ [0, 1], (10)

is a mild solution of (6).

(iii) If S(t) is differentiable and k ∈ C([0, 1], XH), then the function x : [0, 1] → X given
by

x(t) = k(t) +

∫ t

0

S ′(t− s)k(s)ds, ∀t ∈ [0, 1], (11)

is a mild solution of (6).

3 Existence of Mild Solution

In this segment, we discuss the existence of mild solution for boundary value problem
(1). Throughout this paper, we assume that the resolvent operator {S(t), t > 0} is a
differential operator and function F is continuous in XH .

By the help of Lemma (2.3)(iii), we introduce the mild solution of (6) given by

x(t) = C1t+
1

Γβ

∫ t

0

(t− τ)β−1B−1F(τ, x(τ))dτ

+

∫ t

0

S ′(t− s)

(

C1s+
1

Γβ

∫ s

0

(s− τ)β−1B−1F(τ, x(τ))dτ

)

ds. (12)

For simplification, let N = max
t∈[0,1]

F(t, 0), R = ‖B−1‖, P = ‖B−1A‖.

Theorem 3.1 Let (H1)− (H4) hold with

δ = (1 + ‖φH‖L1)
(LR+ P )

|Λ|

[

c(1− ηβ+1)

Γ(β + 2)
−

εβ

Γ(β + 1)

]

< 1. (13)

Then there exists a mild solution of (1) on [0, 1].

Proof. Let Br = {x ∈ C : ‖x‖ 6 r} such that

r > (1 + ‖φH‖L1)

[

(Pr +R(Lr +N))

|Λ|

{

c(1− η1+β)

Γ(β + 2)
−

εβ

Γ(β + 1)

}

+
R(Lr +N)

Γ(β + 1)

]

. (14)

Introduce the map Φ : C → C by

Φx(t) = C1t+
1

Γβ

∫ t

0

(t− τ)β−1B−1F(τ, x(τ))dτ

+

∫ t

0

S ′(t− s)

(

C1s+
1

Γβ

∫ s

0

(s− τ)β−1B−1F(τ, x(τ))dτ

)

ds. (15)
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Decompose the map Φ into Φ1 and Φ2 on Br for t ∈ [0, 1] such that

Φ1x(t) =
t

Λ

{

c

Γβ

∫ 1

η

(

∫ s

0

(s− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ)))dτ)ds

−
1

Γβ

∫ ε

0

(ε− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ)))dτ

}

+

∫ t

0

S ′(t−s)

[

s

Λ

{

c

Γβ

∫ 1

η

(

∫ v

0

(v−τ)β−1(B−1Ax(τ)+B−1F(τ, x(τ)))dτ)dv

−
1

Γβ

∫ ε

0

(ε− τ)β−1(B−1Ax(τ) +B−1F(τ, x(τ)))dτ

}]

ds.

Φ2x(t) =
1

Γβ

∫ t

0

(t− τ)β−1B−1F(τ, x(τ))dτ

+

∫ t

0

S ′(t− s)

(

1

Γβ

∫ s

0

(s− τ)β−1B−1F(τ, x(τ))dτ

)

ds.

Step 1. We show that Φ1x+Φ2y ∈ Br for every x, y ∈ Br, we have

‖Φ1x+Φ2y‖ 6 sup
t∈[0,1]

{

t

|Λ|

{

c

Γβ

∫ 1

η

(

∫ s

0

(s− τ)β−1(‖B−1A‖‖x(τ)‖

+‖B−1‖‖F(τ, x(τ)) −F(τ, 0) + F(τ, 0)‖)dτ)ds

−
1

Γβ

∫ ε

0

(ε− τ)β−1(‖B−1A‖‖x(τ)‖

+‖B−1‖‖F(τ, x(τ)) −F(τ, 0) + F(τ, 0)‖)dτ

}

+

∫ t

0

S ′(t− s)

[

s

|Λ|

{

c

Γβ

∫ 1

η

(

∫ v

0

(v − τ)β−1(‖B−1A‖‖x(τ)‖

+‖B−1‖F(τ, x(τ)) −F(τ, 0) + F(τ, 0)‖)dτ)dv

−
1

Γβ

∫ ε

0

(ε− τ)β−1(‖B−1A‖‖x(τ)‖

+‖B−1‖‖F(τ, x(τ)) −F(τ, 0) + F(τ, 0)‖)dτ

}]

ds

+
‖B−1‖

Γβ

∫ t

0

(t− τ)β−1‖F(τ, y(τ))−F(τ, 0) + F(τ, 0)‖dτ

+

∫ t

0

‖S ′(t− s)‖

(

‖B−1‖

Γβ

∫ s

0

(s− τ)β−1

‖F(τ, y(τ))−F(τ, 0) + F(τ, 0)‖dτ

)

ds

}

6 (1 + ‖φH‖L1)

[

(Pr +R(Lr +N))

|Λ|

{

c(1 − ηβ+1)

Γ(β + 2)
−

εβ

Γ(β + 1)

}

+
R(Lr +N)

Γ(β + 1)

]

6 r.

Thus Φ1x+Φ2y ∈ Br.
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Step 2. We show that Φ1 is a contraction. For x, y ∈ Br and t ∈ [0, 1], we have

‖Φ1x− Φ1y‖ 6 sup
t∈[0,1]

{

t

|Λ|

{

c

Γβ

∫ 1

η

(

∫ s

0

(s− τ)β−1(‖B−1A‖‖x(τ)− y(τ)‖

+‖B−1‖‖F(τ, x(τ)) −F(τ, y(τ))‖)dτ)ds

−
1

Γβ

∫ ε

0

(ε− τ)β−1(‖B−1A‖‖x(τ) − y(τ)‖

+‖B−1‖‖F(τ, x(τ)) −F(τ, y(τ))‖)dτ

}

+

∫ t

0

S ′(t− s)

[

s

|Λ|

{

c

Γβ

∫ 1

η

(

∫ v

0

(v − τ)β−1(‖B−1A‖‖x(τ)− y(τ)‖

+‖B−1‖F(τ, x(τ)) −F(τ, y(τ))‖)dτ)dv

−
1

Γβ

∫ ε

0

(ε− τ)β−1(‖B−1A‖‖x(τ) − y(τ)‖

+‖B−1‖‖F(τ, x(τ)) −F(τ, y(τ))‖)dτ

}]

ds

}

6 (1 + ‖φH‖L1)
(P +RL)

|Λ|

(

c(1− ηβ+1)

Γ(β + 2)
−

εβ

Γ(β + 1)

)

‖x− y‖

6 δ‖x− y‖.

By assumption, δ < 1 and therefore Φ1 is a contraction.
Step 3. Next, we prove that Φ2 is continuous and compact. The continuity of map Φ2

can be obtained from the continuity of F . Also for t ∈ [0, 1]

‖Φ2‖ 6 sup
t∈[0,1]

(

1

Γβ

∫ t

0

(t− τ)β−1‖B−1‖‖F(τ, x(τ))‖dτ

+

∫ t

0

‖S′(t− s)‖

(

1

Γβ

∫ s

0

(s− τ)β−1‖B−1‖‖F(τ, x(τ))‖dτ

)

ds

)

6 (1 + ‖φH‖L1)
R(Lr +N)

Γ(β + 1)
.

i.e. Φ2 is uniformly bounded Br. Now we show that the set {Φ2x(t) : x ∈ Br} is relatively
compact in Y for all t ∈ [0, 1]. Clearly the set {Φ2x(0) : x ∈ Br} is compact. Fix t ∈ (0, 1],
let δ be a real number satisfying 0 < δ < 1. For x ∈ Br, define the operator Φδ

2 by

Φδ
2x(t) =

1

Γβ

∫ t−δ

0

(t− τ)β−1B−1F(τ, x(τ))dτ

+

∫ t−δ

0

S′(t− s)

(

1

Γβ

∫ s

0

(s− τ)β−1B−1F(τ, x(τ))dτ

)

ds.

By assumption (H4), F is completely continuous, the set {Φδ
2x(t) : x ∈ Br} is precompact

in X , for every δ ∈ (0, 1]. Furthermore, for every x ∈ Br, we have

‖Φ2x(t)− Φδ
2x(t)‖ 6

1

Γβ

∫ t

t−δ

(t− τ)β−1‖B−1‖‖F(τ, x(τ))‖dτ

+

∫ t

t−δ

S ′(t− s)

(

1

Γβ

∫ s

0

(s− τ)β−1‖B−1‖‖F(τ, x(τ))‖dτ

)

ds.



242 RENU CHAUDHARY AND DWIJENDRA N. PANDEY

It shows that the precompact sets {Φδ
2x(t) : x ∈ Br} are arbitrary close to the set

{Φ2x(t) : x ∈ Br}. Hence the set {Φ2x(t) : x ∈ Br} is precompact in X .
Step 4. Now, we show that {Φ2x(t) : x ∈ Br} is equicontinuous. Clearly {Φ2x(t) : x ∈
Br} are equicontinuous at t = 0. For t < t+ h 6 1, h > 0, we have

‖Φ2x(t+ h)− Φ2x(t)‖ 6
1

Γβ

∥

∥

∥

∥

∫ t+h

0

(t+ h− τ)β−1B−1F(τ, x(τ))dτ

−

∫ t

0

(t− τ)β−1B−1F(τ, x(τ))dτ

∥

∥

∥

∥

+
1

Γβ

∥

∥

∥

∥

∫ t+h

0

S ′(t+ h− s)

∫ s

0

(s− τ)β−1B−1F(τ, x(τ))dτds

−

∫ t

0

S ′(t− s)

∫ s

0

(s− τ)β−1B−1F(τ, x(τ))dτds

∥

∥

∥

∥

6
1

Γβ

∫ t

0

[

(t+ h− τ)β−1 − (t− τ)β−1

]

‖B−1‖‖F(τ, x(τ))‖dτ

+
1

Γβ

∫ t+h

t

(t+ h− τ)β−1‖B−1‖‖F(τ, x(τ))‖dτ

+

∫ h

0

‖S ′(t+h−s)‖
1

Γβ

∫ s

0

(s−τ)β−1‖B−1‖‖F(τ, x(τ))‖dτds

+

∫ t

0

‖S ′(t− s)‖
‖B−1‖

Γβ

∥

∥

∥

∥

∫ s+h

0

(s+ h− τ)β−1F(τ, x(τ))dτ

−

∫ s

0

(s− τ)β−1F(τ, x(τ))dτ

∥

∥

∥

∥

ds.

Which tends to zero as h → 0, therefore the set {Φ2x(t) : x ∈ Br} is equicontinuous.
Thus Φ2 is relatively compact for t ∈ [0, 1]. By Arzela-Ascoli’s theorem Φ2 is compact.
Hence by Krasnoselskii fixed point theorem [32] there exists a fixed point x ∈ C such that
Φx = x which is a mild solution of the boundary value problem (1).

4 Example

Let X = L2(0, π), 1 < β 6 2 and t ∈ [0, 1]. Consider the following partial differential
equation with fractional derivative















∂β

∂tβ

(

w(t, x) − ∂2

∂x2w(t, x)

)

= ∂2

∂x2w(t, x) +
w(t,x)

1+w(t,x) ,

w(t, 0) = w(t, π) = 0,

w(0, x) = 0, w(ε, x) = c
∫ 1

η
w(t, s)ds.

(16)

Define the operators A : D(A) ⊂ X → X and B : D(B) ⊂ X → X by

Aw = w′′, Bw = w − w′′,

where

D(A) = D(B) = {w ∈ X,w,w′are absolutely continuous, w′′ ∈ X,w(0) = w(π) = 0}.
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Then A and B can be written as

Aw =

∞
∑

n=1

n2(w,wn)wn, w ∈ D(A),

Bw =
∞
∑

n=1

(1 + n2)(w,wn)wn, w ∈ D(B),

where wn(x) =
√

2/π sinnx, n = 1, 2, . . ., is the original set of vectors A. Moreover, we
have

B−1w =

∞
∑

n=1

1

1 + n2
(w,wn)wn,

Hw = B−1Aw =

∞
∑

n=1

−n2

1 + n2
(w,wn)wn.

The equation (16) can be reformulated as the following Sobolev type fractional differential
equation with nonlocal integral boundary condition

{

Dβ(Bw(t)) = Aw(t) + F(t, w(t)), 1 < β 6 2, t ∈ (0, 1),

w(0) = 0, w(ε) = c
∫ 1

η
w(s)ds, 0 < ε < η < 1.

(17)

Clearly all the assumptions (H1)− (H4) are satisfied.

Theorem 4.1 Suppose (H1) − (H4) hold and A generates a differential resolvent
operator {S(t)} with

δ = (1 + ‖φH‖L1)
(LR+ P )

|Λ|

[

c(1− ηβ+1)

Γ(β + 2)
−

εβ

Γ(β + 1)

]

< 1.

Then the problem (17) has a solution.
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1 Introduction

Fractional differential equations have various applications in widespread fields of science,
such as engineering [6], chemistry [7, 14, 15], physics [1, 2, 8], and others [9, 10]. Despite
the number of existence theorems for nonlinear fractional differential equations this does
not necessarily imply that calculating a solution explicitly will be possible. Therefore, it
may be necessary to employ an iterative technique to numerically approximate a needed
solution. In this paper we construct such a method.

Specifically, we construct a technique to approximate solutions to the nonlinear
Riemann-Liouville (R-L) fractional differential multi-order 2-system. A multi-order sys-
tem is a fractional differential system where each component is of unique order. That is,
a fractional system of the type

Dq1x1 = f1(t, x1, x2),

Dq2x2 = f2(t, x1, x2).

This is a generalization of normal R-L systems and yields a type of hybrid system of
a fractional type. We note that various complications arise from systems of this type
as many known properties used in the study of fractional differential equations require
modification, but at the same time multi-order systems present far more possibilities
for applications. For example, consider allowing each species in a population model to
have their own order of derivative. Though we will consider a numerical example for
this study, it will not be a specific physical application, we hope this will add to the
groundwork of future studies.

The iterative technique we construct will be a generalization of the monotone method
for multi-order R-L 2-systems of order q1, q2, where 0 < q1, q2 < 1. The monotone
method, in broad terms, is a technique in which unique solutions of linear differential
equations are used to construct sequences that converge uniformly and monotonically,
from above and below, to maximal and minimal solutions of the nonlinear equation. If
the nonlinear DE considered has a unique solution then both sequences will converge
uniformly and monotonically to that unique solution. The advantage of the monotone
method is that it allows us to approximate solutions to nonlinear DEs using linear DEs.
Further, the sequences are constructed initially using upper and lower solutions of the
original DE, which guarantees the interval of existence. For more information on the
monotone method for ordinary DEs see [11].

One notable complication when developing the monotone method for multi-order
systems is that, unlike in the integer order case, the initially constructed sequences,
{vn}, {wn} do not converge uniformly on their own. Instead, the weighted sequences
{t1−qivni

}, {t1−qiwni
} converge uniformly to t1−qivi and t1−qiwi respectively, where

i ∈ {1, 2} and v, w are maximal and minimal solutions of the original equation. We note
that there are other complications that derive from multi-order systems, but many of
these were previously resolved in [3].

For our main method we consider the generalization of the monotone method where
the nonlinear function can be split into two functions f(t, x)+g(t, x) where f is increasing
in x and g is decreasing in x. This generalization allows for various constructions utilizing
different types of lower and upper solutions that we will detail in Section 3. Finally, in
Section 4 we will develop a numerical application to exemplify our results. We note that
the standard monotone method has been established for multi-order fractional systems
in [3].
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2 Preliminary Results

In this section, we will first consider basic results regarding scalar Riemann-Liouville
differential equations of order q, 0 < q < 1. We will recall basic definitions and results
in this case for simplicity, and we note that many of these results carry over naturally to
the multi-order case. Then we will consider existence and comparison results for multi-
order systems of order 0 < q1, q2 < 1 which will be used in our main result. In the
next section, we will apply these preliminary results to develop the monotone method
for these multi-order R-L systems. Note, for simplicity we only consider results on the
interval J = (0, T ], where T > 0. Further, we will let J0 = [0, T ], that is J0 = J̄ .

Definition 2.1 Let p = 1−q, a function φ(t) ∈ C(J,R) is a Cp continuous function if
tpφ(t) ∈ C(J0,R). The set of Cp functions is denoted Cp(J,R). Further, given a function
φ(t) ∈ Cp(J,R) we call the function tpφ(t) the continuous extension of φ(t).

Now we define the R-L integral and derivative of order q on the interval J .

Definition 2.2 Let φ ∈ Cp(J,R), then Dq
tφ(t) is the q-th R-L derivative of φ with

respect to t ∈ J defined as

Dq
tφ(t) =

1

Γ(1− q)

d

dt

∫ t

0

(t− s)−qφ(s)ds,

and Iqt φ(t) is the q-th R-L integral of φ with respect to t ∈ J defined as

Iqt φ(t) =
1

Γ(q)

∫ t

0

(t− s)q−1φ(s)ds.

Note that in cases where the initial value may be different or ambiguous, we will write
out the definition explicitly. The next definition is related to the solution of linear R-L
fractional differential equations and is also of great importance in the study of the R-L
derivative.

Definition 2.3 The Mittag-Leffler function with parameters α, β ∈ R, denoted Eα,β ,
is defined as

Eα,β(z) =

∞
∑

k=0

zk

Γ(αk + β)
,

which is entire for α, β > 0.

Of particular importance to the Riemann-Liouville derivative is the weighted Mittag-
Leffler function of order q,

E = tq−1Eq,q(λt
q) =

∞
∑

k=0

λktqk+q−1

Γ(qk + q)
,

where λ is a constant. E has the following properties which we present in the following
remark.

Remark 2.1 We note that the weighted Mittag-Leffler function E is strictly positive,
converges uniformly on compacta of J , and DqE = λE .
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The next result gives us that the q-th R-L integral of a Cp continuous function is also
a Cp continuous function. This result will give us that the solutions of R-L differential
equations are also Cp continuous.

Lemma 2.1 Let f ∈ Cp(J,R), then Iqt f(t) ∈ Cp(J,R), i.e. the q-th integral of a Cp

continuous function is Cp continuous.

Note the proof of this theorem for q ∈ R+ can be found in [5]. Now we consider
results for the nonhomogeneous linear R-L differential equation,

Dq
tx(t) = λx(t) + z(t), (1)

with initial condition
tpx(t)

∣

∣

t=0
= x0,

where x0 is a constant, y ∈ C(J0,R), and z ∈ Cp(J,R), which has unique solution

x(t) = Γ(q)x0tq−1Eq,q(λt
q) +

∫ t

0

(t− s)q−1Eq,q(λ(t − s)q)z(s) ds.

For more details see [12].
Now, we will turn our attention to results for the nonlinear R-L fractional multi-order

systems, and in doing so we must discuss any changes. First, we will consider systems
of orders q1 and q2, 0 ≤ q1, q2 < 1. For simplicity we will let q = (q1, q2), and when
we write inequalities x ≤ y, we mean it is true for both components. Further, from
this point on, we will use the subscript i which we will always assume is in {1, 2}. For
defining Cp continuity for multi-order systems we define pi = 1− qi and for simplicity of
notation we will define the function xp such that xpi(t) = tpixi(t) for t ∈ J0. We also
note that at times it will be convenient to ephasize the product of tp, therefore we will
define tpx(t) = xp(t) for t ∈ J0. Now, we define the set of Cp continuous functions as

Cp(J,R
2) = {x ∈ C(J,R2) |xp ∈ C(J0,R

2)}.

For the rest of our results we will be considering the nonlinear R-L fractional multi-order
system

Dqixi = fi(t, x), (2)

xpi(0) = x0
i ,

where f ∈ C(J0 × R
2,R2), and x0 is a constant. Note that just as in the scalar case, a

solution x ∈ Cp(J,R
2) of (2) also satisfies the equivalent R-L integral equation

xi(t) = x0
i t

qi−1 +
1

Γ(qi)

∫ t

0

(t− s)qi−1fi(s, x(s))ds. (3)

Thus, if f ∈ C(J0 × R
2,R2) then (2) is equivalent to (3). See [9, 12] for details.

The following comparison theorem is utilized throughout the construction of the
monotone method. This theorem gives conditions for when lower and upper solutions
v, w behave in an expected manner, that is v ≤ w. This theorem is of great importance
to the monotone method since it is used to prove that the constructed sequences in the
method are actually monotone.
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Theorem 2.1 Let v, w ∈ Cp(J,R
2) be lower and upper solutions of the nonlinear

multiorder 2-system, i.e.

Dqivi ≤ fi(t, v), vpi(0) = v0i ≤ x0
i , (4)

Dqiwi ≥ fi(t, w), wpi(0) = w0
i ≥ x0

i .

If f is quasimonotone nondecreasing and satisfies the following Lipschitz condition for
i = 1, 2,

fi(t, x)− fi(t, y) ≤ Li

[

(x1 − y1) + (x2 − y2)
]

, (5)

for x ≥ y, then v(t) ≤ w(t) on J provided v0 ≤ w0.

We note that the proof of this theorem can be found in [3]. In the development of
the monotone methods we will use a specific corollary from this theorem, which we give
below.

Corollary 2.1 Let m ∈ Cp(J,R
2) be such that

Dqimi(t) ≤ 0, mpi(0) = 0.

Then we have from Theorem 2.1 that

m(t) ≤ 0,

for t ∈ J .

Now, if we know of the existence of lower and upper solutions v and w such that
v ≤ w, we can prove the existence of a solution in the set

Ω = {(t, y) : v(t) ≤ y ≤ w(t), t ∈ J}.

We consider this result in the following theorem.

Theorem 2.2 Let v, w ∈ Cp(J,R
2) be lower and upper solutions of (2) such that

v(t) ≤ w(t) on J and let f ∈ C(Ω,R), where Ω is defined as above. Then there exists a
solution x ∈ Cp(J,R

2) of (2) such that v(t) ≤ x(t) ≤ w(t) on J .

This theorem is proved in the same way as seen in [5], with only minor additions to
apply it to multi-order 2-systems.

For our main results we will be considering the following generalized form of (2)

Dqixi = fi(t, x) + gi(t, x), xpi(0) = x0
i , (6)

where f, g ∈ C(J0 × R
2,R2) such that f is increasing in x and g is decreasing in x.

We will be constructing the generalized monotone methods for this nonlinear fractional
differential equation. This generalization also allows us to consider various different types
of lower and upper solutions given in the following definition.

Definition 2.4 Let v, w ∈ Cp(J,R
2) with vpi(0) = v0i ≤ x0

i and wpi(0) = w0
i ≥ x0

i .

• v, w are natural lower and upper solutions of (6) if

Dqivi ≤ fi(t, v) + gi(t, v), Dqiwi ≥ fi(t, w) + gi(t, w).
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• v, w are Type I lower and upper solutions of (6) if

Dqivi ≤ fi(t, v) + gi(t, w), Dqiwi ≥ fi(t, w) + gi(t, v).

• v, w are Type II lower and upper solutions of (6) if

Dqivi ≤ fi(t, w) + gi(t, v), Dqiwi ≥ fi(t, v) + gi(t, w).

• v, w are unnatural lower and upper solutions of (6) if

Dqivi ≤ fi(t, w) + gi(t, w), Dqiwi ≥ fi(t, v) + gi(t, v).

Further we can define coupled quasisolutions of these types by incorporating equalities
in the previous expressions. We give the two we use in our main results in the following
definition.

Definition 2.5 Let v, w ∈ Cp(J,R
2) with vpi(0) = wpi(0) = x0

i .

• v, w are Type I coupled quasisolutions of (6) if

Dqivi = fi(t, v) + gi(t, w), Dqiwi = fi(t, w) + gi(t, v).

• v, w are Type II coupled quasisolutions of (6) if

Dqivi = fi(t, w) + gi(t, v), Dqiwi = fi(t, v) + gi(t, w).

We can extend Theorem 2.2 to incorporate these coupled types of lower and upper
solutions. We will only look at the cases for Type I and II since those will be the form
we use in our monotone method constructions. We note that the proof of the following
theorem is constructed in the same manner as Theorem 2.2, needing only very minor
alterations.

Theorem 2.3 Let v, w ∈ Cp(J,R
2) be Type I or Type II coupled lower and upper

solutions such that v(t) ≤ w(t) on J and let f + g ∈ C(Ω,R), where Ω is defined as
above. Then there exists a solution x ∈ Cp(J,R

2) of (6) such that v(t) ≤ x(t) ≤ w(t) on
J .

3 Monotone Method

In this section we develop the generalized monotone method for fractional system (6).
The first method we will construct is developed from Type I lower and upper solutions.
The sequences are constructed as linear equations in a recursive manner resembling Type
I quasisolutions.

Theorem 3.1 Suppose that

(A1) v0, w0 ∈ Cp(J,R
2) are coupled lower and upper solutions of Type I for (6) with

v0 ≤ w0 on J .

(A2) f, g ∈ C(J0 × R
2,R2), where f(t, x) is increasing in x and g(t, x) is decreasing in

x.
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Then the sequences defined by

Dqivn+1i = fi(t, vn) + gi(t, wn), vn+1pi
(0) = x0

i , (7)

Dqiwn+1i = fi(t, wn) + gi(t, vn), wn+1pi
(0) = x0

i , (8)

are such that

tpvn → tpv, tpwn → tpw

uniformly and monotonically on J0, where v, w are Type I coupled minimal and maximal
quasisolutions of (6) respectively, that is, if x is a solution of (6) such that that v0 ≤ x ≤
w0, then v ≤ x ≤ w.

Proof. We begin by considering v1 and w1. We note that both exist and are unique
since both are linear in v1 and w1 respectively. Now letting m = v0 − v1, we get that
mpi(0) = 0 and

Dqimi ≤ 0,

implying by Corollary 2.1 that mi ≤ 0 for each i. Therefore v0 ≤ v1, and similarly we
can show that w1 ≤ w0. Now using a similar process by letting m = v1−w1, we get that
mpi(0) = 0 and

Dqimi = fi(t, v0)− fi(t, w0) + gi(t, w0)− gi(t, v0) ≤ 0.

Thus, by Corollary 2.1 we have that mi ≤ 0 for each i, giving us that v0 ≤ v1 ≤ w1 ≤
w0. Using these same arguments we can inductively show that

vn−1 ≤ vn ≤ wn ≤ wn−1

on J for all n ≥ 1, giving us that {vn} and {wn} are monotonic.
Now we will show that the weighted sequences {tpvn} and {tpwn} converge uniformly

on J0. To do so we will use the Arzela-Ascoli theorem. First we will show that these
sequences are uniformly bounded on J0. To do so, for each n and each i note that

|tpivni| ≤ |tpi(vni − v0i)|+ |tpiv0i| ≤ |tpi(w0i − v0i)|+ |tpiv0i|.

Therefore we can choose an M ∈ R2
+ such that |tpivni| ≤ Mi for each n and each i,

implying that {tpvn} is uniformly bounded. Similarly we can prove the same result for
{tpwn}.

Now we will show that the weighted sequences are equicontinuous. For simplicity, let
Fn be defined as Fn = f(t, vn)+ g(t, wn) for each n ≥ 0. Since f, g are continuous on J0,
and since each vn, wn are Cp continuous then there exist continuous functions f̃ , g̃ such
that

f(t, vn) + g(t, wn) = f̃(t, tpvn) + g̃(t, tpwn).

Given this, and that the weighted sequences are uniformly bounded we can choose an
N ∈ R2

+ such that |Fni| ≤ Ni for each i.
Now, choose t, τ such that 0 < t ≤ τ ≤ T . In the following proof of equicontinuity

we use the fact that

τp1 (τ − s)q1−1 − tp1(t− s)q1−1 ≤ 0
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for 0 < s < t. To show why this is true, consider the function φ(t) = tp1(t − s)q1−1 =
tp1(t− s)−p1 and note that

d
dtφ(t) = p1t

p1−1(t− s)−p1 − p1t
p1(t− s)−p1−1

= −tp1−1(t− s)−p1−1p1s ≤ 0.

This implies that φ is nonincreasing, therefore φ(τ) − φ(t) ≤ 0. Now consider,

|τpivni(τ)− tpivni(t)| ≤
τp1

Γ(qi)

∫ τ

t

(τ − s)qi−1|Fn−1i|ds+
1

Γ(qi)

∫ t

0

|φ(τ) − φ(t)||Fn−1i|ds

≤ Niτ
pi

Γ(qi)

∫ τ

t

(τ − s)qi−1ds+
Ni

Γ(qi)

∫ t

0

[

φ(t) − φ(τ)
]

ds

=
Ni

Γ(qi)

[τpi

qi
(τ − t)qi + tpi

∫ t

0

(t− s)qi−1ds− τpi

∫ t

0

(τ − s)qi−1ds
]

=
Ni

qiΓ(qi)

[

2τpi(τ − t)qi + t− τ
]

≤ 2NiT
pi

Γ(qi + 1)
(τ − t)qi .

In the case when t = 0, we note that

|τpivni(τ) − x0
i /Γ(qi)| ≤

NiT
pi

Γ(qi)

∫ τ

0

(τ − s)qi−1ds =
NiT

pi

Γ(qi + 1)
τqi .

This result is not dependent on n or i, therefore if we define K ≥ 0 such that

K = max
i∈{1,2}

{ 2NiT
pi

Γ(qi + 1)

}

,

then we have that

|τpivni(τ) − tpivni(t)| ≤ K|τ − t|qi ,

for 0 ≤ t ≤ τ ≤ T , for each i and for all n ≥ 1. With this, it is now routine to
show that {tpvn} is equicontinuous. Likewise, {tpwn} is also equicontinuous. So by the
Arzela-Ascoli theorem there exist subsequences of both weighted sequences that converge
uniformly, but since both sequences are monotone we have that both {tpvn} and {tpwn}
converge uniformly on J0. Let tpv and tpw be the uniform limits of these weighted
sequences respectively. We wish to show that v and w are Type 1 coupled minimal and
maximal quasisolutions of (6). To do so, first note that for each i and n ≥ 1 we have

tpivni = x0
i +

tpi

Γ(qi)

∫ t

0

(t− s)qi−1
[

fi(s, vn−1) + gi(s, wn−1)
]

ds.

Now, since the weighted sequences {tpvn}, {tpwn} converge uniformly on J0 we have
that the non-weighted sequences converge pointwise on J . Therefore, by the continuity
of f, g the above expression converges uniformly to

tpivi = x0
i +

tpi

Γ(qi)

∫ t

0

(t− s)qi−1
[

fi(s, v) + gi(s, w)
]

ds
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on J0. Thus

vi = x0
i t

qi−1 +
1

Γ(qi)

∫ t

0

(t− s)qi−1
[

fi(s, v) + gi(s, w)
]

ds,

implying that v is a Type 1 coupled quasisolution of (6), similarly w is as well.
Now, to show that v and w are minimal and maximal, we let x be a solution of (6)

such that xp(0) = 0 and v0 ≤ x ≤ w0. We know such a solution exists thanks to Theorem
2.3. Now letting m = v1 − x, M = x−w1 and using the same method as we used above
we have that v0 ≤ v1 ≤ x ≤ w1 ≤ w0. Further, as before, we can inductively prove that
vn ≤ x ≤ wn on J for all n ≥ 1, therefore v ≤ x ≤ w implying that v, w are minimal
and maximal Type 1 coupled quasisolutions. This completes the proof. We note that if
f +g possesses an adequate condition for uniqueness then v = w = x which is the unique
solution. Now we will present more variations of the generalized monotone method,
specifically incorporating Type II solutions. First, in the following theorem we construct
the sequences in a manner resembling Type II coupled quasisolutions, but still beginning
with Type I lower and upper solutions. In this case we get alternating sequences which
are described in the statement of the theorem.

Theorem 3.2 Suppose that conditions (A1) and (A2) of Theorem 3.1 are true. Then
the sequences given by

Dqivn+1i = fi(t, wn) + gi(t, vn), vn+1pi
(0) = x0

i , (9)

Dqiwn+1i = fi(t, vn) + gi(t, wn), wn+1pi
(0) = x0

i , (10)

yield alternating monotone sequences {v2n, w2n+1} and {v2n+1, w2n} that satisfy

v2n ≤ w2n+1 ≤ x ≤ v2n+1 ≤ w2n,

for each n ≥ 0 on J , provided v0 ≤ x ≤ w0. Further, the weighted sequences

tpv2n, t
pw2n+1 → tpρ, tpv2n+1, t

pw2n → tpr

uniformly and monotonically on J0, where ρ, r are Type 1 coupled minimal and maximal
quasisolutions of (6).

We note that the proof of this theorem follows in much the same way as that of
Theorem 3.1, as do the proofs of the remaining monotone method proofs, therefore we
will not show these proofs directly.

For the next form of the generalized monotone method we switch the initial lower and
upper solutions to Type II, and the sequences are also constructed like Type II coupled
quasisolutions, i.e. in the manner found in Theorem 3.2, and also yield alternating
sequences. For this case to work we must further assume that v0 ≤ w1 and v1 ≤ w0.

Theorem 3.3 Suppose that condition (A2) of Theorem 3.1 is true. Further suppose
that

(B1) v0, w0 are coupled lower and upper solutions of Type II for (6) such that v0 ≤ w0.

Then the sequences defined by (9) and (10) yield alternating sequences {v2n, w2n+1} and
{v2n+1, w2n} satisfying

v2n ≤ w2n+1 ≤ x ≤ v2n+1 ≤ w2n,
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for each n ≥ 0 on J , provided that v0 ≤ w1 ≤ x ≤ v1 ≤ w0. Further, the weighted
sequences

tpv2n, t
pw2n+1 → tpρ, tpv2n+1, t

pw2n → tpr

uniformly and monotonically on J0, where ρ, r are Type 1 coupled minimal and maximal
quasisolutions of (6).

For our final construction of the monotone method we will also consider the case where
we begin with Type II lower and upper solutions, but construct the sequences as Type
I quasisolutions, i.e. in the manner found in Theorem 3.1. We do not get alternating
sequences in this case, but for it to work we must further assume that v0 ≤ v1 and
w1 ≤ w0.

Theorem 3.4 Suppose that conditions (B1) and (A2) of Theorems 3.3 and 3.1 are
true. Then the sequences defined by (7) and (8) are such that

tpvn → tpv, tpwn → w

uniformly and monotonically on J0 provided that v0 ≤ v1 ≤ x ≤ w1 ≤ w0, where v, w are
Type I coupled minimal and maximal quasisolutions of (6) respectively.

4 Numerical Example

In this section we present an example that illustrates the result of Theorem 3.1.

Example 4.1 Consider the fractional system of the form (6) with q1 = 1

2
and q2 = 1

3
,

D
1

2x1(t) = 1

2
+ 5

8
t+ 1

16

(

x1(t)
2 − 1

4
x2(t)

)

, xp1
(0) = 0,

D
1

3x2(t) = 1

6
+ 1

2
t+ 1

20
(x1(t)− x2(t)) , xp2

(0) = 0,
(11)

where p1 = 1

2
, p2 = 2

3
and call

f1(t, x1(t), x2(t)) =
1

2
+

5

8
t+

1

16
x1(t)

2, f2(t, x1(t), x2(t)) =
1

6
+

1

2
t+

1

20
x1(t),

g1(t, x1(t), x2(t)) = − 1

16

(

1

4
x2(t)

)

= − 1

64
x2(t), g2(t, x1(t), x2(t)) = − 1

20
x2(t).

If J = (0, 1] and J0 = [0, 1] then f(t, x) and g(t, x) satisfy condition (A2) in Theorem
3.1. Now let

v01 =
√
t/2, v02 = 0,

w01 = 3, w02 = 3− t.

We will illustrate graphically in Figures 1–4 that v0(t) and w0(t) satisfy (A1). We
have that

v0pi(0) = w0pi
(0) = 0.

Since D1/2v01(t) =
√
π
4
, then

D1/2v01(t) =

√
π

4
≤ 1

2
+

5

8
t+

1

16

(

v01(t)
2 − 1

4
w02(t)

)

= f1(t, v01(t), v02(t)) + g1(t, w01(t), w02(t)).
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Similarly,

D1/2w01(t) =
3√
πt

≥ 1

2
+

5

8
t+

1

16

(

w01(t)
2 − 1

4
v02(t)

)

= f1(t, w01(t), w02(t)) + g1(t, v01(t), v02(t)),

D1/3v02(t) = 0 ≤ 1

6
+

1

2
t+

1

20
(v01(t)− w02(t))

= f2(t, v01(t), v02(t)) + g2(t, w01(t), w02(t)),

and

D1/3w02(t) =
6− 3t

2 3
√
tΓ

(

2

3

) ≥ 1

6
+

1

2
t+

1

20
(w01(t)− v02(t))

= f2(t, w01(t), w02(t)) + g2(t, v01(t), v02(t)).

We show the graphs below.

Figure 1: Solid: D1/2v01(t), Dashed: f1(t, v01(t), v02(t)) + g1(t, w01(t), w02(t)).

Figure 2: Solid: D1/2w01(t), Dashed: f1(t,w01(t), w02(t)) + g1(t, v01(t), v02(t)).
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Figure 3: Solid: D1/3v02(t), Dashed: f2(t, v01(t), v02(t)) + g2(t, w01(t), w02(t)).

Figure 4: Solid: D1/3w02(t), Dashed: f2(t,w01(t), w02(t)) + g2(t, v01(t), v02(t)).

After verifying that we have indeed coupled lower and upper solutions of Type I
we computed four iterates of {t1/2vn1(t)} and {t1/2wn1(t)}, as well as four iterates of
{t1/3vn2(t)} and {t1/3wn2(t)} according to Theorem 3.1 for t ∈ J0 = [0, 1].

Figure 5: Solid:
{

t1/2vn1(t)
}

, Dashed:
{

t1/2wn1(t)
}

, 0 ≤ n ≤ 4.
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Figure 6: Solid:
{

t1/3vn2(t)
}

, Dashed:
{

t1/3wn2(t)
}

, 0 ≤ n ≤ 4.

Finally we show a table of ten values of {tpiv4i(t)} and {tpiw4i(t)} on the interval
[0, 1].

t t1/2v4,1(t) t1/2w4,1(t) t1/3v4,2(t) t1/3w4,2(t)
0 0 0 0 0
0.1 0.0610930 0.0610933 0.0310197 0.0310208
0.2 0.1318091 0.1318108 0.0790014 0.0790066
0.3 0.2122992 0.2123045 0.1437895 0.1438034
0.4 0.3027222 0.3027352 0.2253221 0.2253509
0.5 0.4032596 0.4032874 0.3235653 0.3236175
0.6 0.5141177 0.5141722 0.4384997 0.4385866
0.7 0.6355296 0.6356297 0.5701140 0.5702515
0.8 0.7677574 0.7679318 0.7184090 0.7186130
0.9 0.9110939 0.9113858 0.8833827 0.8836781
1.0 1.0658661 1.0663374 1.0650431 1.0654591

We have developed a monotone iterative technique for multi-order 2-systems of Riemann-
Liouville fractional differential equations with initial condition and presented an example
that illustrates one of the main theorems. An advantage of this method is that the linear
iterates do not require the computation of the Mittag-Leffler function. In our example
the iterates appear to converge to a unique solution, we plan to work on establishing
conditions for uniqueness in the near future. In the future we would also like to expand
this method to N -systems as well as consider further generalizations of the monotone
method. One such expansion would be the quasilinearization method, where the hy-
potheses are strengthened yet the convergence becomes quadratic, for more information
see [4, 13]. And ultimately we hope that these results help further the study of R-L
fractional multi-order systems.
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Abstract: In order to investigate the generalized periodic solutions of the generalized
phi-four equation, we use the Jacobi elliptic functions. Many kinds of solutions are
obtained. For some parameters, these envelope periodic solutions can degenerate
to the envelope shock wave solutions (dark solitons) and the envelope solitary wave
solutions (bright solitons). The existence of these solutions is determined by the
parameters of the initial equation. The solutions found in this work can be used in
many areas of physics such as telecommunications.
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1 Introduction

Before the discovery of solitons, scientists had taken the nonlinear terms in an equation
as perturbations. The history of solitons (the wave of translation), in fact, dates back
to 1834, the year in which John Scott Russell observed that a heap of water in a canal
propagated undistorted over several kilometers. The results obtained in the linear theory
of waves, by ignoring the nonlinear parts, are most frequently too far from reality to be
useful. The transition from linear to nonlinear description is justified by the necessity
to take into account all the details of the observed phenomena. The wave of translation
was regarded as a curiosity until the 1960s, when scientists began to use computers
to study nonlinear wave propagation. The discovery of mathematical solutions started
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with the analysis of nonlinear partial differential equations, such as in the works of
Boussinesq and Rayleigh, carried out independently. Recently, a new direction related
to the investigation of nonlinear phenomena and processes has been actively developed
in various areas, including hydrodynamics, nonlinear optics, plasma physics, and biology
[1–8], to mention a few. A remarkable number of evolution equations (sine-Gordon,
Korteweg de Vries, Boussinesq, Schrodinger and others) considered by the end of the 19th

century, radically changed the thinking of scientists about the nature of nonlinearity. It
then becomes necessary to solve these nonlinear equations. The exact analytical solutions
of nonlinear equations are hardly obtained. In recent years, quite a few methods for
obtaining explicit traveling and solitary wave solutions of nonlinear evolution equations
in mathematics and physics have been proposed. We can list the generalized iterative
methods [9], computational methods [10], travelling wave solutions method [11], the sine-
cosine method [12,13], Backlund transform method [14], the sinc-collocation method [15],
Darboux transform method [16], Painleve’s singularity structure analysis [17], homotopy
perturbation method [18], variational iteration method [19], inverse scattering transform
method [20], the (G’/G)-expansion method [21], the Hirota’s bilinear method [22], exp-
function method [23], tanh method [24, 25], extended three-wave method [26]. These
methods, however, can only obtain the shock and solitary wave solutions or the periodic
solutions with the elementary functions [27–32], but cannot get the generalized periodic
solutions of nonlinear equations. The objective of this work is to use the Jacobi elliptic
method [33] to obtain the generalized periodic solutions with the phi-four equation.

The standard form of phi-four equation

utt − uxx + u3 − u = 0 (1)

arises in many branches of mathematical physics. Its special solutions are known as kink
and antikink solitons. In our investigations, we consider the following form of equation
(1):

(ul)tt − a(un)xx − bum + cun = 0, (2)

where a, b and c are arbitrary nonzero constants and l, m and n are integers; u(x, t) is
the unknown function depending on the spatial variable x and the temporal variable t.
The subscripts x and t denote partial derivatives with respect to these variables. The
technique that will be used is the most effective direct method to construct generalized
wave solutions of nonlinear evolution equations.

2 Jacobi Elliptic sn Function

By means of the Jacobi elliptic function, u(x, t) can be expressed as follows:

u(x, t) = Asnpξ, ξ = q(x− v0t), (3)

where p > 0 is a constant which will be determined later. A represents the amplitude of
the wave, while v0 is the velocity of the wave; q can represent the inverse width of the
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wave. From equation (3), we have:























um = Amsnpmξ,

un = Ansnpnξ,

(ul)tt = Alplq2v20

[

(pl − 1)snpl−2ξ − pl(1 + k2)snplξ + (pl + 1)k2snpl+2ξ
]

,

(un)xx = Anpnq2
[

(pn− 1)snpn−2ξ − pn(1 + k2)snpnξ + (pn+ 1)k2snpn+2ξ
]

.

(4)
The following relations are taken into account:

cn2(ξ, k) + sn2(ξ, k) = 1, dn2(ξ, k) + k2sn2(ξ, k) = 1. (5)

Substituting the expression (4) into (2) yields

Alplq2v20

[

(pl − 1)snpl−2ξ − pl(1 + k2)snplξ + (pl + 1)k2snpl+2ξ
]

−aAnpnq2
[

(pn− 1)snpn−2ξ − pn(1 + k2)snpnξ + (pn+ 1)k2snpn+2ξ
]

−bAmsnpmξ + cAnsnpnξ = 0. (6)

From equation (6), equating the exponents of snpn+2ξ and snpmξ functions we get

p =
2

m− n
. (7)

Also from equation (6), equating the exponents of snplξ and snpnξ functions we have

l = n. (8)

If we make the same gymnastic with the exponents of snpl+2ξ and snpn+2ξ and for
snpl−2ξ and snpn−2ξ functions, we also obtain l = n. Now, in view of equation (8), the
functions snpl+jξ with j = −2, 0, 2 in (6) are linearly independent. Thus, their respective
coefficients must vanish. Setting their coefficients to zero gives the system of algebraic
equations:

Anpnq2(pn− 1)(v20 − a) = 0, (9)

Anp2n2q2(1 + k2)(a− v20) + cAn = 0, (10)

Anpnq2k2(pn+ 1)(v20 − a)− bAm = 0. (11)

If v20 − a 6= 0, then equation (9) gives the relation between the two parameters p and n,
that is

p =
1

n
, (12)

and using relation (7), we have:

m = 3n. (13)

From equation (10), one obtains

q2 =
c

(1 + k2)(v20 − a)
. (14)
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Inserting (14) into (11) yields

A =
[ 2k2c

b(1 + k2)

]
1

2n

. (15)

Thus, the generalized solutions of equation (3) are given by

u(x, t) =
{

√

2k2c

b(1 + k2)
sn

[

√

c

(1 + k2)(v20 − a)
(x− v0t)

]}
1

n

. (16)

We clearly observe that these solutions exist if and only if c(v20 − a) > 0 and bc > 0. As
k → 1, corresponding envelope solitary wave solutions are

u(x, t) =
{

√

c

b
tanh

[

√

c

2(v20 − a)
(x− v0t)

]}
1

n

. (17)

Namely dark solitons of equation (17) look like those found by Triki and Wazwaz in [34].
This justifies the fact that the present method is more explicit.

3 Jacobi Elliptic cn Function

In this section, u(x, t) is expressed as follows:

u(x, t) = Acnpξ, ξ = q(x− v0t). (18)

In this equation, p > 0. From equation (18), we get:























um = Amcnpmξ,

un = Ancnpnξ,

(ul)tt = Alplq2v20

[

(pl − 1)(1− k2)cnpl−2ξ + pl(2k2 − 1)cnplξ − (pl + 1)k2cnpl+2ξ
]

,

(un)xx = Anpnq2
[

(pn− 1)(1−k2)cnpn−2ξ + pn(2k2 − 1)cnpnξ − (pn+ 1)k2cnpn+2ξ
]

.

(19)
Inserting (19) into (2), one obtains:

Alplq2v20

[

(pl− 1)(1− k2)cnpl−2ξ + pl(2k2 − 1)cnplξ − (pl + 1)k2cnpl+2ξ
]

−aAnpnq2
[

(pn− 1)(1− k2)cnpn−2ξ + pn(2k2 − 1)cnpnξ − (pn+ 1)k2cnpn+2ξ
]

−bAmcnpmξ + cAncnpnξ = 0. (20)

In equation (20), equating the exponents of cnpn+2ξ and cnpmξ functions gives

p =
2

m− n
. (21)

Also from equation (20), equating the exponents of cnplξ and cnpnξ functions we get

l = n. (22)

The same work can be done with the exponents of cnpl+2ξ and cnpn+2ξ and for cnpl−2ξ

and cnpn−2ξ functions; we also obtain l = n. Now, the functions cnpl+jξ with j = −2, 0, 2
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in (20) are linearly independent. Thus, their respective coefficients must vanish. Setting
their coefficients to zero gives the system of algebraic equations:

Anpnq2(pn− 1)(1− k2)(v20 − a) = 0, (23)

Anp2n2q2(2k2 − 1)(v20 − a) + cAn = 0, (24)

Anpnq2k2(pn+ 1)(a− v20)− bAm = 0. (25)

If v20 − a 6= 0, then equation (23) gives the following two relations, that is
{

p = 1
n
,

k2 = 1.
(26)

Equation (24) gives

q2 =
c

p2n2(2k2 − 1)(a− v20)
, (27)

and (25) yields

A =
[ (pn+ 1)k2c

bpn(2k2 − 1)

]
1

m−n

. (28)

Thus, the generalized solutions of equation(3) are given by:

Case 1: p = 1
n
, i.e. m = 3n; q2 = c

(2k2
−1)(a−v2

0
)
, A =

[

2k2c
b(2k2

−1)

]
1

2n

and

u(x, t) =
{

√

2k2c

b(2k2 − 1)
cn

[

√

c

(2k2 − 1)(a− v20)
(x− v0t)

]}
1

n

. (29)

Case 2: k2 = 1; q2 = c(m−n)2

4n2(a−v2

0
)
, A =

[

(m+n)c
2nb

]
1

m−n

and

u(x, t) =
{ (m+ n)c

2nb
sech2

[

√

c(m− n)2

4n2(a− v20)
(x − v0t)

]}
1

m−n

. (30)

It is evident that these solutions have a physical sense if and only if c(a − v20) > 0 and
bc > 0. k must be different from zero in (29). Equation (30) is an exact bright soliton
solution of (3).

4 Jacobi Elliptic dn Function

In this section, u(x, t) is expressed as follows:

u(x, t) = Adnpξ, ξ = q(x − v0t). (31)

Here again, p has to be positive. From (31), we get:






















um = Amdnpmξ,

un = Andnpnξ,

(ul)tt = Alplq2v20

[

(pl − 1)(k2 − 1)dnpl−2ξ + pl(2− k2)dnplξ − (pl + 1)dnpl+2ξ
]

,

(un)xx = Anpnq2
[

(pn− 1)(k2 − 1)dnpn−2ξ + pn(2− k2)dnpnξ − (pn+ 1)dnpn+2ξ
]

.

(32)
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Inserting (32) into (3), one obtains:

Alplq2v20

[

(pl − 1)(k2 − 1)dnpl−2ξ + pl(2− k2)dnplξ − (pl + 1)dnpl+2ξ
]

−aAnpnq2
[

(pn− 1)(k2 − 1)dnpn−2ξ + pn(2− k2)dnpnξ − (pn+ 1)dnpn+2ξ
]

−bAmdnpmξ + cAndnpnξ = 0. (33)

In (33), equating the exponents of dnpn+2ξ and dnpmξ functions gives

p =
2

m− n
. (34)

Also from (33), equating the exponents of dnplξ and dnpnξ functions we have

l = n (35)

which is also obtained by equating the exponents’ pairs pl+2 and pn+2, pl−2 and pn−2.
Setting the coefficients of the linearly independent functions dnpl+jξ, where j = −2, 0, 2,
to zero gives the system of algebraic equations:

Anpnq2(pn− 1)(k2 − 1)(v20 − a) = 0, (36)

Anp2n2q2(2 − k2)(v20 − a) + cAn = 0, (37)

Anpnq2(pn+ 1)(a− v20)− bAm = 0. (38)

If v20 − a 6= 0, then equation (36) gives the following two relations
{

p = 1
n
,

k2 = 1.
(39)

Equation (37) gives

q2 =
c

p2n2(2− k2)(a− v20)
, (40)

and (38) yields

A =
[ (pn+ 1)c

bpn(2− k2)

]
1

m−n

. (41)

The generalized solutions of equation (3) are given by:

Case 1: p = 1
n
, i.e. m = 3n; q2 = c

(2−k2)(a−v2

0
)
, A =

[

2c
b(2−k2)

]
1

2n

and

u(x, t) =
{

√

2c

b(2− k2)
dn

[

√

c

(2− k2)(a− v20)
(x− v0t)

]}
1

n

. (42)

Case 2: k2 = 1; q2 = c(m−n)2

4n2(a−v2

0
)
, A =

[

(m+n)c
2nb

]
1

m−n

and

u(x, t) =
{ (m+ n)c

2nb
sech2

[

√

c(m− n)2

4n2(a− v20)
(x − v0t)

]}
1

m−n

, (43)

with c(a− v20) > 0 and bc > 0.
These soliton solutions can be controlled well by adjusting the parameters of the

system. From one ansatz, we carry out many types of solutions, and we conclude that
the present method is straightforward and concise.
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5 Conclusion

In this work, we have considered a generalized phi-four equation with arbitrary constant
coefficients and general values of the exponents in the dissipation and nonlinear terms.
With the aid of Jacobi elliptic functions, the generalized periodic solutions are obtained.
We have noted that the existence of these solutions depends on whether c(v20 − a) > 0
or c(a − v20) > 0 and bc > 0. We have also pointed out that for some parameters,
these envelope periodic solutions can degenerate to the non-topological and topological
solitons.
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1 Introduction

In this paper we continue our studies of a stochastic game of two players of a fully
antagonistic nature initiated in [1] by the same authors. The game evolves as a mutual
conflict involving two players A and B hitting each other at random and continued until
one of the players is “exhausted.” In short, the players attack each other in accordance
with two independent marked point processes

A :=
∑

j≥1

wjεsj , and B :=
∑

k≥1

zkεtk , s1, t1 > 0,

representing respective attacks to players A and B. Here εa is the Dirac point mass at
point a ∈ R,

∑

j≥1 εsj , and
∑

k≥1 εtk are underlying point random measures of the times
of attacks, while the marks wj ’s and zk’s represent respective damages to players A and
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B. Players A and B can sustain the attacks until their respective cumulative casualties
cross thresholds M and N (positive real numbers). At a time when it takes place (at
the first passage time), i.e., when one of the players loses the game, the game should
formally stop. However, the game was assumed to be tracked by a third party observer
upon random epochs of time τ1, τ2, . . . and consequently, the outcome of the game is
unknown in real time. The first passage time is then shifted to epoch τρ (called the first
observed passage time) that takes place upon one of the observation epochs. Thus, the
narrative of the game is delayed allowing the players to continue fighting even after one
of the players lost the game thereby letting the game to proceeed in a more realistic
scenario.

We further assumed in [1] that A and B are marked Poisson random measures and
τ :=

∑

i≥1 ετi, τ0 > 0 was a renewal process with interrenewal times being exponentially
distributed. If Xi and Yi are increments of the casualties to players A and B on (τi−1, τi]
observed at time τi, then

Ak = X0 +X1 + . . .+Xk, Bk = Y0 + Y1 + . . .+ Yk

form the cumulative damages to players A and B by time τk. With the exit indices

µ := inf{j ≥ 0 : Aj = X0 +X1 + . . . +Xj > M }

and
ν := inf{k ≥ 0 : Bk = Y0 + Y1 + . . .+ Yk > N },

Aµ and Bν are the respective cumulative damages to players A and B at their respective
observed or virtual ruin times. In [1], the functional of interest was

Φµν = Φµν(α, β, θ) = Ee−αAµ−βBµ−θτµ1{µ<ν}

giving the joint transform of the first observed passage time τµ (the ruin time of player
A), along with the status of the respective casualties to players A and B at τµ = τρ on the
confine σ-algebra F (Ω) ∩ {µ < ν}. This functional was obtained in terms of the double
Laplace-Carson and Laplace-Stieltjes transforms under the claim that it was analytically
invertible. We succeeded in doing this. The inverse formulas contained various special
functions but seemed to be cumbersome. We go on the further claim that the results are
numerically tame.

We ended [1] with obtaining the marginal functional Ee−αAµ1{µ<ν} in terms of mod-
ified Bessel functions and their integrals. The objective of this paper is to continue with
other marginal functionals and a subsequent inversion of their Laplace-Stieltjes trans-
forms to arrive at explicit probability distributions and then illustrate the result with
computational examples. Note that either the present paper and [1] are abridged and
their complete version is available in [2].

2 Further Cases of Marginal Functionals

Our next goal is to get the other marginal transforms. They are to be obtained from
Φµν(α, β, θ) = Ee−αAµ−βBµ−θτµ1{µ<ν} in (2.27) and (3.21-3.73) of [1]. In Case 1 [1], we
gave Φµν(α, 0, 0) = Ee−αAµ1{µ<ν}. We continue with the other cases.

Case 2. Setting α = θ = 0 in Φµν(α, β, θ) leads us to the marginal Laplace-Stieltjes
transform of the casualties to player B at the exit from the game to be lost by player A,
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Φµν(0, β, 0) := Ee−βBµ1{µ<ν}. After setting α = θ = 0 in (3.70-3.71) [1], we arrive at
the following.

(i) Case δ 6= λA. Proceeding as in Case 1 (see more details in [2]) we have

Φ(1)
µν (0, β, 0) =

{

λAδ

(λA + λB)(δ + λB)
· e−Nβe

−(
λBg

λA+λB
)(M−X0)e

−(
λAh

λA+λB
)(N−Y0)

× I0
(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2
)

+

∫ N−Y0

z=0

[

( λAδβ

(λA + λB)(δ + λB)
+

λAh(δ
2 + 2λBδ)

(λA + λB)(δ + λB)2
+

λAλ
2
Bh

2δ

(λA + λB)(δ + λB)3

×
1

β + hδ
δ+λB

)

e−(Y0+z)βe
−(

λBg

λA+λB
)(M−X0)e

−(
λAh

λA+λB
)z

× I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

]

dz +
−λAλ

2
Bh

2δ

(λA + λB)(δ + λB)3
·

1

β + hδ
δ+λB

× e−Nβe
−(

λBg

λA+λB
)(M−X0)e

−( hδ
δ+λB

)(N−Y0)

×

∫ N−Y0

z=0

e
(

λBh(δ−λA)

(λA+λB)(δ+λB )
)z
I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

dz

}

× 1(X0,∞)(M)1(Y0,∞)(N). (2.1)

(ii) Case δ = λA. Furthermore,

Φ(2)
µν (0, β, 0) =

{

λ2
A

(λA + λB)2
· e−Nβe

−(
λBg

λA+λB
)(M−X0)e

−(
λAh

λA+λB
)(N−Y0)

× I0
(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2
)

+

∫ N−Y0

z=0

[

( λ2
Aβ

(λA + λB)2
+

λAh(λ
2
A + 2λAλB)

(λA + λB)3
+

λ2
Aλ

2
Bh

2

(λA + λB)4
·

1

β + λAh
λA+λB

)

× e−(Y0+z)βe
−(

λBg

λA+λB
)(M−X0)e

−(
λAh

λA+λB
)z
I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

]

dz

+
−λ2

Aλ
2
Bh

2

(λA + λB)3

√

N − Y0

λAλBhg(M −X0)
·

1

β + λAh
λA+λB

· e−Nβe
−(

λBg

λA+λB
)(M−X0)

× e
−(

λAh

λA+λB
)(N−Y0)I1

(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2
)

}

× 1(X0,∞)(M)1(Y0,∞)(N). (2.2)

Case 3. With α = β = 0 we obtain the Laplace-Stieltjes transform of the exit time
of the game to be lost by player A, Φµν(0, 0, θ) := Ee−θτµ1{µ<ν}.
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(i) Case δ 6= λ
A
.

Φ(1)
µν (0, 0, θ) =

{

λAδ

Λ(δ + θ + λB)
· e−(g−

λAg

Λ )(M−X0)e−(h−
λBh

Λ )(N−Y0)

× I0
(

2

√

λAλBhg(M −X0)(N − Y0)

Λ2

)

+
λAhδ

Λ(δ + θ)
· e−(g−

λAg

Λ )(M−X0)

×

∫ N−Y0

z=0

e−(h−
λBh

Λ )zI0
(

2

√

λAλBhg(M −X0)z

Λ2

)

dz

+
−λAλ

2
Bhδ

Λ(δ + θ)(δ + θ + λB)2
· e−(g−

λAg

Λ )(M−X0) · e
−(h−

λBh

δ+θ+λB
)(N−Y0)

×

∫ N−Y0

z=0

e
(
λBh

Λ −
λBh

δ+θ+λB
)z
I0
(

2

√

λAλBhg(M −X0)z

Λ2

)

dz

}

× 1(X0,∞)(M)1(Y0,∞)(N). (2.3)

(ii) Case δ = λA.

Φ(2)
µν (0, 0, θ) =

{

λ2
A

Λ2
· e−(g−

λAg

Λ )(M−X0)e−(h−
λBh

Λ )(N−Y0)

× I0
(

2

√

λAλBhg(M −X0)(N − Y0)

Λ2

)

+
λ2
Ah

Λ(θ + λA)
· e−(g−

λAg

Λ )(M−X0)

×

∫ N−Y0

z=0

e−(h−
λBh

Λ )zI0
(

2

√

λAλBhg(M −X0)z

Λ2

)

dz

+
−λ2

Aλ
2
Bh

Λ2(θ + λA)

√

N − Y0

λAλBhg(M −X0)
· e−(g−

λAg

Λ )(M−X0)e−(h−
λBh

Λ )(N−Y0)

× I1
(

2

√

λAλBhg(M −X0)(N − Y0)

Λ2

)

}

1(X0,∞)(M)1(Y0,∞)(N). (2.4)

Here Ij ’s are modified Bessel functions.

3 The Probability Distribution of the Casualties Values to Players A and B

Here we will find the probability distribution function FA of the exit value of casualties to
player A (special case 1) by taking the inverse Laplace transform with respect to variable
α. The Laplace inverse formula that we use, along with (3.64-3.67) [1], is:

L−1
y (e−αy ·

1

(y + b)2
)(q) = (q − α)e−b(q−α)1(α,∞)(q). (3.1)

The above formula can be found in references [3,4] as well. After that, we apply the
Laplace inverse to Φµν(α, 0, 0) = Ee−αAµ1{µ<ν}, arriving at
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FA (t) = L−1
α

{

Φµν(α, 0, 0)

}

(t) =

{

λAgδ

(λA + λB)(δ + λA + λB)
· e

−
(

(δ+λB )g

δ+λA+λB

)

(t−M)

× e
−
(

λBg

λA+λB

)

(M−X0)
e
−
(

λAh

λA+λB

)

(N−Y0)
I0
(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2
)

+
λAhgδ

(λA + λB)(δ + λA)
e
−
(

gδ
δ+λA

)

(t−M)
e
−(

λBg

λA+λB
)(M−X0)

∫ N−Y0

z=0

e
−(

λAh

λA+λB
)z

× I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

dz +

∫ N−Y0

z=0

[

−λAλ
2
Bhgδ

(λA + λB)(δ + λA)(δ + λA + λB)2

× e
−(

(δ+λB)g

δ+λA+λB
)(t−M)

I0
(

2

√

λAλBhg(N − Y0 − z)(t−M)

(δ + λA + λB)2
)

+
−λ2

AλBhg
2δ

(λA + λB)(δ + λA)2(δ + λA + λB)
e
−( gδ

δ+λA
)(t−M)

∫ t−M

w=0

e
−(

λAλBg

(δ+λA)(δ+λA+λB)
)w

× I0
(

2

√

λAλBhg(N − Y0 − z)w

(δ + λA + λB)2
)

dw +
λ2
AλBhg

2δ

(λA + λB)(δ + λA + λB)2

×

√

t−M

λAλBhg(N − Y0 − z)
· e

−(
(δ+λB )g

δ+λA+λB
)(t−M)

I1
(

2

√

λAλBhg(N − Y0 − z)(t−M)

(δ + λA + λB)2

]

× e
−(

λBg

λA+λB
)(M−X0)e

−(
(δ+λA)h

δ+λA+λB
)(N−Y0) e

(
λBhδ

(λA+λB)(δ+λA+λB)
)z

× I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

dz

}

1(X0,∞)(M)1(Y0,∞)(N)1(M,∞)(t). (3.2)

4 The Loss Probability

Another special case is the probability that player A loses to player B. This can be directly
obtained from Φµν(α, β, θ) = Ee−αAµ−βBµ−θτµ1{µ<ν} by setting α = β = θ = 0:

Φµν(0, 0, 0) := E1{µ<ν} = P{µ < ν} = P{τµ < τν}. (4.1)

With α = β = θ = 0 in (3.70-3.73) [1], we have
(i) Case δ 6= λA,

Φ(1)
µν (0, 0, 0) =

{

λAδ

(λA + λB)(δ + λB)
· e

−
λBg(M−X0)

λA+λB e
−

λAh(N−Y0)

λA+λB

× I0
(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2
)

+
λAh

λA + λB

· e
−

λBg(M−X0)

λA+λB

×

∫ N−Y0

z=0

e
−

λAh

λA+λB
z
I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

dz
−λAλ

2
Bh

(λA + λB)(δ + λB)2

× e
−

λBg(M−X0)

λA+λB e
−

hδ(N−Y0)
δ+λB

∫ N−Y0

z=0

e
(

−λBh(λA−δ)

(λA+λB)(δ+λB )
)z
I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

dz

}

× 1(X0,∞)(M)1(Y0,∞)(N). (4.2)
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(ii) Case δ = λA,

Φ(2)
µν (0, 0, 0) =

{

λ2
A

(λA + λB)2
· e

−
λBg(M−X0)

λA+λB e
−

λAh(N−Y0)

λA+λB

× I0
(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2
)

+
λAh

λA + λB

· e
−

λBg(M−X0)

λA+λB

×

∫ N−Y0

z=0

e
−

λAh

λA+λB
z
I0
(

2

√

λAλBhg(M −X0)z

(λA + λB)2
)

dz

+
−λAλ

2
Bh

(λA + λB)2

√

N − Y0

λAλBhg(M −X0)
· e

−
λBg(M−X0)

λA+λB e
−

λAh(N−Y0)

λA+λB

× I1
(

2

√

λAλBhg(M −X0)(N − Y0)

(λA + λB)2
)

}

1(X0,∞)(M)1(Y0,∞)(N). (4.3)

5 Numerical Results

Even though the above formulas are totally explicit, they may look quite bulky. We
would like to illustrate their tameness by means of simple computations. They also show
how changing input parameters alters the trend of the game. For a full version of these
computations including a MATLAB routine, see [2]. The program utilizes (4.2) and (4.3)
with the results placed in the tables below.

λA 45 45 45 45 45
λB 45 45 45 45 45
g 18 18 18 18 18
h 18 18 18 18 18
M 35 34 33 32 31
N 33 33 33 33 33
X0 13 13 13 13 13
Y0 13 13 13 13 13
δ 45 45 45 45 45
Probability of A losing 0.1708 0.3106 0.4895 0.6749 0.8279

λA 45 45 45 45 45
λB 45 45 45 45 45
g 18 18 18 18 18
h 18 18 18 18 18
M 33 33 33 33 33
N 33 33 33 33 33
X0 10 11.5 13 14.5 16
Y0 13 13 13 13 13
δ 45 45 45 45 45
Probability of A losing 0.0811 0.2345 0.4895 0.7574 0.9268
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λA 18 18 18 18 18
λB 20 20 20 20 20
g 14 14 14 14 14
h 16 12 11 10 6
M 20 20 20 20 20
N 24 24 24 24 24
X0 7 7 7 7 7
Y0 5 5 5 5 5
δ 100 100 100 100 100
Probability of A losing 0.9991 0.8014 0.5875 0.3324 0.0003

λA 18 18 18 18 18
λB 20 20 20 20 20
g 14 14 14 14 14
h 16 16 16 16 16
M 32 28 26 24 20
N 24 24 24 24 24
X0 7 7 7 7 7
Y0 5 5 5 5 5
δ 100 100 100 100 100
Probability of A losing 0.0129 0.2650 0.5910 0.8717 0.9991

λA 18 18 18 18 18
λB 20 20 20 20 20
g 14 14 14 14 14
h 16 16 16 16 16
M 20 20 20 20 20
N 24 24 24 24 24
X0 0.0001 0.01 1 2 7
Y0 5 5 5 5 5
δ 100 100 100 100 100
Probability of A losing 0.4191 0.4207 0.5910 0.7505 0.9991

λA 8 8 8 8 8
λB 10 10 10 10 10
g 28 28 28 28 28
h 24 32 35 38 46
M 10 10 10 10 10
N 12 12 12 12 12
X0 2 2 2 2 2
Y0 4 4 4 4 4
δ 50 50 50 50 50
Probability of A losing 0.0033 0.2419 0.4963 0.7431 0.9893
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λA 8 8 8 8 8
λB 10 10 10 10 10
g 28 28 28 28 28
h 24 24 24 24 24
M 10 10 10 10 10
N 12 12 12 12 12
X0 7 5 4.5 4 2
Y0 4 4 4 4 4
δ 50 50 50 50 50
Probability of A losing 0.9996 0.7190 0.4888 0.2712 0.0033

where

λA, λB = rates of strikes to player A by player B and player B to player A;

g−1, h−1 = mean magnitudes of strikes to A by B and B to A;

M,N = thresholds of players A and B;

X0, Y0 = initial casualties to players A and B;

δ−1 = observations frequency.
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Abstract: In this paper we are going to introduce the theory of capacity in Musielak-
Orlicz space. We will define the Ck,ϕ capacity and theDk,ϕ capacity, prove their main
properties, and establish relationship between Ck,ϕ and Dk,ϕ. We shall introduce the
theory of non-linear potential and give some of its properties.
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Introduction

The theory of capacity and non-linear potential in the Lebesgue space Lp studied by
Maz’ya and Khavin in [10] and Meyers in [11] introduced the concept of capacity and
non-linear potential in these spaces and provided very rich applications in functional
analysis, harmonic analysis and the theory of partial differential equations. The previous
concept was generalised by N. Aissaoui and A. Benkirane in [2] and [3], by replacing Lp

by Orlicz space.
The main purpose of this paper is to study the theory of capacity and non-linear

potential in Musielak-Orlicz space. Our results generalize those of N. Aissaoui and A.
Benkirane in the case of Orlicz spaces [see [3] and [2]]. Let us note that this gener-
alization was touched upon by Fumi-Yuki Maeda, Yoshihiro Mizuta, Takao Ohno and
Tetsu Shimomura in [9] [see the third paragraph], but we are going to deal with another
method.
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The present paper is organized as follows. In the first section, we recall the main
results for the Musielak-Orlicz spaces and Radon measure spaces. In the second section,
we define the capacity Ck,ϕ in the Musielak-Orlicz spaces, give some of its properties,
introduce a Dk,ϕ capacity in terms of Radon measures and give its relations with Ck,ϕ.
In the third section, we introduce the theory of the non-linear potential and give some
of its properties.

1 Preliminaries

1.1 Musielak-Orlicz function

Let Ω be an open set in R
N and let ϕ be a real-valued function defined in Ω × R

+ and
satisfying the following conditions:
a) ϕ(x, .) is an N-function [convex, increasing, continuous, ϕ(x, 0) = 0, ϕ(x, t) > 0 ∀t > 0
ϕ(x, t)

t
→ 0 as t→ 0,

ϕ(x, t)

t
→ ∞ as t→ ∞].

b) ϕ(., t) is a measurable function.
A function ϕ(x, t), which satisfies the conditions a) and b) is called a Musielak-Orlicz

function. Equivalently, ϕ admits the representation:

ϕ(y, t) =

∫ t

0

a(y, τ)dτ , for all y ∈ Ω and t > 0, where a(y, .) : R+ → R
+ is non-

decreasing, right continuous, for all y ∈ Ω: a(y, 0) = 0,
a(y, t) > 0 for t¿0 and lim

t→+∞
a(y, t) = +∞.

The function a(y, .) is called the derivative of ϕ(y, .). The Musielak-Orlicz function
ϕ is said to satisfy the ∆2-condition if there exists K > 2 such that

ϕ(y, 2t) 6 Kϕ(y, t), for all y ∈ Ω and t > 0.

The smallest K is called the ∆2-constant of ϕ. When the last inequality holds only for
t > some t0 > 0 then ϕ is said to satisfy the ∆2-condition near infinity.

1.2 Musielak-Orlicz spaces

Let ϕ be a Musielak-Orlicz function, we define the functional

̺ϕ,Ω (u) =

∫
Ω

ϕ(x, |u(x)|)dx,

where u : Ω 7→ R is a Lebesgue measurable function.
In the following the measurability of a function u : Ω 7→ R means the Lebesgue

measurability.
The set

Kϕ(Ω) = {u : Ω 7→ R, measurable/̺ϕ,Ω (u) <∞}

is called the Musielak-Orlicz class.
The Musielak-Orlicz space Lϕ(Ω) is the vector space generated by Kϕ(Ω), that is

Lϕ(Ω) is the smallest linear space containing the set Kϕ(Ω). Equivalently:

Lϕ(Ω) = {u : Ω 7→ R, measurable/̺ϕ,Ω (
u

λ
) < +∞ for some λ > 0}.

Kϕ(Ω) is a convex subset of Lϕ(Ω). If Ω = R
N then Lϕ(R

N ) is denoted by Lϕ.
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Let
ψ(x, s) = sup{st− ϕ(x, t) /t > 0}.

That is, ψ is the Musielak-Orlicz function complementary to ϕ(x, t) in the sense of Young
with respect to the variable s. For two complementary Musielak-Orlicz functions ϕ and
ψ the following inequality is called the Young inequality [12]

t.s 6 ϕ(x, t) + ψ(x, s) for all s, t > 0 , x ∈ Ω. (1)

If s = a(x, t) then

t.a(x, t) = ϕ(x, t) + ψ(x, a(x, t)) for all t > 0 , x ∈ Ω. (2)

In the space Lϕ(Ω) we define the following two norms:

||u||ϕ,Ω= inf{λ > 0 : ̺ϕ,Ω(
u

λ
) 6 1}

called the Luxemburg norm and the so-called Orlicz norm by :

|||u|||ϕ,Ω = sup
||v||ψ,Ω61

∫
Ω

|u(x)v(x)|dx,

where ψ is the Musielak-Orlicz function complementary to ϕ. These two norms are
equivalent [12].

For two complementary Musielak-Orlicz functions ϕ and ψ let u ∈ Lϕ(Ω) and v ∈
Lψ(Ω), we have the Hölder inequality [12]

|

∫
Ω

u(x)v(x)dx| 6 ||u||ϕ,Ω |||v|||ψ ,Ω . (3)

In Lϕ(Ω) we have the relation with the norm and the modular:

|||u|||ϕ,Ω6 ̺ϕ,Ω (u) + 1, (4)

||u||ϕ,Ω 6 ̺ϕ,Ω (u) , if ||u||ϕ,Ω> 1, (5)

||u||ϕ,Ω > ̺ϕ,Ω (u) , if ||u||ϕ,Ω6 1. (6)

If Ω = R
N then two norms ||.||ϕ,RN and |||.|||ϕ,RN are denoted respectively by ||.||ϕ. and

|||.|||ϕ.
We say that a sequence of function un ∈ Lϕ(Ω) is modular convergent to u ∈ Lϕ(Ω)

if there exists a constant k ¿ 0 such that

lim
n→+∞

̺ϕ,Ω (
un − u

k
) = 0.

If ϕ satisfies the △2 condition, then modular convergence coincides with norm conver-
gence.

The closure in Lϕ(Ω) of the set of bounded measurable functions with compact sup-
port in Ω̄ is denoted by Eϕ(Ω) and it is a separable space. The equality Kϕ(Ω) =
Eϕ(Ω) = Lϕ(Ω) holds if and only if ϕ satisfies the △2 condition, for all t or for large t,
according to whether Ω has infinite measure or not. The dual of Eϕ(Ω) can be identi-

fied with Lψ(Ω) by means of the pairing

∫
Ω

u(x)v(x)dx and the dual norm on Lψ(Ω) is

equivalent to ||.||ψ . The space Lϕ(Ω) is reflexive if and only if ϕ and ψ satisfy the △2

condition, for all t or for large t according to whether Ω has infinite measure or not.
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Lemma 1.1 [8] Let ϕ be a Musielak-Orlicz function and fn, f, g be measurable func-
tions.
(a) If fn −→ f , almost everywhere , then ̺ϕ,Ω (f) 6 lim inf

n→+∞
̺ϕ,Ω (fn).

(b) If |fn| ր |f |, almost everywhere, then ̺ϕ,Ω (f) = lim
n→+∞

̺ϕ,Ω (fn).

(c) If fn −→ f , almost everywhere, |fn| 6 |g|, almost everywhere and ̺ϕ,Ω (λg) <∞
for every λ > 0, then fn → f strongly in Lϕ(Ω).

Theorem 1.1 [8] Let ϕ be a Musielak-Orlicz function.
(a) ||f ||ϕ,Ω= || |f | ||ϕ,Ω for all f ∈ Lϕ(Ω).
(b) If f ∈ Lϕ(Ω), g is a measurable function, and 0 6 |g| 6 |f | almost everywhere, then:

g ∈ Lϕ(Ω) and ||g||ϕ,Ω6 ||f ||ϕ,Ω .

(c) If fn → f almost everywhere, then: ||f ||ϕ,Ω6 lim inf
n→+∞

||fn||ϕ,Ω .

(d) If |fn| ր |f | almost everywhere with fn ∈ Lϕ(Ω) and sup
n

||fn||ϕ,Ω<∞ then:

f ∈ Lϕ(Ω) and ||fn||ϕ,Ωր ||f ||ϕ,Ω .

Theorem 1.2 [5] Let ϕ and ψ be two complementary Musielak-Orlicz functions.

Assume that there exists a constant A > 0 such that for all x, y ∈ Ω : |x − y| 6
1

2
we

have:
ϕ(x, t)

ϕ(y, t)
6 t

A

log( 1
|x−y|

)
(7)

for all t ≥ 1. If D ⊂ Ω is a bounded measurable set, then

∫
D

ϕ(x, 1)dx <∞.

ψ satisfies the following condition:

∃C > 0 : ψ(x, 1) 6 C, almost everywhere in Ω. (8)

Under the previous conditions, with Ω = R
N ; C∞

0 (RN ) is dense in Lϕ(R
N ) with respect

to the modular topology.

1.3 Measures space

M designates the vector space of Radon measures. M is endowed with the weak topology
for which a sequence (µn) converges weakly to µ, if for any continuous function f with
compact support

lim
n→+∞

∫
fdµn =

∫
fdµ.

M+ is the cone of positive elements of M.
For all measures µ <∞, for all X ⊂ R

N , the variation of µ is defined by:

||µ||(X) = sup{
n∑
1

|µ(Xi)| : (Xi)i=1...n is an X partiton}.

||µ||(RN ) = ||µ|| is called the total variation of µ. M1 designates the Banach space
of measures, endowed with the norm total variation. M+

1 designates the subset of M1

consisting of positive measures.

Definition 1.1 Let µ ∈M+
1 . We say that µ is concentrated on X if µ(Y ) = 0 for all

µ−measurable set Y , such that Y ⊂ Xc.
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2 Capacity in Musielak-Orlicz Space

2.1 Ck,ϕ-capacity

Lemma 2.1 Let Ω be an open set in R
N and ϕ be a Musielak-Orlicz function such

that

ϕ(y, t) =

∫ t

0

a(y, τ)dτ, ∀y ∈ Ω and t > 0.

Let u : Ω → R be measurable function and α > 0, we define a measurable function
g : Ω → R so that

g(y) = a(y,
|u(y)|

2α
), ∀y ∈ Ω.

If (
u

α
) ∈ Kϕ(Ω) then g ∈ Kψ(Ω), where ψ is the Musielak-Orlicz function comple-

mentary to ϕ.

Proof. For all y ∈ Ω and t > O : ϕ(y, 2t) =

∫ 2t

0

a(y, τ)dτ >

∫ 2t

t

a(y, τ)dτ.

Hence ϕ(y, 2t) > ta(y, t), thus for all y ∈ Ω : ϕ(y,
|u(y)|

α
) >

|u(y)|

2α
a(y,

|u(y)|

2α
).

On the other hand, we have:
|u(y)|

2α
a(y,

|u(y)|

2α
)− ϕ(y,

|u(y)|

2α
) = ψ(y, a(y,

|u(y)|

2α
)).

Therefore, ψ(y, a(y,
|u(y)|

2α
)) 6 ϕ(y,

|u(y)|

α
)− ϕ(y,

|u(y)|

2α
), this implies that

∫
Ω

ψ(y, a(y,
|u(y)|

2α
))dy 6

∫
Ω

ϕ(y,
|u(y)|

α
)dy −

∫
Ω

ϕ(y,
|u(y)|

2α
)dy,

then
̺ψ,Ω (g) 6 ̺ϕ,Ω (

u

α
)− ̺ϕ,Ω (

u

2α
).

Since ̺ϕ,Ω (
u

2α
) 6

1

2
̺ϕ,Ω (

u

α
) and ̺ϕ,Ω (

u

α
) <∞, the proof is complete.

Lemma 2.2 If (fn) is a sequence in Lϕ(Ω) such that for all n ∈ N, fn > 0, then

|| sup
n
fn||ϕ,Ω 6 ||

∑
n

fn||ϕ,Ω6
∑
n

||fn||ϕ,Ω .

Proof. Since 0 6 sup
n
fn 6

∑
n

fn, thus || sup
n
fn||ϕ,Ω6 ||

∑
n

fn||ϕ,Ω .

Let gn =

n∑
k=0

fk and f =
∑
n

fn, we have

gn∑
n ||fn||ϕ,Ω

ր
f∑

n ||fn||ϕ,Ω
almost everywhere.

By Lemma 1.1, we obtain

̺ϕ,Ω (
f∑

n ||fn||ϕ,Ω
) = lim

n→+∞
̺ϕ,Ω (

gn∑
n ||fn||ϕ,Ω

) 6 lim
n→+∞

̺ϕ,Ω (
gn

||gn||ϕ,Ω
) 6 1.
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Then

||
f∑

n ||fn||ϕ,Ω
||ϕ,Ω 6 1.

Therefore,

||
∑
n

fn||ϕ,Ω6
∑
n

||fn||ϕ,Ω .

Lemma 2.3 Let ϕ be a Musielak-Orlicz function, which satisfies the △2 condition,
and such that

ϕ(y, t) =

∫ t

0

a(y, τ)dτ, for all y ∈ Ω and t > 0.

Let f ∈ Lϕ(Ω), such that f > 0, and ||f ||ϕ,Ω 6= 0.
We define a measurable function g : Ω → R such that for all y ∈ Ω; g(y) =

a(y,
f(y)

||f ||ϕ,Ω
). Then

∫
f(y)g(y)dy = ||f ||ϕ,Ω |||g|||ψ,Ω .

Proof. By Lemma 2.1, we have g ∈ Lψ(Ω) and by the Hölder inequality we have

∫
Ω

f(x)g(x)dx 6 ||f ||ϕ,Ω |||g|||ψ,Ω .

For the opposite inequality, let h =
f

||f ||ϕ,Ω
, and v ∈ Lϕ(Ω), such that ||v||ϕ,Ω6 1.

For all y ∈ Ω, we have

g(y)h(y) = ϕ(y, h(y)) + ψ(y, g(y))

and
g(y)v(y) 6 ϕ(y, v(y)) + ψ(y, g(y)).

Hence for all y ∈ Ω:

g(y)v(y) 6 g(y)h(y)− ϕ(y, h(y)) + ϕ(y, v(y)).

Then ∫
Ω

g(y)v(y)dy 6

∫
Ω

g(y)h(y)dy −

∫
Ω

ϕ(y, h(y))dy +

∫
Ω

ϕ(y, v(y))dy.

Thus, ∫
Ω

g(y)v(y)dy 6

∫
Ω

g(y)h(y)dy − ̺ϕ,Ω (h) + ̺ϕ,Ω (v).

We have ̺ϕ,Ω (v) 6 1. On the other hand ϕ satisfies the △2 condition, then, ̺ϕ,Ω is
a continuous modular[see [8] Lemma 2.4.3 ]. We have ||h||ϕ,Ω= 1, then ̺ϕ,Ω (h) = 1
[see [8] Lemma 2.1.14].

Thus, ∫
g(y)v(y)dy 6

∫
g(y)h(y)dy

implies

sup
||v||ϕ,Ω61

∫
g(y)v(y)dy 6

∫
g(y)h(y)dy.
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Then

|||g|||ψ,Ω ||f ||ϕ,Ω 6

∫
f(y)g(y)dy.

Definition 2.1 Let T be a class of Borel sets in R
N , and a function C : T → [0,+∞].

1) C is called a capacity if the following axioms are satisfied:
i) C(∅) = 0.
ii) X ⊂ Y ⇒ C(X) 6 C(Y ), for all X and Y in T.
iii) For all sequences (Xn) ⊂ T :

C(
⋃
n

Xn) 6
∑
n

C(Xn).

2) C is called an outer capacity if for all X ∈ T :

C(X) = inf{C(O) : O ⊃ X, O is open}.

3) C is called an interior capacity if for all X ⊂ T :

C(X) = sup{C(K) : K ⊂ X, K is compact}.

4) A property, that holds true except perhaps on a set of zero capacity is said to be true
C-quasi-everywhere, (C-q.e).
5) f and (fn) are real-valued finite functions C-q.e. We say that (fn) converges to f
in C-capacity if:

∀ε > 0, lim
n→+∞

C({x : |fn(x) − f(x)| > ε}) = 0.

6) f and (fn) are real-valued function finite C-q.e. We say that (fn) converges to f
C-quasi- uniformly, (C-q.u) if

(∀ε > 0), (∃ X ∈ T ) : C(X) < ε and (fn) converges to f uniformly on Xc.

Remark 2.1 In the following Ω = R
n, ϕ is a Musielak-Orlicz function, and L+

ϕ =
{ f ∈ Lϕ / f > 0}.

Theorem 2.1 Let k be a positive integrable function on R
N . For all X ⊂ R

N , we
put Ck,ϕ (X) = inf{||f ||ϕ : f ∈ Lϕ and k ∗ f > 1 on X}, where k ∗ f is the convolution
of k and f. Ck,ϕ is an outer capacity.

Remark 2.2 Let Bk,ϕ (X) = inf{||f ||ϕ : f ∈ L+
ϕ and k ∗ f > 1 on X}, then

Ck,ϕ (X) = Bk,ϕ (X).

Indeed, it is obvious that Ck,ϕ (X) 6 Bk,ϕ (X). On the other hand, let f ∈ Lϕ, then
|f | ∈ L+

ϕ and if k ∗ f > 1 on X , then k ∗ |f | > 1 on X. Thus Bk,ϕ (X) 6 ||f ||ϕ; and
therefore Bk,ϕ (X) 6 Ck,ϕ (X).
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Proof of Theorem 2.1. It is obvious that Ck,ϕ (∅) = 0 and Ck,ϕ (X) 6 Ck,ϕ (Y )

if X ⊂ Y. Let (Xn) ⊂ T , so that
∑
i

Ck,ϕ (Xi) < +∞, then (∀i ∈ N) Ck,ϕ (Xi) < +∞.

Thus, (∀i ∈ N)(∀ε > 0), (∃fi ∈ L+
ϕ ) so that k∗fi > 1 on Xi and ||fi||ϕ 6 Ck,ϕ (Xi)+

ε

2i
.

Let f = sup
i

fi. By Lemma 2.2, we have:

||f ||ϕ 6
∑
i

||fi||ϕ.

We can write
||f ||ϕ 6

∑
i

Ck,ϕ (Xi) + ε,

which implies that, f ∈ Lϕ.

Since k ∗ f > 1 on
⋃
i

Xi,

Ck,ϕ (
⋃
i

Xi) 6
∑
i

Ck,ϕ (Xi) + ε, ∀ε > 0.

Hence,

Ck,ϕ (
⋃
i

Xi) 6
∑
i

Ck,ϕ (Xi).

It remains to show that Ck,ϕ is outer. Let X ⊂ R
N , we have:

Ck,ϕ (X) 6 inf{Ck,ϕ (O) : O ⊃ X, O is open}.

For the reverse inequality, if Ck,ϕ (X) = +∞ there is nothing to show.
Assume that Ck,ϕ (X) < +∞, and let 0 < ε < 1, then ∃ g ∈ L+

ϕ so that k∗g > 1 on X
and ||g||ϕ 6 Ck,ϕ (X) + ε.

Let gε =
g

1− ε
and Oε = {x : (k ∗ gε) > 1}, thus Oε is open and

∀x ∈ X ; (k ∗ gε) >
1

1− ε
> 1.

Hence, X ⊂ Oε. On the other hand, we have Ck,ϕ (Oε) 6 ||gε||ϕ, and we deduce that

Ck,ϕ (Oε) 6
1

1− ε
||g||ϕ 6

1

1− ε
[Ck,ϕ (X) + ε].

Therefore,

inf{C(O) : O ⊃ X, O isopen} 6
1

1− ε
[Ck,ϕ (X) + ε], ∀ε > 0.

Thus,
inf{C(O) : O ⊃ X, O isopen} 6 Ck,ϕ (X).
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Theorem 2.2 1) If there exists f ∈ Lϕ such that |k ∗ f | = +∞ on X, then
Ck,ϕ (X) = 0.
2) If Ck,ϕ (X) = 0 then there exists f ∈ L+

ϕ such that k ∗ f = +∞ on X.

Proof. 1) Let f ∈ Lϕ such that |k ∗ f | = +∞ on X , then ∀α > 0, |k ∗ f | > α on X.

Then Ck,ϕ (X) 6
||f ||ϕ
α

, ∀α > 0; this means that Ck,ϕ (X) = 0.

2) If Ck,ϕ (X) = 0 then ∀i ∈ N, ∃fi ∈ L+
ϕ : k ∗ fi > 1 on X and ||fi||ϕ 6 2−i.

Let f =
∑
i

fi. By Lemma 2.2, ||f ||ϕ 6
∑
i

||fi||ϕ, then ||f ||ϕ < +∞.

We deduce that f ∈ L+
ϕ and k ∗ f = +∞ on X.

Theorem 2.3 Consider the following propositions :
i) fn −→ f strongly in Lϕ.
ii) k ∗ fn −→ k ∗ f , Ck,ϕ−capacity.
iii) There is a subsequence (fnj )j such that : k ∗ fnj −→ k ∗ f Ck,ϕ−q.u.
iv) k ∗ fnj −→ k ∗ f in Ck,ϕ−q.e.
We have

i) ⇒ ii) ⇒ iii) ⇒ iv).

Proof. We show i) ⇒ ii).
By Theorem 2.2, we have k ∗ f and k ∗ fn are finite Ck,ϕ−q.e, ∀n.
Let ε > 0; then

Ck,ϕ ({x : |k ∗ fn − k ∗ f |(x) > ε}) 6
||fn − f ||ϕ

ε
.

We show ii) ⇒ iii).
Let ε > 0 ∃ fnj such that

Ck,ϕ ({x : |k ∗ fnj − k ∗ f |(x) > 2−j}) < ε.2−j .

We put

Ej = {x : |k ∗ fnj − k ∗ f |(x) > 2−j} and Gm =
⋃
j>m

Ej .

We have Ck,ϕ (Gm) 6
∑
j>m

ε.2−j < ε.

On the other hand :

∀x ∈ (Gm)c, ∀ j > m : |k ∗ fnj − k ∗ f |(x) 6 2−j.

Thus k ∗ fnj −→ k ∗ f Ck,ϕ−q.u.

We show iii) ⇒ iv). We have ∀j ∈ N, ∃Xj : Ck,ϕ (Xj) 6
1

j
and k ∗ fnj −→

k ∗ f on (Xj)
c. We put X =

⋂
j

Xj , then Ck,ϕ (X) = 0 and k ∗ fnj −→ k ∗ f on Xc.

Theorem 2.4 Let ϕ be a Musielak-Orlicz function that satisfies the △2 condition,

and (fn) be a sequence in Lϕ such that
∑
n

|fn| ∈ Lϕ. Then,

∑
n

(k ∗ fn) = k ∗ (
∑
n

fn) Ck,ϕ−q.e.
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Proof. First step: Assume that fn > 0 ∀n ∈ N, and let gn =
n∑
i=1

fi and f =
∑
n

fn.

We have gn → f almost everywhere and gn 6 f. On the other hand, ̺ϕ(λf) <
∞ ∀λ > 0 because f ∈ Lϕ and ϕ satisfies the △2 condition [see [8] paragraph 2.5].

By (c) of Lemma 1.1 we have

gn → f strongly in Lϕ.

Theorem 2.3 implies that there is a subsequence (gni) such that k ∗gni → k ∗f , Ck,ϕ-q.e.
Since fn > 0, ∀n ∈ N k ∗ gn → k ∗ f , Ck,ϕ-q.e.

Second step: If fn has any sign, then
∑
n

f+
n and

∑
n

f−
n are in Lϕ because

|
∑
n

f+
n | 6

∑
n

|fn| , |
∑
n

f−
n | 6

∑
n

|fn| and
∑
n

|fn| ∈ Lϕ.

By the first step the result follows.

Theorem 2.5 Let (Kn) be a decreasing sequence of compact and K =
⋂
n

Kn. Then

lim
n→+∞

Ck,ϕ (Kn) = Ck,ϕ (K).

Proof. First, we observe that Ck,ϕ (K) 6 lim
n→+∞

Ck,ϕ (Kn). On the other hand, let

O be an open set containing K. By the compactness of K, Ki ⊂ O for all sufficiently
large i. Therefore lim

n→+∞
Ck,ϕ (Kn) 6 Ck,ϕ (O), and since Ck,ϕ is an outer capacity, we

obtain the claim by taking infimum over open set O containing K.

Theorem 2.6 Let ϕ be a Musielak-Orlicz function, uniformly convex that satisfies
the △2 condition. If fn , f ∈ Lϕ such that fn ⇀ f weakly in Lϕ, then:

lim inf(k ∗ fn) 6 (k ∗ f) 6 lim sup(k ∗ fn) Ck,ϕ−q.e.

Proof. (Lϕ , ||.||) is uniformly convex therefore reflexive. By the Banach-Saks
theorem, there is a subsequence denoted again by (fn) such that the sequence

gn =
1

n

n∑
i=1

fi converges to f strongly in Lϕ. By Theorem 2.3, there is a subsequence of

(gn) denoted again by (gn) such that

lim
n→+∞

(k ∗ gn) = (k ∗ f) Ck,ϕ−q.e.

On the other hand,
lim inf(k ∗ fn) 6 lim

n→+∞
(k ∗ gn) .

Therefore,
lim

n→+∞
(k ∗ fn) 6 (k ∗ f) Ck,ϕ−q.e.

For the second inequality, it suffices to replace fn by (−fn) in the first inequality.

Theorem 2.7 Let ϕ be a Musielak-Orlicz function, uniformly convex that satisfies

the △2 condition, (Xn) be an increasing sequence of sets and X =
⋃
n

Xn. Then

lim
n→+∞

Ck,ϕ (Xn) = Ck,ϕ (X).
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Proof. We have lim
n→+∞

Ck,ϕ (Xn) 6 Ck,ϕ (X). For the reverse inequality, if

Ck,ϕ (X) = +∞, there is nothing to show.

Assuming that Ck,ϕ (X) < +∞, we have

∀n ∈ N, ∃fn ∈ L+
ϕ : k ∗ fn > 1 on Xn and ||fn||ϕ 6 Ck,ϕ (Xn) +

1

n
.

Thus, (fn) is a bounded sequence in Lϕ.

On the other hand, Lϕ is uniformly convex, then it is reflexive because ϕ is uniformly
convex and satisfies the △2 condition, [see [8] Remark 2.4.15]. Hence there exists a
subsequence which is denoted again by (fn), and converges weakly to a function f ∈ Lϕ.
Then by Theorem 2.6,

∀n ∈ N : k ∗ f > 1 on Xn, Ck,ϕ−q.e.

Therefore,

k ∗ f > 1 on X, Ck,ϕ−q.e.

Let Y be a subset of X where k ∗ f > 1, then Ck,ϕ (X) = Ck,ϕ (Y ). On the other
hand we know that

ϕ(y, t) =

∫ t

0

a(y, τ)dτ, for all y ∈ RN and t > 0.

Let the function g : RN → R be defined by g(y) = a(y,
|f(y)|

||f ||ϕ
) for all y ∈ R

N .

By Lemma 2.1, g ∈ Lψ, and since ϕ satisfies the △2 condition, we have Lψ = (Lϕ)
∗.

Thus, ∫
fn(y)g(y)dy →

∫
f(y)g(y)dy.

By Lemma 2.3, we have ∫
f(y)g(y)dy = ||f ||ϕ|||g|||ψ.

By the Hölder inequality we have:

∫
fn(y)g(y)dy ≤ ||fn||ϕ|||g|||ψ.

Therefore,

||f ||ϕ 6 lim
n→+∞

||fn||ϕ 6 lim
n→+∞

(Ck,ϕ (Xn) +
1

n
).

Thus,

Ck,ϕ (X) 6 lim
n→+∞

Ck,ϕ (Xn).

Corollary 2.1 Let ϕ be a Musielak-Orlicz function, uniformly convex, that satisfies
the △2 condition. Let En ⊂ R

N , then Ck,ϕ (lim inf En) 6 lim inf Ck,ϕ (En).
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Proof. Let E = lim inf En , we have E =
⋃
n

(
⋂
i>n

Ei).

We putGn =
⋂
i>n

Ei. Thus a sequence (Gn) is increasing and by Theorem 2.7, Ck,ϕ (E) =

lim
n
Ck,ϕ (Gn). On the other hand, Ck,ϕ is increasing, then Ck,ϕ (Gn) 6 Ck,ϕ (En); there-

fore
Ck,ϕ (E) 6 lim inf Ck,ϕ (En).

Theorem 2.8 Let ϕ be a Musielak-Orlicz function which satisfies the assumptions
of Theorem 1.2. If ϕ satisfies the △2 condition, then for each f ∈ Lϕ, there is a Ck,ϕ-
quasicontinuous function g ∈ Lϕ such that k ∗ f = g Ck,ϕ−q.e.

Proof. Let f ∈ Lϕ, by Theorem 1.2, there exists a sequence (fn) in C
∞
0 (RN ) such

that fn −→ f in Lϕ. By Theorem 2.3, there exists a subsequence of (fn) denoted again
by (fn) such that

k ∗ fn −→ k ∗ f Cϕ − q.u.

Since k is integrable function and fn is continuous ∀n, then k ∗ fn is continuous. Thus,
the proof is complete.

Definition 2.2 In the terminology of Choquet, C is called a capacity if it satisfies
the following four properties:
i) C(∅) = 0.
ii) C is increasing.

iii) If (En) is an increasing sequence of sets, then sup
n
C(Xn) = C(

⋃
n

Xn).

iv) If (Kn) is a decreasing sequence of compacts, then inf
n
C(Kn) = C(

⋂
n

Kn).

Remark 2.3 Let ϕ be a Musielak-Orlicz function, uniformly convex, that satisfies
the △2 condition. By Theorems 2.1, 2.5 and 2.7 Ck,ϕ is a capacity, in the sense of
Choquet.

Definition 2.3 Let C be a capacity in the sense of Choquet, and X ⊂ R
N .

X is called capacitable if

C(X) = sup{C(K) : K ⊂ X, K iscompact}.

Theorem 2.9 Let ϕ be a Musielak-Orlicz function, uniformly convex that satisfies
the △2 condition. Then all analytic sets are Ck,ϕ- capacitable .

Proof. It is an immediate consequence of Choquet theorem [7].

2.2 Capacity in terms of measure

Theorem 2.10 Let ϕ be a Musielak-Orlicz function, k be a positive integrable func-
tion on R, and X be a µ-measurable set, for all positive measures µ. We put
Dk,ϕ (X) = sup{||µ|| : µ ∈M+

1 , µ is concentrated on X and ||k ∗ µ||ψ 6 1}

where (k ∗ µ)(x) =

∫
k(x− y)dµ(y). Then, Dk,ϕ is an interior capacity.
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Proof. It is clear that Dk,ϕ (∅) = 0 and Dk,ϕ (X) 6 Dk,ϕ (Y ) if X ⊂ Y.
Let µ ∈ M+

1 , (Xn) be a sequence of µ-measurable sets and µn = µ|Xn be defined by

µn(Y ) = µ(Xn ∩ Y ), for all µ−measurable set Y.

First we assume that the Xn are pairwise disjoint, then

µ(
⋃
n

Xn) =
∑
n

µ(Xn).

If µ is concentrated on
⋃
n

Xn and ||k∗µ||ψ 6 1, then ∀n; µn ∈M+
1 ; µn is concentrated

on Xn and ||k ∗ µn||ψ 6 1.
On the other hand, we have

||µ|| =
∑
n

||µn|| 6
∑
n

Dk,ϕ (Xn).

Thus,

Dk,ϕ (
⋃
n

Xn) 6
∑
n

Dk,ϕ (Xn).

If the Xn are not pairwise disjoint, then by the first case and the fact that Dk,ϕ is
increasing, we have

Dk,ϕ (
⋃
n

Xn) 6
∑
n

Dk,ϕ (Xn).

It remains to show that Dk,ϕ is interior.
By monotonicity we have

sup{Dk,ϕ (K) : K ⊂ X, K compact} 6 Dk,ϕ (X).

Let µ ∈M+
1 andX be a µ-measurable set such that µ is concentrated on X and ||k∗µ||ψ 6

1.
Let a compact K be such that K ⊂ X, then µ|K ∈ M+

1 , µ|K is concentrated on K and
||k ∗ µ|K ||ψ 6 1. Therefore,

||µ|K ||ψ 6 Dk,ϕ (K).

On the other hand,

sup{||µ \K || : K ⊂ X, K is compact} = ||µ||.

Thus,
Dk,ϕ (X) 6 sup{Dk,ϕ (K) : K ⊂ X, K iscompact}.

Theorem 2.11 1) D∗
k,ϕ is the outer capacity associated with Dk,ϕ, defined by:

D∗
k,ϕ (X) = inf{ Dk,ϕ (O) : O isopen and X ⊂ O}.

Then,
D∗
k,ϕ (X) = Ck,ϕ (X).

2) If ϕ is a Musielak-Orlicz function, uniformly convex that satisfies the △2 condition,
then for all analytic set X we have:

Dk,ϕ (X) = Ck,ϕ (X).
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Proof. It is the same as that given in [2], Theorem 11.

Theorem 2.12 Let ϕ be a Musielak-Orlicz function.
Let K be a compact of RN . The following assertions are equivalents.
1)Ck,ϕ (K) = ∞.
2) D∗

k,ϕ (K) = ∞.
3) Dk,ϕ (K) = ∞.
4) There exists x0 ∈ K such that k(x0 − y) = 0 almost everywhere.

Proof. It is the same as that given in [3], Theorem 5.

3 Non-linear Potential in Musielak-Orlicz Space

Let ϕ be a Musielak-Orlicz function. In this section, we propose to study the following
variational problem: let X be a subset of RN such that Ck,ϕ (X) < ∞. There exists
f0 ∈ L+

ϕ such that k ∗ f0 > 1 Ck,ϕ−q.e on X, and

||f0||ϕ = inf{||f ||ϕ : f ∈ L+
ϕ and k ∗ f > 1 Ck,ϕ−q.e on X}.

If f0 exists, it will be called a distribution function of X, and k ∗ f0 is called a potential
of X for the Ck,ϕ capacity.

Theorem 3.1 Let ϕ be a Musielak-Orlicz function and X be a subset of RN such
that Ck,ϕ (X) < ∞. ΩX = {f ∈ L+

ϕ : k ∗ f > 1 Ck,ϕ−q.e on X}, and Cl∗(ΩX) is the
closure of ΩX for the topology σ(Lϕ;Eψ). Then:
1) There exists a unique f0 ∈ L+

ϕ such that:

||f0||ϕ = inf{||f ||ϕ : f ∈ Cl∗(ΩX)}.

2) If ϕ and ψ satisfy the △2 condition, then there exits a unique f ∈ L+
ϕ such that:

i) k ∗ f > 1 on X and ||f ||ϕ = Ck,ϕ (X).
ii) If Ck,ϕ (X) > 0, then for all g ∈ Lϕ such that k ∗ g > 0 on X:

∫
a(x,

f(x)

||f ||ϕ
)g(x)dx > 0,

where the function a(x,.) is the derivative of the function ϕ(x, .).

Proof. 1) Let the function θ : Lϕ −→]−∞; +∞] be defined by θ(f) = ||f ||ϕ ; ∀f ∈ Lϕ.
θ is lower semi continuous on Lϕ, for topology σ(Lϕ;Eψ) and coercive. Then, there exists
a unique f0 ∈ L+

ϕ such that

||f0||ϕ = inf{||f ||ϕ : f ∈ Cl∗(ΩX)}.

2) i) Since ϕ and ψ satisfy the △2 condition, then the space Lϕ is reflexive. By Theorem
2.3, ΩX is strongly closed in Lϕ. On the other hand, ΩX is convex, then there exists a
unique f ∈ Lϕ such that:

||f ||ϕ = inf{||g||ϕ : g ∈ ΩX}.

Let Y be a subset of X where k ∗ f < 1. Then, Ck,ϕ (X) = Ck,ϕ (X −Y ). Since k ∗ f > 1
on X-Y, Ck,ϕ (X − Y ) 6 ||f ||ϕ.
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On the other hand, we have {g ∈ L+
ϕ : k ∗ g > 1 on X} ⊂ ΩX ; then ||f ||ϕ 6 Ck,ϕ (X).

ii) Let g ∈ Lϕ such that k ∗ g > 0 on X. Then for all t > 0:

k ∗ (f + tg) > 1 Ck,ϕ−q.e on X and (f + tg) ∈ Lϕ.

Then,

||f + tg||ϕ > ||f ||ϕ.

Therefore,

||
1

||f ||ϕ
(f + tg)||ϕ > 1.

Thus,

̺ϕ(
1

||f ||ϕ
(f + tg)) > 1.

On the other hand,

̺ϕ(
1

||f ||ϕ
f) 6 1.

Then, for all t > 0

∫
1

t
[ϕ(x,

|f + tg|(x)

||f ||ϕ
)− ϕ(x,

|f(x)|

||f ||ϕ
)]dx > 0.

Let c(x, t) = ϕ(x,
|f + tg|(x)

||f ||ϕ
). Then, the function x 7−→ c(x, t) is in L1 for all t ∈ R.

On the other hand,

∂c

∂t
(x, t) = a(x,

|f + tg|(x)

||f ||ϕ
).(

g(x)

||f ||ϕ
).sng(f + tg)(x).

For 0 < t < 1 we have:

|
∂c

∂t
(x, t)| 6 a(x,

|f + g|(x)

||f ||ϕ
).(

g(x)

||f ||ϕ
).

By Lemma 2.1, the function: x −→ a(x,
|f + g|(x)

||f ||ϕ
) is in Lψ.

Then the function: x 7→ a(x,
|f + g|(x)

||f ||ϕ
).(

g(x)

||f ||ϕ
) is in L1.

By Lebesgue’s theorem

lim
t→0+

∫
1

t
[ϕ(x,

|f + tg|(x)

||f ||ϕ
)− ϕ(x,

|f(x)|

||f ||ϕ
)]dx =

1

||f ||ϕ

∫
a(x,

|f(x)|

||f ||ϕ
)dx > 0.

Remark 3.1 Under the assumptions of Theorem 3.1, 2) ii), if Ck,ϕ (X) > 0, then
for all g ∈ Lϕ such that k ∗ g = 0 on X:

∫
a(x,

f(x)

||f ||ϕ
)g(x)dx = 0.
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Theorem 3.2 Let ϕ be a Musielak-Orlicz function such that ϕ and ψ satisfy the △2

condition. Let X ⊂ R
N such that 0 < Ck,ϕ (X) < ∞ and f be the distribution function

of X for the Ck,ϕ capacity. For all g ∈ Lϕ

|

∫
a(x,

f(x)

||f ||ϕ
)g(x)dx| 6 Kϕ sup

x∈X
|(k ∗ g)(x)|.||f ||ϕ,

where Kϕ is a constant that depends only on ϕ.

Proof. The inequality is obvious if sup
x∈X

|(k ∗ g)(x)| = +∞.

On the other hand, if sup
x∈X

|(k ∗ g)(x)| = 0, then by Remark 3.1 we have

∫
a(x,

f(x)

||f ||ϕ
).g(x)dx = 0.

If 0 < α = sup
x∈X

|(k ∗ g)(x)| < +∞, then k ∗ (f −
g

α
)(x) > 0 for all x ∈ X .

By Theorem 3.1, we have:

∫
a(x,

f(x)

||f ||ϕ
).(f −

g

α
)(x)dx > 0.

Thus, ∫
a(x,

f(x)

||f ||ϕ
).g(x)dx 6 α

∫
a(x,

f(x)

||f ||ϕ
).f(x)dx.

On the other hand, we have for all x ∈ R
N and t > 0 :

ϕ(x, t) =

∫ t

0

a(x, t)dt >

∫ t

t
2

a(x, t)dt > (
t

2
)a(x,

t

2
).

Then,

a(x,
f(x)

||f ||ϕ
).
f(x)

||f ||ϕ
6 ϕ(x, 2

f(x)

||f ||ϕ
) 6 K ′

ϕϕ(x,
f(x)

||f ||ϕ
)

because ϕ satisfies the △2 condition.
Therefore, ∫

a(x,
f(x)

||f ||ϕ
).g(x)dx 6 α.K ′

ϕ.̺ϕ(
f

||f ||ϕ
).

Since ̺ϕ(
f

||f ||ϕ
) 6 1, the proof is complete.

Theorem 3.3 Let ϕ be a Musielak-Orlicz function, uniformly convex which satisfies
the △2 condition. Let (Xi)i ⊂ R

N . For each i, fi is the distribution function of Xi for
the Ck,ϕ capacity. Let X ⊂ R

N and f be its distribution function for the Ck,ϕ capacity.
If X ⊂ lim inf Xi and limCk,ϕ (Xi) = Ck,ϕ (X) then, fi −→ f in Lϕ.

We have the same result, particularly if (Xi)i is increasing and X =
⋃
i

Xi or (Xi)i is a

decreasing sequence of compacts and X =
⋂
i

Xi.
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Proof. (fi)i is bounded in Lϕ. Since the space Lϕ is reflexive, there exists a subse-
quence denoted again by (fi)i which converges weakly in L+

ϕ to a function g in Lϕ.
By Theorem 2.6, k ∗ g > 1 on X Ck,ϕ−q.e. Therefore,

Ck,ϕ (X) 6 ||g||ϕ.

On the other hand for all h ∈ Lψ
∫
fi(x)h(x)dx −→

∫
g(x)h(x)dx.

ByHölder inequality, we have:

∫
fi(x)h(x)dx 6 ||fi||ϕ|||h|||ψ .

Thus,

∫
g(x)h(x)dx 6 lim inf ||fi||ϕ|||h|||ψ 6 ||f ||ϕ|||h|||ψ .

Let the function h : x −→ a(x,
g(x)

||g||ϕ
) for all x ∈ R

N .

By Lemma 2.1, h ∈ Lψ, and by Lemma 2.3

||g||ϕ|||h|||ψ =

∫
g(x)h(x)dx 6 ||f ||ϕ|||h|||ψ.

Then,
||g||ϕ 6 Ck,ϕ (X).

Thus,
||g||ϕ = Ck,ϕ (X) and therefore f = g.

On the other hand, f is the unique adhesion value of the sequence (fi)i for the topology
σ(Lϕ, Lψ). Then, fi −→ f weakly in Lϕ. Since Lϕ is uniformly convex, we have fi −→ f
strongly in Lϕ.

Theorem 3.4 Let ϕ be a Musielak-Orlicz function. Let F be a closed subset of RN

such that Dk,ϕ (F ) <∞. For all r ∈ R
∗
+: Fr = F ∩ {x ∈ R

N : |x| > r}.
If lim

r→+∞
Dk,ϕ (Fr) = 0 then there exists a measure µ ∈ M+

1 such that µ is concentrated

on F ; ||k ∗ µ||ψ 6 1 and Dk,ϕ (F ) = ||µ||, where µ is called a distribution measure of F
for Dk,ϕ. Particularly, if K is a compact such that Dk,ϕ (K) < ∞ then K possesses a
distribution measure for Dk,ϕ.

Proof. It is the same as that given in [3], Theorem 4.
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Abstract: We introduce a notion of a cubic stochastic operator corresponding to
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1 Introduction

The history of quadratic stochastic operator (QSO) can be traced to Bernshtein’s work
[1]. Since then the theory of QSOs has been further developed motivated by their frequent
occurrence in several problems of physical, economical and biological systems, where
QSOs serve as a tool for the study of dynamical properties and modeling, see [2,4–12,15,
19–23]. While they were originally introduced as “evolutionary operators” to describe
the dynamics of gene frequencies for given laws of heredity in mathematical population
genetics, QSOs and the dynamical systems they describe have become interesting objects
of study in their own right from a purely mathematical point of view. For a recent review
on the theory of quadratic operators see [7].

In modern scientific investigations non-linear operators of higher order arise. Nowa-
days another class of nonlinear operators which are different from QSOs arises. In par-
ticular, cubic stochastic operator (CSO) can be obtained in gene engineering and free
population with ternary production. In paper [17] the concept of cubic stochastic
operator was introduced.
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One such subclass that arises naturally in the biological context is given by the
additional restriction

pijk,l = 0, if l /∈ {i, j, k} for all i, j, k, l. (1)

These CSOs describe a reproductory behaviour where the offspring is a genetic copy of one
of its parents and are called Volterra operators. The asymptotic behaviour of trajectories
of this kind of CSOs for some particular cases were analysed in [13, 14, 17, 18].

However, in the non-Volterra case (i.e. when condition (1) is violated), many questions
remain open and there seems to be no general theory available.

In all of the above-mentioned references the authors investigated trajectories of a CSO
on finite dimensional unit simplex. However, it seems natural to consider the problem
for an infinite dimensional CSO. This can be done, e.g., by using a method of infinite
dimensional Volterra quadratic stochastic operator considered in [16].

The paper is organised as follows. In Section 2 we recall definitions and well known
results from the theory of Volterra and non-Volterra CSOs . In Section 3 we define a new
class of non-Volterra CSOs and show that a CSO from this class has a unique fixed point.
Moreover, we prove that the trajectory of such operators has the regularity property and
consequently the ergodic hypothesis is verified.

2 Preliminaries and Known Results

Let [m] = {1, 2, ...,m}. By the (m− 1)− simplex we mean the set

Sm−1 = {x = (x1, ..., xm) ∈ Rm : xi ≥ 0,

m
∑

i=1

xi = 1}.

Each element x ∈ Sm−1 is a probability measure on [m] and so it may be looked upon
as the state of a biological (physical and so on) system of m elements.

A cubic stochastic operator (CSO) V : Sm−1 7→ Sm−1 has the form

V : x′

l =

m
∑

i,j,k=1

pijk,lxixjxk, (l = 1, . . . ,m), (2)

where pijk,l is a coefficient of heredity and

pijk,l ≥ 0,
m
∑

l=1

pijk,l = 1, (i, j, k, l = 1, ...,m). (3)

More precisely pijk,l is the conditional probability P (l|i, j, k) with which the ith, jth and
kth species interbreed successfully, when they produce an individual l. We assume that
there is no difference whatever the ”next” is, and in any generation the “parents” i, j, k
are independent, that is P (i, j, k) = P (i)P (j)P (k) = xixjxk, i.e. we consider models of
free population.

For a given x(0) ∈ Sm−1, the trajectory {x(n)}, n = 0, 1, 2, . . . of an initial point x(0)

under the action of CSO (2) with (3) is defined by x(n+1) = V (x(n)), where n = 0, 1, 2, . . .
A point x ∈ Sm−1 is called a fixed point of V if V (x) = x. A CSO V on Sm−1 is

called regular if for any initial point x ∈ Sm−1 the limit lim
n→∞

V n(x) exists. The biological
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interpretation of the regularity of a CSO is rather clear: in the long run the distribution
of species in the next generation coincides with the distribution of species in the previous
one, i.e., it is stable.

For a nonlinear dynamical system, Ulam [21] suggested an analogue of a measure-
theoretic ergodicity in the form of the following ergodic hypothesis: a QSO V is said to

be ergodic if the limit lim
n→∞

1
n

n−1
∑

k=0

V k(x) exists for any x ∈ Sm−1.

On the basis of numerical calculations, Ulam [21] conjectured that for any QSO
the ergodic hypothesis holds. In [22], Zakharevich proved that this conjecture is false
in general. In [17], the authors proved that a class of Volterra CSOs has the ergodic
property. The biological interpretation of non-ergodicity of a CSO is the following: in
the long run the behavior of the distributions of species is unpredictable.

Evidently, any regular CSO and, more generally, any CSO for which every trajectory
converges to a (not necessarily strict) periodic orbit is ergodic, but the converse is not
true.

In [18] a construction of a cubic stochastic operator is given. This construction
depends on a probability measure µ which is initially given on a fixed graph G. Using
the construction of CSO for µ defined as product of measures given on components of G
a wide class of non-Volterra CSOs is described. It is proved that the non-Volterra CSOs
can be reduced to N number of Volterra CSOs defined on the components, where N is
the number of components.

In [3] a class of non-Volterra cubic operators is given and the dynamical systems
generated by these CSOs are studied.

3 Asymptotic Behaviour of CSOCGs

Recall the notion of infinite dimensional simplex following [16]. Denote by S the following
set:

S = {x = (xi) : xi ≥ 0, i ∈ N,

∞
∑

i=1

xi = 1}.

Clearly, S is the closed convex hull of vectors of the form ek = (0, 0, ..., 1, 0, 0, ...),
where the unite is the k−th position, and precisely these vectors are the extreme elements
of S.

We define an operator V : S 7→ S as follows

(V (x))l =

∞
∑

i,j,k=1

pijk,lxixjxk, l ∈ N, x = (xi) ∈ S, (4)

where

pijk,l ≥ 0,

∞
∑

l=1

pijk,l = 1, i, j, k, l ∈ N. (5)

and the values pijk,l do not change for any permutation of i, j, and k.

Definition 3.1 An operator defined by conditions (4) and (5) is called an infinite
dimensional cubic stochastic operator.
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Let G = (Λ, L) be a graph without multiple edges, where Λ is the set of vertices
which is at most a countable set, L is the set of edges of the graph G. Enumerate the
vertices of the graph G by elements of [m]0 = {0} ∪ N. For the vertices i, j ∈ Λ define

δij :=

{

1, if {i, j} ⊂ L;
0, otherwise;

and we denote 〈i, j, k〉 if δij + δjk + δki > 1 and by 〉i, j, k〈 we denote the case
δij + δjk + δki ≤ 1.

We define the coefficients of heredity as follows:

pijk,l :=







1, if l = 0, 〉i, j, k〈, i, j, k ∈ [m]0 or 〈i, j, k〉, 0 ∈ {i, j, k};
0, if l 6= 0, 〉i, j, k〈, i, j, k ∈ [m]0 or 〈i, j, k〉, 0 ∈ {i, j, k};
≥ 0, if 〈i, j, k〉, i, j, k ∈ N.

(6)

The biological interpretation of the coefficients (6) is obvious: the individuals i, j and
k might produce the offspring l 6= 0 if they are neighboring points of a graph.

Definition 3.2 For any fixed graph G, CSO satisfying conditions (4), (5) and (6) is
called the cubic stochastic operator corresponding to the graph (CSOCG).

Remark 3.1 Any CSOCG is non-Volterra, because pijk,0 6= 0 if 〉i, j, k〈 and
ijk 6= 0.

Arbitrary CSOCG has the form

V :















x′

0 =
∑

i∈[m]0

x3
i + 3x2

0

∑

i∈N

xi + 6x0

∑

i,j∈N

xixj + 6
∑

i,j,k∈N:

〉i,j,k〈

xixjxk + 6
∑

i,j,k∈N:

〈i,j,k〉

pijk,0xixjxk

x′

l = 6
∑

i,j,k∈N:

〈i,j,k〉

pijk,lxixjxk, l ∈ N.

(7)
Denote intS = {x ∈ S : xi > 0, i ∈ N}. Let ω(x0) be the set of limit points of a

trajectory {V k(x0) ∈ S : k = 0, 1, 2, . . .}. Using Lyapunov functions, one can handle the
set of limit points. Recall the definition of a Lyapunov function.

Definition 3.3 A continuous function ϕ : intS → R is called a Lyapunov function
for the operator (4) if ϕ(V (x)) ≥ ϕ(x) for all x (or ϕ(V (x)) ≤ ϕ(x) for all x).

Theorem 3.1 Any CSOCG (7) has a unique fixed point (1,0,0,...). Moreover for
an initial x(0) ∈ S, the trajectory of operator (7) tends to this fixed point exponentially
rapidly.

Proof. It is easy to verify that e0 = (1, 0, 0, ...) is a fixed point. We consider the
function

ϕ(x) =
∑

k∈N

xk. (8)

The function (8) will be a Lyapunov function for the operator (7). Indeed,

ϕ(V (x)) =
∑

l∈N

x′

l =
∑

l∈N

∑

i,j,k∈N:

〈i,j,k〉

pijk,lxixjxk =
∑

i,j,k∈N:

〈i,j,k〉

∑

l∈N

pijk,lxixjxk

≤
∑

i,j,k∈N:

〈i,j,k〉

xixjxk ≤

(

∑

l∈N

xl

)3

≤
∑

l∈N

xl = ϕ(x). (9)
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It is evident, that ϕ(x(n+1)) ≤ ϕ(x(n)), n = 0, 1, . . . implies that ϕ(x) is a Lyapunov
function, that is {ϕ(x(n))}∞n=0 is a decreasing sequence and converges to some limit ξ.
We claim that ξ = 0. Indeed, from (9) one has

ϕ(x(n+1)) ≤ (ϕ(x(n)))3 ≤

(

ϕ
(

x(0)
)

)3n

. (10)

If x
(0)
0 6= 0, then from (10) using ϕ

(

x(0)
)

=
∑

k∈N

x
(0)
k = 1− x

(0)
0 we obtain

lim
n→∞

ϕ(x(n)) = 0. (11)

If for an initial point it holds that x
(0)
0 = 0, then from (7) it is easy to see that

V (x(0)) ∈ intS = {x ∈ S : xi > 0,
∑

k∈N

xk = 1}, (12)

that is x′

0 6= 0.
Thus from (11) and (12) it should be

lim
n→∞

x
(n)
k = 0, for any k ∈ N,

consequently
lim
n→∞

x(n) = e0, for any x(0) ∈ S.

Since the limit is obtained for any x(0) ∈ S, we conclude that (1, 0, 0, ...) is unique
fixed point. This completes the proof.

If an operator has the regularity property then it satisfies the ergodic hypothesis.
By Theorem 3.1, a CSOCG is a regular transformation, so as a corollary we have the
following theorem.

Theorem 3.2 Any CSOCG (7) is an ergodic transformation.
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1 Introduction

In this paper, we consider the following nonlocal semilinear differential equations with
finite delay in an ordered Banach space:

{

d
dt
x(t) = Ax(t) + f(t, xt, Bx(t)), t ∈ J = [0, b],
x(t) = φ(t) + g(x)(t), t ∈ [−a, 0],

(1)

where the state x(·) takes values in the Banach space X endowed with norm ‖ · ‖;
A : D(A) ⊂ X → X is a closed linear densely defined operator and an infinitesimal
generator of strongly continuous semigroup {T (t)}t≥0 of bounded linear operator in X ;
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the nonlinear function f : [0, b] × D × X → X is continuous, here D = C([−a, 0], X);

the term Bx(t) is given by Bx(t) =
∫ t

0
K(t, s)x(s)ds, here K ∈ C(Σ,R+) is the set of

all positive functions which are continuous on Σ = {(t, s)|0 ≤ s ≤ t ≤ T }; φ(·) ∈ D
and g : C([−a, b], X) → D is a continuous operator. If x : [−a, b] → X is a continuous
function, then xt denotes the function in D defined as xt(ν) = x(t + ν) for ν ∈ [−a, 0],
here xt(·) represents the time history of the state from the time t − a up to the present
time t.

It is well known that time delays are frequently encountered in various industrial and
practical systems, such as chemical processing, bio engineering, fuzzy systems, automatic
control, neural networks, circuits, vehicle suspension systems and so on. Hence, in recent
years, the researchers have paid more attention to delay differential equations (see [1–7]).
Some authors have studied differential equations with nonlocal initial conditions, see for
instance, [7–13]. Nonlocal initial condition, in many cases, is more suitable and produces
better results in applications of physical problems than the classical initial value of the
type x(0) = x0.

The monotone iterative technique based on lower and upper solutions provides an ef-
fective way to investigate the existence of solutions for the nonlinear differential equations
(fractional or non-fractional ordered), see for instance, [6,14–18]. It constructs monotone
sequences of lower and upper solutions that converge uniformly to the extremal mild
solutions between the lower and upper solutions.

This paper is motivated by recent works [6, 7, 16]. We extend a monotone iterative
technique for nonlocal semilinear differential equations with finite delay (1) to study the
existence and uniqueness of extremal mild solutions in an ordered Banach space. We
use the semigroup theory and measures of noncompactness to obtain the results. The
existence results are discussed by assuming compact or non compact semigroup. To the
best of our knowledge, up to now, no work has been reported on nonlocal semilinear
differential equations with finite delay by using the monotone iterative technique.

The rest of the paper is organized as follows: In the next section, we introduce some
basic definitions, notations and preliminary results. In Section 3, we prove the existence
and uniqueness of extremal mild solutions of the delay system (1) by using monotone
iterative technique. Finally, in Section 4, we present an example to show the application
of the main result.

2 Preliminaries

Throughout this paper, we assume that X is a Banach space with the norm ‖ · ‖ and
P = {y ∈ X : y ≥ θ} (θ is a zero element of X) is a positive cone in X which defines
a partial ordering in X by x ≤ y if and only if y − x ∈ P . If x ≤ y and x 6= y, we
write x < y. The cone P is said to be normal if there exists a positive constant N such
that θ ≤ x ≤ y implies ‖x‖ ≤ N‖y‖. We also assume that A : D(A) ⊂ X → X is a
closed linear densely defined operator that generates a strongly continuous semigroup
{T (t), t ≥ 0}. By Pazy [19], there exists a constant M ≥ 1 such that supt∈J ‖T (t)‖ ≤ M .

For the sake of convenience, we write B∗ = supt∈J

∫ t

0
K(t, s)ds.

C([−a, b], X) is the Banach space of all continuous X-valued functions on inter-
val [−a, b] with norm ‖ · ‖C = supt∈[−a,b] ‖x(t)‖. Then C([−a, b], X) is an ordered
Banach space whose partial ordering ≤ is induced by positive cone PC = {x ∈
C([−a, b], X) | x(t) ≥ θ, t ∈ [−a, b]}. Similarly D is also an ordered Banach space
with norm ‖ · ‖D = supt∈[−a,0] ‖x(t)‖ and partial ordering ≤ induced by PD = {x ∈
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C([−a, 0], X) | x(t) ≥ θ, t ∈ [−a, 0]}. If the cone P is normal with a normal constant N ,
then PC and PD are also normal cones with the same normal constant N . For x, y ∈
C([−a, b], X) with x ≤ y, denote the ordered interval [x, y] = {z ∈ C([−a, b], X), x ≤
z ≤ y} in C([−a, b], X), and [x(t), y(t)] = {u ∈ X : x(t) ≤ u ≤ y(t)} (t ∈ [−a, b]) in X .

Let us recall some basic definitions and lemmas which are used to prove our main
results.

Definition 2.1 A C0-semigroup {T (t)}t≥0 is called a positive semigroup, if T (t)x
≥ θ for all x ≥ θ and t ≥ 0.

Lemma 2.1 (see [19]) If h ∈ C1(J,X), then for every x0 ∈ D(A) the following
initial value problem

{

d
dt
x(t) = Ax(t) + h(t), t ∈ J,

x(0) = x0,
(2)

has a unique solution x on J given by

x(t) = T (t)x0 +

∫ t

0

T (t− s)h(s)) ds, t ∈ J.

Definition 2.2 (see [19]) A continuous function x : [−a, b] → X is said to be a mild
solution of the system (1) if x(t) = φ(t) + g(x)(t) on [−a, 0] and the following integral
equation is satisfied:

x(t) = T (t)(φ(0) + g(x)(0)) +

∫ t

0

T (t− s)f(s, xs, Bx(s)) ds, t ∈ J.

Lemma 2.2 (see [19]) If h ∈ L1((0, b), X), then for every x0 ∈ X the initial value
problem (2) has a unique mild solution.

Let C1([−a, b], X) = {u ∈ C([−a, b], X) : u′ exists on J , u′|J ∈ C(J,X) and u(t) ∈
D(A) for t ≥ 0}. An abstract function u ∈ C1([−a, b], X) is called a solution of (1) if
u(t) satisfies the equation (1).

Definition 2.3 (see [16]) The function x ∈ C1([−a, b], X) is called a lower solution
of the system (1) if it satisfies the following inequalities

{

d
dt
x(t) ≤ Ax(t) + f(t, xt, Bx(t)), t ∈ J,

x(ν) ≤ φ(ν) + g(x)(ν), ν ∈ [−a, 0].
(3)

If all inequalities of (3) are reversed, we call x an upper solution of the system (1).

Now we recall the definition of Kuratowski’s measure of noncompactness and its
properties.

Definition 2.4 (see [20, 21]) Let X be a Banach space and B(X) be a family of
bounded subset of X . Then µ : B(X) → R

+, defined by

µ(S) = inf{δ > 0: S admits a finite cover by sets of diameter ≤ δ},

where S ∈ B(X), is called the Kuratowski measure of noncompactness. Clearly 0 ≤
µ(S) < ∞.
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Lemma 2.3 (see [20, 21]) Let S, S1 and S2 be bounded sets of a Banach space X.
Then

(i) µ(S) = 0 if and only if S is a relatively compact set in X.

(ii) µ(S1) ≤ µ(S2) if S1 ⊂ S2.

(iii) µ(S1 + S2) ≤ µ(S1) + µ(S2).

(iv) µ(λS) ≤ |λ|µ(S) for any λ ∈ R.

Lemma 2.4 (see [20, 21]) If S ⊂ C([c, d], X) is bounded and equicontinuous on
[c, d], then µ(S(t)) is continuous for t ∈ [c, d] and

µ(S) = sup{µ(S(t)), t ∈ [c, d]}, where S(t) = {x(t) : x ∈ S} ⊆ X.

Remark 2.1 (see [20,21]) If S is a bounded set in C([c, d], X), then S(t) is bounded
in X , and µ(S(t)) ≤ µ(S).

Lemma 2.5 (see [20, 21]) Let S = {un} ⊂ C([c, d], X)(n = 1, 2, . . .) be a bounded
and countable set. Then µ(S(t)) is Lebesgue integrable on [c, d], and

µ

({

∫ d

c

un(t) dt | n = 1, 2, . . .

})

≤ 2

∫ d

c

µ(S(t)) dt. (4)

3 Main Result

In this section, we prove the existence and the uniqueness of extremal mild solutions of
the system (1).

Theorem 3.1 Let X be an ordered Banach space, whose positive cone P is normal
with a normal constant N . Also assume that A is the infinitesimal generator of a positive
and compact C0-semigroup {T (t)}t≥0 on X. If the system (1) has a lower solution
x(0) ∈ C([−a, b], X) and an upper solution y(0) ∈ C([−a, b], X) with x(0) ≤ y(0) and
satisfies the following assumptions:

(H1) The function f : J ×D×X → X satisfies that f(t, ·, ·) : D×X → X is continuous
for t ∈ J , and f(·, ϕ, x) is strongly measurable for all (ϕ, x) ∈ D ×X.

(H2) For any t ∈ J , the function f(t, ·, ·) : D ×X → X satisfies the following

f(t, ϕ1, u1) ≤ f(t, ϕ2, u2),

where u1, u2 ∈ X with Bx(0)(t) ≤ u1 ≤ u2 ≤ By(0)(t) and ϕ1, ϕ2 ∈ D with

x
(0)
t ≤ ϕ1 ≤ ϕ2 ≤ y

(0)
t .

(H3) The function g : C([−a, b], X) → D is increasing, continuous and compact.

Then the delay system (1) has minimal and maximal mild solutions between x(0) and
y(0).
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Proof. Let B = [x(0), y(0)] = {x ∈ C([−a, b], X) | x(0) ≤ x ≤ y(0)}. Define Q : B →
C([−a, b], X) by

Qx(t) =

{

T (t)(φ(0) + g(x)(0)) +
∫ t

0
T (t− s)f(s, xs, Bx(s)) ds, t ∈ [0, b],

φ(t) + g(x)(t), t ∈ [−a, 0].
(5)

For any x ∈ B and in view of (H2), we have

f(t, x
(0)
t , Bx(0)(t)) ≤ f(t, xt, Bx(t))

≤ f(t, y
(0)
t , By(0)(t)).

By the normality of the positive cone P , there exists a constant k > 0 such that

‖f(t, xt, Bx(t))‖ ≤ k, x ∈ B. (6)

Firstly we prove that Q is a continuous and monotonically increasing operator from
B to B. Let x, y ∈ B with x ≤ y, then x(t) ≤ y(t), t ∈ [−a, b]. Therefore xt ≤ yt in D
for all t ∈ [0, b]. By the positivity of the semigroup T (t) and the assumptions (H2) and
(H3), we get

Qx ≤ Qy. (7)

Let d
dt
x(0)(t) = Ax(0)(t) + h(t), t ∈ J . In view of Lemma 2.2 and Definition 2.3, we get

x(0)(t) =T (t)x(0)(0) +

∫ t

0

T (t− s)h(s)ds

≤T (t)(φ(0) + g(x(0))(0)) +

∫ t

0

T (t− s)f(s, x(0)
s , Bx(0)(s))ds

=Qx(0)(t), t ∈ J.

Also x(0)(t) ≤ φ(t) + g(x(0))(t) = Qx(0)(t), t ∈ [−a, 0]. Thus x(0)(t) ≤ Qx(0)(t), t ∈
[−a, b]. Similarly we can show that Qy(0)(t) ≤ y(0)(t), t ∈ [−a, b]. Now let {x(n)} ⊂ B

with x(n) → x ∈ B as n → ∞. By (6), (H1) and (H3) for any t ∈ J , we have

(i) f(t, x
(n)
t , Bx(n)(t)) → f(t, xt, Bx(t)).

(ii) g(x(n)) → g(x).

(iii) ‖f(t, x
(n)
t , Bx(n)(t))− f(t, xt, Bx(t))‖ ≤ 2k.

These, together with Lebesgue’s dominated convergence theorem, imply that

‖Qx(n)(t)−Qx(t)‖ ≤M‖g(x(n))(0)− g(x)(0)‖ +M

∫ t

0

‖f(s, x(n)
s , Bx(s))

− f(s, xs, Bx(s))‖ ds

→ 0 as n → ∞.

In view of (H3), for any t ∈ [−a, 0], we have ‖Qx(n)(t)−Qx(t)‖ = ‖g(x(n))(t)−g(x)(t)‖ →
0 as n → 0. Therefore Q : B → B is a monotonically increasing and continuous operator.
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Next we show that Q(B) is equicontinuous on [−a, b]. Since semigroup T (t) is compact
for t > 0, T (t) is continuous in uniform operator topology for t > 0. For any x ∈ B and
t1, t2 ∈ J with t1 < t2, we have that

‖Qx(t2)−Qx(t1)‖ ≤‖T (t2)(φ(0) + g(x)(0))− T (t1)(φ(0) + g(x)(0))‖

+
∥

∥

∥

∫ t1

0

[T (t2 − s)− T (t1 − s)] f(s, xs, Bx(s)) ds
∥

∥

∥

+
∥

∥

∥

∫ t2

t1

T (t2 − s)f(s, xs, Bx(s)) ds
∥

∥

∥

≤‖T (t2)(φ(0) + g(x)(0))− T (t1)(φ(0) + g(x)(0))‖

+ k

∫ t1−ǫ

0

‖T (t2 − s)− T (t1 − s)‖ ds

+ k

∫ t1

t1−ǫ

‖T (t2 − s)− T (t1 − s)‖ ds+Mk(t2 − t1)

≤‖T (t2)(φ(0) + g(x)(0))− T (t1)(φ(0) + g(x)(0))‖

+ k(t1 − ǫ) sup
s∈[0,t1−ǫ]

‖T (t2 − s)− T (t1 − s)‖

+ 2Mkǫ+Mk(t2 − t1),

where ǫ ∈ (0, t1) is arbitrary. Therefore ‖Qx(t2) − Qx(t1)‖ → 0 as t1 → t2 and ǫ → 0
independently of x ∈ B. Thus Q(B) is equicontinuous on J . Since g : C([−a, b], X) → D
is continuously compact operator and φ ∈ D, Q(B) is equicontinuous on [−a, 0]. Hence
Q(B) is equicontinuous on [−a, b].

Further we show that for each t ∈ [−a, b], the set G(t) = {Qx(t) : x ∈ B} is
relatively compact in X . Let t ∈ (0, b] be a fixed real number and κ be a given real
number satisfying 0 < κ < t. For x ∈ B, we define

Qκx(t) =T (t)
(

φ(0) + g(x)(0)
)

+

∫ t−κ

0

T ((t− s)f(s, xs, Bx(s)) ds

=T (κ)

[

T (t− κ)
(

φ(0) + g(x)(0)
)

+

∫ t−κ

0

T (t− κ− s)f(s, xs, Bx(s)) ds

]

.

By (6), (H3) and the compactness of T (κ), the set {Qκx(t) : x ∈ B} is relatively compact
in X for each t ∈ (0, b]. Also

‖Qx(t)−Qκx(t)‖ ≤
∥

∥

∥

∫ t

t−κ

T (t− s)f(s, xs, Bx(s)) ds
∥

∥

∥

≤Mkκ → 0 as κ → 0+.

Thus there are relatively compact sets {(Qκx)(t) : x ∈ B} arbitrary close to the set G(t)
for each t ∈ (0, b]. Also G(t), t ∈ [−a, 0], is relatively compact in X as g : C([−a, b], X) →
D is a continuously compact operator and φ(·) ∈ D. Hence the set G(t) is relatively
compact in X for all t ∈ [−a, b].

In view of Ascoli-Arzela theorem, we conclude that Q(B) is relatively compact. Now
we define the sequences as

x(n) = Qx(n−1) and y(n) = Qy(n−1), n = 1, 2, . . . , (8)
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and from (7), we have

x(0) ≤ x(1) ≤ . . . x(n) ≤ . . . ≤ y(n) ≤ . . . ≤ y(1) ≤ y(0). (9)

Since Q(B) is relatively compact, the sequence {x(n)} has a convergent subsequence
{x(nj)}. Let x∗ be its limit. Then for each ε > 0 there exists an nj (depending upon ε)
such that

‖x(nj) − x∗‖C <
ε

1 +N
.

To show that the sequence {x(n)} converges to x∗, take any n ≥ nj and in view of (9),
we have

x(nj) ≤ x(n) ≤ x∗,

that is

0 ≤ x(n) − x(nj) ≤ x∗ − x(nj).

By normality of cone P of X , we have

‖x(n) − x(nj)‖C ≤ N‖x∗ − x(nj)‖C .

This implies

‖x(n) − x∗‖C ≤‖x(n) − x(nj)‖C +N‖x(nj) − x∗‖C

≤(N + 1)‖x(nj) − x∗‖C

≤ε.

Hence the sequence {x(n)} converges to x∗. By (5) and (8), we have that

x(n)(t) =











T (t)(φ(0) + g(x(n−1))(0))

+
∫ t

0
T (t− s)f(s, x

(n−1)
s , Bx(n−1)(s)) ds, t ∈ [0, b],

φ(t) + g(x(n−1))(t), t ∈ [−a, 0].

In view of Lebesgue’s dominated convergence theorem and taking n → ∞, we get

x∗(t) =

{

T (t)(φ(0) + g(x∗)(0)) +
∫ t

0
T (t− s)f(s, x∗

s , Bx∗(s)) ds, t ∈ [0, b],

φ(t) + g(x∗)(t), t ∈ [−a, 0].

Thus x∗ ∈ C([−a, b], X) and x∗ = Qx∗. It means that x∗ is a mild solution of (1).
Similarly we can prove that there exists y∗ ∈ C([−a, b], X) such that y(n) → y∗ as n → ∞
and y∗ = Qy∗. Let x ∈ B be any fixed point of Q, then by (7), x(1) = Qx(0) ≤ Qx = x ≤
Qy(0) = y(1). By induction, x(n) ≤ x ≤ y(n). Using (9) and taking the limit as n → ∞,
we conclude that x(0) ≤ x∗ ≤ x ≤ y∗ ≤ y(0). Hence x∗, y∗ are the minimal and maximal
mild solutions of the nonlocal semilinear differential equations with finite delay (1) on
[x(0), y(0)] respectively.

In the next theorem, we again discuss the existence of extremal mild solution of (1)
with the help of the measure of noncompactness and the monotone iterative procedure.
In this result, semigroup {T (t)}t≥0 does not have to be compact.
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Theorem 3.2 Let X be an ordered Banach space whose positive cone P is nor-
mal with a normal constant N and A be the infinitesimal generator of a positive C0-
semigroup {T (t)}t≥0 on X. Also suppose that the delay system (1) has a lower solution
x(0) ∈ C([−a, b], X) and an upper solution y(0) ∈ C([−a, b], X) with x(0) ≤ y(0) and the
assumptions (H1)-(H3) hold. If the following hypotheses are satisfied

(H4) The operator T (t) is continuous in the sense of uniform operator topology for t > 0.

(H5) There exists a constant L ≥ 0 such that

µ(f(t, E, S)) ≤ L
[

sup
−a≤ν≤0

µ(E(ν)) + µ(S)
]

,

for t ∈ J and E ⊂ D, S ⊂ X, where E(ν) = {ϕ(ν) : ϕ ∈ E},

and 2MLb(1 + 2B∗) < 1, then the delay system (1) has minimal and maximal mild
solutions between x(0) and y(0).

Proof. Let B = [x(0), y(0)] = {x ∈ C([−a, b], X) | x(0) ≤ x ≤ y(0)}. We define a map
Q : B → C([−a, b], X) as defined in Theorem 3.1. Proceeding as in the proof of Theorem
3.1 and in view of (H4), we get that the operator Q : B → B is monotonically increasing
and continuous, and Q(B) is equicontinuous on [−a, b]. Also we define the sequences
x(n) and y(n) as defined by (8) in Theorem 3.1. Since x(0) ≤ Qx(0), Qy(0) ≤ y(0) and the
map Q is increasing, the equation (9) holds.

Let S = {x(n)}∞n=1. By (9) and the normality of positive cone PC , the set S is
bounded. As g is a continuously compact operator, we get

µ({S(t)}) = µ({φ(t) + g(x(n−1))(t)}∞n=1)

≤ µ({φ(t)}) + µ({g(x(n−1))(t)}∞n=1) = 0 for t ∈ [−a, 0].

Since S(t) = {x(1)(t)} ∪ {Q(S)(t)} for any t ∈ J , µ(S(t)) = µ(Q(S)(t)), t ∈ J . From
(H3), (H5), (5) and (8), we get for t ∈ J that

µ(S(t)) =µ
({

T (t)[φ(0) + g(x(n))(0)] +

∫ t

0

T (t− s)f(s, x(n)
s , Bx(n)(s)) ds

})

≤2M

∫ t

0

µ
({

f(s, x(n)
s , Bx(n)(s)) ds

})

≤2ML

∫ t

0

[

sup
−a≤ν≤0

µ
({

x(n)(s+ ν)
})

+ µ

({
∫ s

0

K(s, r)x(n)(r) dr

})]

ds

≤2ML

∫ t

0

[

sup
0≤r≤s

µ
({

x(n)(r)
})

+ 2

∫ s

0

K(s, r)µ
({

x(n)(r)
})

dr

]

ds

≤2ML(1 + 2B∗)

∫ t

0

sup
0≤r≤s

µ
({

x(n)(r)
})

ds

≤2MLb(1 + 2B∗) sup
−a≤r≤b

µ ({S(r)}) .

Since
{

Qx(n)
}∞

n=0
, i.e.

{

x(n)
}∞

n=1
, is equicontinuous on [−a, b] and by Lemma 2.4, we

get

µ(S) ≤ 2MLb(1 + 2B∗)µ(S).
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Since 2MLb(1 + 2B∗) < 1, this implies that µ(S) = 0, i.e. µ({x(n)}∞n=1) = 0. Therefore
the set {x(n) : n ≥ 1} is relatively compact in B. So the sequence {x(n)} has a convergent
subsequence in B. By the proof of Theorem 3.1, the sequence {x(n)} is itself convergent
sequence. So there exists x∗ ∈ B such that x(n) → x∗ as n → ∞. Similarly there exists
y∗ ∈ B such that y(n) → y∗ as n → ∞. Again by Theorem 3.1, x∗ and y∗ become
the minimal and maximal mild solutions of the nonlocal semilinear differential equations
with finite delay (1) in B respectively.

In the next theorem, we shall prove the uniqueness of the solution of the system
(1) by using monotone iterative procedure. For this purpose, we make the following
assumptions:

(H6) The function f : J × D ×X → X is continuous and there exists a constant η ≥ 0
such that for some ν ∈ [−a, 0],

f(t, ϕ2, u2)− f(t, ϕ1, u1) ≤ η[(ϕ2(ν)− ϕ1(ν)) + (u2 − u1)],

for any t ∈ J , u1, u2 ∈ X with Bx(0)(t) ≤ u1 ≤ u2 ≤ By(0)(t) and ϕ1, ϕ2 ∈ D with

x
(0)
t ≤ ϕ1 ≤ ϕ2 ≤ y

(0)
t .

(H7) For any t ∈ [−a, 0] and x, y ∈ B with x ≤ y, there exists a constant γ(0 ≤ γ < 1
N
)

such that

g(y)(t)− g(x)(t) ≤ γ(y(t)− x(t)).

Theorem 3.3 Let X be an ordered Banach space whose positive cone P is nor-
mal with a normal constant N and A be the infinitesimal generator of a positive C0-
semigroup {T (t)}t≥0 on X. Also suppose that the system (1) has a lower solution
x(0) ∈ C([−a, b], X) and an upper solution y(0) ∈ C([−a, b], X) with x(0) ≤ y(0). If
the assumptions (H2), (H3), (H4), (H6) and (H7) hold, and 2MLb(1+ 2B∗) < 1, where
L = Nη, then the delay system (1) has a unique mild solution between x(0) and y(0).

Proof. Let {ϕn} ⊂ D and {un} ⊂ X be two monotone increasing sequences. Take
any m,n = 1, 2, . . . , with m > n. By (H2), (H3) and (H6), we get for some ν ∈ [−a, 0]
that

θ ≤ f(t, ϕm, um)− f(t, ϕn, un) ≤η
[

(ϕm(ν)− ϕn(ν)) + (um − un)
]

.

Using the normality of the positive cone P , we get

‖f(t, ϕm, um)− f(t, ϕn, un)‖ ≤ Nη
[

‖ϕm(ν) − ϕn(ν)‖ + ‖um − un‖
]

. (10)

By the definition of measure of noncompactness, we get

µ ({f (s, ϕn)}) ≤L [µ ({ϕn(ν)}) + µ ({un})]

≤L

[

sup
−a≤ν≤0

µ ({ϕn(ν)}) + µ ({un})

]

,

where L = Nη. Clearly the assumption (H5) is satisfied. The assumption (H1) is satisfied
by the inequality (10). Thus the assumptions (H1)-(H5) hold and 2MLb(1+2B∗) < 1. So
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by Theorem 3.2, the delay system (1) has minimal and maximal mild solutions between
x(0) and y(0).

Let x∗(t) and y∗(t) be the minimal and maximal solutions of the delay system (1)
respectively on the ordered interval B = [x(0), y(0)]. By (5) and H(7) for any t ∈ [−a, 0],
we have

θ ≤ y∗(t)− x∗(t) = Qy∗(t)−Qx∗(t)

= g(y∗)(t) − g(x∗)(t)

≤ γ(y∗(t)− x∗(t))

By using the normality of positive cone P , we get ‖y∗(t) − x∗(t)‖ ≤ Nγ‖y∗(t) − x∗(t)‖
for all t ∈ [−a, 0]. This implies that y∗(t) = x∗(t) for all t ∈ [−a, 0] as Nγ < 1. Let
t ∈ [0, b]. In view of (5) and (H6), we have

θ ≤y∗(t)− x∗(t) = Qy∗(t)−Qx∗(t)

=

∫ t

0

T (t− s) [f(s, y∗s , By∗(s))− f(s, x∗
s, Bx∗(s))] ds

≤η

∫ t

0

T (t− s)

[

(y∗s (ν) − x∗
s(ν)) +

∫ s

0

K(s, r)(y∗(r) − x∗(r)) dr

]

ds

where ν ∈ [−a, 0]. By applying the normality of the positive cone P , we get

‖y∗(t)− x∗(t)‖ ≤ Nη
∥

∥

∥

∫ t

0

T (t− s)
[

(y∗s (ν) − x∗
s(ν))

+

∫ s

0

K(s, r)(y∗(r) − x∗(r)) dr
]

ds
∥

∥

∥

≤ MNη

∫ t

0

[

‖y∗(s+ ν)− x∗(s+ ν)‖

+

∫ s

0

K(s, r)‖y∗(r) − x∗(r)‖ dr
]

ds

≤ MNηb(1 +B∗)‖y∗ − x∗‖C .

(11)

Since y∗(t) = x∗(t) for t ∈ [−a, 0] and due to the inequality (11), we get that ‖y∗ −
x∗‖C ≤ MNηb(1 + B∗)‖y∗ − x∗‖C . But MLb(1 + 2B∗) < 1

2 , so ‖y∗ − x∗‖C = 0, i.e.,
y∗(t) = x∗(t), t ∈ [−a, b]. Hence y∗ = x∗ is the unique mild solution of the delay system
(1) between x(0) and y(0).

4 Example

Consider the following nonlocal semilinear partial differential equations with finite delay
of the form:



















∂z(t,ξ)
∂t

= ∂2

∂ξ2
z(t, ξ) +

∫ 0

−a
(a+ ν)

−1

2 (−ν)
−1

2 z(t+ ν, ξ) dν

+
∫ t

0
z(s, ξ) ds, ξ ∈ [0, π], t ∈ [0, b],

z(t, 0) = z(t, π) = 0, t ∈ [0, b],

z(ν, ξ) = φ(ν, ξ) +
∫ b

0
ρ(s, ν) log(1 + |z(s, ξ)|)ds, −a ≤ ν ≤ 0,

(12)
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where φ ∈ D = C([−a, 0] × [0, π] : R+), the operator ρ(s, ν) : [0, b] × [−a, 0] → R
+ is

continuous.
Let X = L2([0, π],R) and P = {v ∈ X : v(ξ) ≥ 0, ξ ∈ [0, π]}. Then P is a normal

cone in Banach space X . We define an operator A : X → X by Av = v′′ with domain

D(A) = {v ∈ X : v, v′ is absolutely continuous v′′ ∈ X, v(0) = v(π) = 0}.

It is well known that A is an infinitesimal generator of a strongly continuous semigroup
{T (t), t ≥ 0} of uniformly bounded linear operators in X . Now we define z(t)(ξ) =

z(t, ξ), zt(ν, ξ) = z(t + ν, ξ), φ(ν)(ξ) = φ(ν, ξ), Bz(t)(ξ) =
∫ t

0 z(s, ξ) ds, f(t, ϕ, u)(ξ) =
∫ 0

−a
(a + ν)

−1

2 (−ν)
−1

2 ϕ(ν, ξ) dν + u(ξ) and g(z)(ν)(ξ) = g(z(ν, ξ)) =
∫ b

0
ρ(s, ν) log(1 +

|z(s, ξ)|)ds. Therefore, the above nonlocal semilinear partial differential equations with
finite delay (12) can be written as the abstract form (1).

Since T (t) is continuous in the sense of uniform operator topology for t > 0, the
assumption (H4) is satisfied. We can also easily see that function f satisfies the as-
sumptions (H1) and (H2). For t ∈ [0, b], ϕ1, ϕ2 ∈ C([−a, 0], X) with 0 ≤ ϕ1 ≤ ϕ2 and
u1, u2 ∈ X with 0 ≤ u1 ≤ u2, then

0 ≤f(t, ϕ2, u2)(ξ)− f(t, ϕ1, u1)(ξ)

≤

∫ 0

−a

(a+ ν)
−1

2 (−ν)
−1

2 [ϕ2(ν)(ξ) − ϕ1(ν)(ξ)] dν + [u2(ξ)− u1(ξ)].

By normality of cone P , we have

‖f(t, ϕ2, u2)− f(t, ϕ1, u1)‖ ≤

∫ 0

−a

(a+ ν)
−1

2 (−ν)
−1

2 ‖ϕ2(ν)− ϕ1(ν)‖ dν + ‖u2 − u1‖.

Hence, for any bounded set E ⊂ C([−a, 0], X) and S ⊂ X , we have

µ(f(t, E, S)) ≤

[

π sup
−a≤ν≤0

µ(E(ν)) + µ(S)

]

.

Thus f satisfies the assumption H(5). Clearly the function g : PC([0, b], X) → X is
increasing, continuous and compact. Thus g satisfies the assumption (H3).

Let v(t, ξ) = 0, (t, ξ) ∈ [−a, b] × [0, π]. Then f(t, vt, Bv(t)) = 0 for t ∈ [0, b] and
v(ν, ξ) ≤ φ(ν, ξ) + g(v(ν, ξ)) for ν ∈ [−a, 0]. Now we assume that there is a function
w(t, ξ) ≥ 0 such that w(t, 0) = w(t, π) = 0,

∂w(t, ξ)

∂t
≥

∂2

∂y2
w(t, ξ) + f(t, wt, Bw(t)),

and w(ν, ξ) ≥ φ(ν, ξ) + g(w(ν, ξ)) for ν ∈ [−a, 0]. Thus v, w become lower and upper
solutions of the system (12) respectively and v ≤ w. If 2Mb(π + 2b) < 1, then all the
conditions of Theorem 3.2 are satisfied. Hence, by Theorem 3.2, the system (12) has the
minimal and maximal mild solutions lying between the lower solution 0 and the upper
solution w.

Acknowledgment

The first author would like to acknowledge the financial assistance provided by Univer-
sity Grant Commission (UGC) of India for carrying out this work. The second author
would like to acknowledge that this work has been carried out under the research project
SR/S4/MS:796/12 of DST, New Delhi.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (3) (2016) 300–311 311

References

[1] Ye, R. Existence of solutions for impulsive partial neutral functional differential equation
with infinite delay. Nonlinear Analysis 73 (9) (2010) 155–162.

[2] Li, K. and Jia, J. Existence and uniqueness of mild solutions for abstract delay fractional
differential equations. Comput. Math. Appl. 62 (3) (2011) 1398–1404.

[3] Bellen, A., Guglielmi, N. and Ruehli, A.E. Methods for linear systems of circuit delay
differential equations of neutral type. IEEE Trans. Circuits Systems 46 (1) (1999) 212–
216.

[4] Kuang, Y. Delay Differential Equations with Applications in Population Dynamics. Math-

ematics in Science and Engineering 191 Academic Press, Boston, 1993.

[5] Han, Q. On robust stability of neutral systems with time-varying discrete delay and norm-
bounded uncertainty. Automatica J. IFAC 40 (6) (2004) 1087–1092.

[6] Kamaljeet and Bahuguna, D. Monotone iterative technique for nonlocal fractional differ-
ential equations with finite delay in Banach space. Electron. J. Qual. Theory Differ. Equ.

2015 (9) (2015) 1–16.

[7] Machado, J., Ravichandran, C., Rivero, M. and Trujillo, J. Controllability results for im-
pulsive mixed–type functional integro–differential evolution equations with nonlocal condi-
tions. Fixed Point Theory and Applications 2013 (66) (2013) 1–16.

[8] Yang, H. Existence of mild solutions for fractional evolution equations with nonlocal con-
ditions. Boundary Value Problems 2012 (113) (2012) 1–12.

[9] Balachandran, K. and Park, J. Nonlocal Cauchy problem for abstract fractional semilinear
evolution equations. Nonlinear Analysis 71 (10) (2009) 4471–4475.

[10] Byszewski, L. Theorems about the existence and uniqueness of solutions of a semilinear
evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 162 (2) (1991) 494–505.

[11] Liang, J., Liu, J. and Xiao, T. Nonlocal impulsive problems for nonlinear differential equa-
tions in Banach spaces. Math. Comput. Modelling 49 (3-4) (2009) 798–804.

[12] Wang, J. and Wei, W. A class of nonlocal impulsive problems for integrodifferential equa-
tions in Banach spaces. Results Math. 58 (3-4) (2010) 379–397.

[13] Benchohra, M., Gatsori, E. and Ntouyas, S. Controllability results for semilinear evolution
inclusions with nonlocal conditions. J. Optim. Theory Appl. 118 (3) (2003) 493–513.

[14] Li, Y. and Liu, Z. Monotone iterative technique for addressing impulsive integro-differential
equations in Banach spaces. Nonlinear Analysis 66 (1) (2007) 83–92.

[15] Kamaljeet and Bahuguna, D. Extremal mild solutions for finite delay differential equations
of fractional order in Banach spaces. Nonlinear Dyn. Syst. Theory 14 (4) (2014) 371–382.

[16] Bhaskar, T.G., Lakshmikantham, V. and Devi, J.V. Monotone iterative technique for func-
tional differential equations with retardation and anticipation. Nonlinear Analysis 66 (10)
(2007) 2237–2242.

[17] Liu, X. Monotone iterative technique for impulsive differential equations in a Banach space.
J. Math. Phys. Sci. 24 (3) (1990) 183–191.

[18] Chen, P. and Mu, J. Monotone iterative method for semilinear impulsive evolution equa-
tions of mixed type in Banach spaces. Electron. J. Diff. Equ. 2010 (149) (2010) 1–13.

[19] Pazy, A. Semigroup of Linear Operators and Applications to Partial Differential Equations.
Applied Mathematical Sciences 44 Springer-Verlag, New York, 1983.

[20] Deimling, K. Nonlinear Functional Analysis. Springer-Verlag, Berlin, 1985.

[21] Heinz, H. On the behaviour of measures of noncompactness with respect to differentiation
and integration of vector valued functions. Nonlinear Analysis 7 (12) (1983) 1351–1371.



Nonlinear Dynamics and Systems Theory, 16 (3) (2016) 312–321

Co-existence of Various Types of Synchronization

Between Hyper-chaotic Maps

Adel Ouannas ∗

Department of Mathematics and Computer Science,
Constantine University, Algeria;

Laboratory of Mathematics, Informatics and Systems (LAMIS), University of Larbi Tebessi,
Tebessa, 12002 Algeria.

Received: January 13, 2015; Revised: December 15, 2015

Abstract: In this paper, we propose a new type of hybrid synchronization combining
projective synchronization (PS), full state hybrid projective synchronization (FSHPS)
and generalized synchronization (GS). We present, based on nonlinear controllers, a
new control scheme to study the co-existence of (PS), (FSHPS) and (GS) between
general 3D hyperchaotic maps. The capability of the proposed approach is illustrated
by numerical example.
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1 Introduction

Historically, hyperchaos in discrete-time systems was firstly reported by Rössler [1]. A
hyperchaotic system is usually defined as a chaotic system with more than one posi-
tive Lyapunov exponent. The occurrence of hyperchaotic behavior has been found in
an electronic circuit [2], NMR laser [3], in a semi-conductor system [4] and in a chem-
ical reaction system [5]. Some interesting hyperchaotic systems in discrete-time were
presented in the past two decades such as Baier-Klain system [6], Hitzl-Zele map [7],
Stefanski map [8], Wang map [9], Rössler discrete-time system [10] and Grassi-Miller
map [11] etc. Since hyperchaotic maps are more complex than chaotic maps, their dy-
namics have been investigated extensively owing to their useful potential applications in
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secure communications [12–17]. Thus it is a more important subject to study hyperchaos
synchronization.

Recently, more and more attention has been paid to the synchronization of chaos (hy-
perchaos) in discrete-time dynamical systems [18–22]. Different synchronization types
have been proposed for discrete-time chaotic and hyperchaotic maps such as projective
synchronization [23], adaptive function projective synchronization [24, 25], function cas-
cade synchronization [26], generalized synchronization [27, 28], lag synchronization [29],
impulsive synchronization [30], hybrid synchronization [31], Q-S synchronization [32] and
full state hybrid projective synchronization [33, 34]. Among all synchronization types,
projective synchronization (PS), full-state hybrid projective synchronization (FSHPS)
and generalized synchronization (GS) are effective approaches for achieving the syn-
chronization of chaotic and hyperchaotic discrete-time systems. (PS) means that the
drive chaotic system and the response chaotic system synchronize up to scaling constant,
FSHPS means that each drive system state synchronizes with a linear combination of re-
sponse system states and (GS) appears when there exists functional relationship between
the states of the drive and the response chaotic systems.

In this paper, a new general scheme of synchronization which includes (PS), (FSHPS)
and (GS) between coupled 3D hyperchaotic maps is constructed. Based on stability
theory of linear discrete-time systems, Lyapunov stability theory and using nonlinear
controllers, a new criterion of co-existence of (PS), (FSHPS) and (GS) is derived. The
derived synchronization results can have an important effect in the application due to
complexity of the proposed scheme and the difficulty of the prediction of the scaling
factors. To validate the proposed approach numerically, we apply it to two hyperchaotic
maps: the hyperchoatic Wang map and the hyperchoatic Stefanski map.

This paper is organized as follows. In Section 2, the problem of co-existence of
synchronization types is introduced. Our approach of synchronization is described in
Section 3. In Section 4, numerical example is used to show the effectiveness of the
proposed synchronization method. In Section 5, conclusion is made.

2 Problem Statement

We consider the following drive and response chaotic systems

xi(k + 1) = fi(X(k)), 1 ≤ i ≤ 3, (1)

yi(k + 1) = gi(Y (k)) + ui, 1 ≤ i ≤ 3, (2)

where (x1(k), x2(k), x3(k))
T
, (y1(k), y2(k), y3(k))

T
are the states of the drive and the

response systems, respectively, fi, gi : R3 → R, 1 ≤ i ≤ 3, and ui, 1 ≤ i ≤ 3, are
controllers to be determined.

The error system between the drive system (1) and the response system (2) is defined
as

e1 (k) = y1 (k)− θx1 (k) , (3)

e2 (k) = y2 (k)−
3
∑

j=1

λjxj (k) ,

e3 (k) = y3 (k)− φ (x1, x2, x3) (k) ,

where θ ∈ R∗, λj ∈ R∗ j = 1, 2, 3, and φ : R3 → R is a continuously bounded function.
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We said that projective synchronization (PS), full-state hybrid projective synchro-
nization (FSHPS ) and generalized synchronization (GS) co-exist in the synchronization
of the systems (1) and (2), if there exist controllers ui, 1 ≤ i ≤ 3, such that the synchro-
nization errors (3) satisfy

lim
k−→+∞

ei(k) = 0, i = 1, 2, 3. (4)

3 Synchronization Approach

As the drive system, we consider the following hyperchaotic map

xi(k + 1) = fi(X(k)), 1 ≤ i ≤ 3, (5)

where X(k) = (x1(k), x2(k), x3(k))
T is the state vector of the drive system,

fi : R
3 −→ R, 1 ≤ i ≤ 3. As the response, we consider the following chaotic system

yi(k + 1) =

3
∑

j=1

bijyj(k) + gi(Y (k)) + ui, 1 ≤ i ≤ 3, (6)

where Y (k) = (y1(k), y2(k), y3(k))
T is the state vector of the response systems, (bij) ∈

R3×3 is the linear part of the response system, gi : R
3 −→ R, 1 ≤ i ≤ 3, are nonlinear

functions and ui, 1 ≤ i ≤ 3, are controllers to be designed.

The error system, according to (3), between the drive system (5) and the response
system (6) can be derived as

e1 (k + 1) = y1(k + 1)− θx1(k + 1), (7)

e2 (k + 1) = y2(k + 1)−

3
∑

j=1

λjxj (k + 1) ,

e3 (k + 1) = y3(k + 1)− φ (X (k + 1)) .

Then, the error system (7) can be written as

e1 (k + 1) =

3
∑

j=1

b1jyj(k) + g1(Y (k)) + u1 − θf1(X(k)), (8)

e2 (k + 1) =

3
∑

j=1

b2jyj(k) + g2(Y (k)) + u2 −

3
∑

j=1

λjfj(X(k)),

e3 (k + 1) =

3
∑

j=1

b3jyj(k) + g3(Y (k)) + u2 − φ (f1(X(k)), f2(X(k)), f3(X(k))) .

To achieve synchronization between the drive system (5) and the response system
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(6), we propose the following synchronization controllers

u1 = N1 − b11θx1(k)− b12





3
∑

j=1

λjxj(k)



 −

3
∑

j=1

l1jej (k) , (9)

u2 = N2 − b21θx1(k)− b22





3
∑

j=1

λjxj(k)



 −
3
∑

j=1

l2jej (k) ,

u3 = N3 − b31θx1(k)− b32





3
∑

j=1

λjxj(k)



 −
3
∑

j=1

l3jej (k) ,

where

N1 = θf1(X(k))− b13φ (X(k))− g1(Y (k)), (10)

N2 =

3
∑

j=1

λjfj(X(k))− b23φ (X(k))− g2(Y (k)),

N3 = φ (f1(X(k)), f2(X(k)), f3(X(k)))− b33φ (X(k))− g3(Y (k)),

and (lij) ∈ R3×3 are control constants to be determined later.
By substituting the control law (9) into (8), the error system can be described as

e1 (k + 1) =

3
∑

j=1

(b1j − l1j) ej(k), (11)

e2 (k + 1) =

3
∑

j=1

(b2j − l2j) ej(k),

e3 (k + 1) =

3
∑

j=1

(b3j − l3j) ej(k).

Now, rewrite the error system described in (11) in the compact form

e (k + 1) = (B − L) e(k), (12)

where e(k) = (e1(k), e2(k), e3(k))
T
, B = (bij)3×3

and L = (lij)3×3
.

Hence, we have the following result.

Theorem 3.1 If the control matrix L is chosen such that one of the following con-
ditions is satisfied:

(i) All eigenvalues of B − L are strictly inside the unit disk.
(ii) (B − L)T (B − L)− I is negative definite matrix.
(iii) (lij)1≤i, j≤3

are chosen such that

3
∑

i=1

(bip − lip) (biq − liq) = 0, p, q = 1, 2, 3, p 6= q, (13)

3
∑

i=1

(bij − lij)
2
< 1, j = 1, 2, 3.
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Then, (PS), (FSHPS) and (GS) co-exist between the drive system (5) and the response
system (6).

Proof. Firstly, according to stability theory of linear discrete-time systems, we can
conclude that if condition (i) is satisfied it is immediate that lim

k−→+∞
ei(k) = 0, i = 1, 2, 3.

Therefore, systems (5) and (6) are globally synchronized.
Secondly, we construct the Lyapunov function in the form V (e(k)) = eT (k)e(k), we

obtain

∆V (e(k)) = eT (k + 1)e(k + 1)− eT (k)e(k)

= eT (k)(B − L)T (B − L)e(k)− eT (k)e(k)

= eT (k)
[

(B − L)T (B − L)− I
]

e(k),

and by using condition (ii) we get ∆V (e(k)) < 0. Thus, from the Lyapunov stability
theory, it is immediate that lim

k−→+∞
ei(k) = 0 (i = 1, 2, 3) then the synchronization is

achieved between systems (5) and (6).

Finally, consider the candidate Lyapunov function: V (e(k)) =
∑3

i=1
e2i (k) , we get

∆V (e(k)) =
3
∑

i=1

e2i (k + 1)−
3
∑

i=1

e2i (k)

=
3
∑

j=1

(

3
∑

i=1

(bij − lij)
2 − 1

)

e2j(k)

+

3
∑

p, q=1

p6=q

(

3
∑

i=1

(bip − lip) (biq − liq)

)

ep(k)eq(k),

and by using conditions (iii), we obtain ∆V (e(k)) < 0. Then, it is immediate that
lim

k−→+∞
ei(k) = 0 (i = 1, 2, 3) , and we conclude that the systems (4) and (5) are globally

synchronized.

4 Numerical Example

We consider hyperchaotic Stefanski map as the drive system and the controlled hyper-
chaotic Wang map as the response system. The drive system is described as

x1 (k + 1) = 1 + x3 (k)− αx2
2 (k) , (14)

x2 (k + 1) = 1 + βx2 (k)− αx2
1 (k) ,

x3 (k + 1) = βx1 (k) ,

which has a chaotic attractor, when (α, β) = (1.4, 0.2) [36]. The hyperchaotic attractor
of Stefanski map is shown in Figure 1. The response system can be defined as

y1 (k + 1) = a3δy2 (k) + (a4δ + 1) y1 (k) + u1, (15)

y2 (k + 1) = a1δy1 (k) + y2 (k) + a2δy3 (k) + u2,

y3 (k + 1) = (a7δ + 1) y3 (k) + a6δy2 (k) y3 (k) + a5δ + u3,
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Figure 1: Hyperchaotic attractor of Stefanski map.

where U = (u1, u2, u3)
T

is the vector controller. The hyperchaotic
Wang map has a chaotic attractor, when (a1, a2, a3, a4, a5, a6, a7, δ) =
(−1.9, 0.2, 0.5,−2.3, 2,−0.6,−1.9, 1) [35]. The hyperchaotic attractor of Wang map is
shown in Figure 2. According to our control scheme proposed in the previous section

Figure 2: Hyperchaotic attractor of Wang map.

the synchronization errors between the drive system (14) and the response system (15)
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are defined as follows

e1 (k + 1) = y1 (k + 1)− θx1 (k + 1) , (16)

e2 (k + 1) = y2 (k + 1)−

3
∑

j=1

λjxj (k + 1) ,

e3 (k + 1) = y3 (k + 1)− φ (x1 (k + 1) , x2 (k + 1) , x3 (k + 1)) .

In this example, the scaling constants θ, λ1, λ2 and λ3 are chosen as














θ = 2,
λ1 = 1,
λ2 = 2,
λ3 = 3,

(17)

and the map φ : R3 → R is selected as

φ (x1(k), x2(k), x3(k)) = x1(k)− x2(k)x3(k). (18)

Then, the errors system (16) can be described as

e1 (k + 1) = (a4δ + 1) e1 (k) +R1 + u1, , (19)

e2 (k + 1) = e2 (k) +R2 + u2,

e3 (k + 1) = (a7δ + 1) e3 (k) + u3,

where

R1 = a3δy2 (k) +
3
∑

j=1

µ1jxj (k) + 2αx2
2 (k)− 2, (20)

R2 = a1δy1 (k) + a2δy3 (k) +

3
∑

j=1

µ2jxj (k) + αx2
2 (k) + 2αx2

1 (k)− 3,

R3 = a6δy2(k)y3(k) +

3
∑

j=1

µ3jxj (k)− (a7δ + 1)x2(k)x3(k) + βx1(k)x2(k)

− αβx3
1(k) + αx2

2(k) + a5δ − 1,

where µ11 = 2 (a4δ + 1) , µ12 = 0, µ13 = −2, µ21 = −3β + 1, µ22 = 2 (1− β) , µ23 = 2,
µ31 = a7δ + 1− β, µ31 = a7δ + 1 + β, µ32 = 0, and µ33 = −1.

To achieve synchronization between systems (14) and (15), we choose the synchro-
nization controllers ui (i = 1, 2, 3) , as

ui = −Ri − liei, i = 1, 2, 3, (21)

where the control constants (li)1≤i≤3
are selected as follows

l1 = a4δ, (22)

|l2| < 1,

l3 = a7δ.
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Theorem 4.1 The hyperchaotic Stefanski map (14) and the controlled hyperchaotic
Wang map (15) are globally synchronized under the controllers (21).

Proof. By substituting (21) into (19), the synchronization errors can be written as

e1 (k + 1) = e1 (k) , (23)

e2 (k + 1) = (1− l2) e2 (k) ,

e3 (k + 1) = e3 (k) .

To prove the zero-stability of synchronization errors (23), we consider the quadratic

Lyapunov function V (e (k)) =
∑3

i=1
e2i (k) , then we obtain

∆V (e(k)) =

3
∑

i=1

e2i (k + 1)−

3
∑

i=1

e2i (k)

= e21 (k) + (1− l2)
2
e22 (k) + e23 (k)− e21 (k)− e22 (k)− e23 (k)

= (1− l2)
2
e22 (k) < 0.

Thus, by Lyapunov stability it is immediate that limk→∞ ei (k) = 0 (i = 1, 2, 3) .
Finally, we get the numeric results that are shown in Figure 3.

Figure 3: Time evolution of errors between systems (14) and (15).

5 Conclusion

In this paper, the co-existence of some synchronization types in general 3D coupled
hyperchaotic maps has been investigated. Sufficient conditions have been derived for
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achieving a new synchronization scheme of co-existence of (PS), (FSHPS) and (GS)
between hyperchaotic maps. The new synchronization criterion has been demonstrated
using nonlinear controllers, stability theory of linear discrete-time systems and Lyapunov
stability theory. An example of application and numerical simulations have been used to
show the effectiveness of the derived result.
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scalar controller. Physics Letters A 342 (2005) 309–317.



Nonlinear Dynamics and Systems Theory, 16 (3) (2016) 322–334

Periodic Solutions for a Class of Superquadratic

Damped Vibration Problems

M. Timoumi
∗

Department of Mathematics, Faculty of Sciences, 5000 Monastir, Tunisia

Received: June 2, 2015; Revised: June 10, 2016

Abstract: In the present paper, the following damped vibration problems

{

ü(t) + q(t)u̇(t)− L(t)u(t) +∇W (t, u(t)) = 0,
u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

are studied, where T > 0, q ∈ C(R,R) is T−periodic with
∫

T

0
q(t)dt = 0, L(t)

is a continuous T−periodic and symmetric N × N matrix-valued function and
W ∈ C1(R × R

N ,R) is T−periodic in the first variable. We use a new kind of su-
perquadratic condition instead of the global Ambrosetti-Rabinowitz superquadratic
condidition and we obtain a nontrivial T−periodic solution for the above system. The
main idea here lies in the application of a variant of generalized weak linking theorem
for strongly indefinite problem developed by Schechter and Zou.

Keywords: periodic solutions; damped vibration problems; superquadradicity; weak

linking theorem.
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1 Introduction

Consider the following damped vibration problems

(DV)

{

ü(t) + q(t)u̇(t)− L(t)u(t) +∇W (t, u(t)) = 0,
u(0)− u(T ) = u̇(0)− u̇(T ) = 0,

where T > 0, q : R −→ R is a continuous T−periodic function with
∫ T

0 q(t)dt = 0,

Q(t) =
∫ t

0 q(s)ds, L(t) is a continuous T−periodic and symmetric N ×N matrix-valued
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function and W : R×RN −→ R is a continuous function, T−periodic in the first variable
and differentiable in the second variable with continuous derivative∇W (t, x) = ∂W

∂x
(t, x).

Equation (DV) is a basic mathematical model for the representation of damped nonlinear
oscillatory phenomena.

When q(t) = 0 for all t ∈ R, (DV) is just the following second-order Hamiltonian
system

(HS) ü(t)− L(t)u(t) +∇W (t, u(t)) = 0,

which is a classical equation describing many mechanical systems, such as a pendulum.
The system (HS) has been thoroughly studied and a lot of existence results have been
obtained, for example see [1-6] and references therein.

As far as the case q(t) 6= 0 is concerned, to our best knowledge, there are few research
about the existence of periodic solutions for (DV), see [7-9]. Recently, the existence of
periodic solutions for (DV) has been studied in [9] when W has a superquadratic growth
at infinity satisfying the global Ambrosetti-Rabinowitz superquadratic condition: there
exist constants µ > 2 and R > 0 such that

(AR) 0 < µW (t, x) ≤ ∇W (t, x).x

for all t ∈ R and |x| ≥ R, where x.y denotes the Euclidean inner product of x, y ∈ RN and
|.| denotes the corresponding Euclidean norm. Our paper is motivated by the following
reason: when dealing with superlinear differential equations, one often meets functionals
which do not satisfy (AR)-condition. Without (AR)-condition, we do not know whether
a Palais-Smale sequence is bounded. In the present paper, we shall study the existence of
periodic solutions for (DV) under a new kind of superquadratic condition given in [10] by
Ding and Luan for Schrödinger’s equation. Our approach is based on an application of
a variant of generalized weak linking theorem for strongly indefinite problem developed
by Schechter and Zou [11], where the authors developed the idea of monotonicity tric for
strongly indefinite problems; the original idea is due to Struwe [12].

Our main result reads as follows:

Theorem 1.1 Assume the following assumptions hold:

(L) Zero is not an eigenvalue of L = − d2

dt2
+ L(t);

(W1) ∇W (t, x) = o(|x|) as |x| −→ 0, uniformly on t ∈ [0, T ];

(W2)
W (t,x)

|x|2 −→ +∞, as |x| −→ ∞, ∀t ∈ [0, T ];

(W3) W (t, x) ≥ 0 and W̃ (t, x) = 1
2∇W (t, x).x −W (t, x) > 0, ∀t ∈ [0, T ], x ∈ RN − {0};

(W4) There exist constants c, r > 0 and σ > 1 such that

( |∇W (t, x)|

|x|

)σ

≤ cW̃ (t, x), ∀ |x| ≥ r, ∀t ∈ [0, T ].

Then (DV) has at least one nontrivial T− periodic solution.

Example 1.1 [10] LetW (t, x) = a(t)(|x|µ+(µ−2) |x|µ−ǫ
sin2( |x|

ǫ

ǫ
)), where a : R −→

R∗
+ is a continuous T− periodic function, µ > 2 and 0 < ǫ < µ − 2. A straigborhood

calculation shows that W satisfies the conditions of Theorem 1.1, but does not satisfy
the (AR) condition.
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2 Abstract Critical Point Theorem [11]

For the existence of periodic solutions for (DV), we appeal to the following abstract
critical point theorem. Let E be a Hilbert space with norm ‖.‖ and have an orthogonal
decomposition E = N ⊕ N⊥, N ⊂ E is a closed and separable subspace. Since N is
separable, there exists a norm |.|ω that satisfies |v|ω ≤ ‖v‖ for all v ∈ N and induces a
topology equivalent to the weak topology of N on bounded subset of N . For u = v+ z ∈
N ⊕ N⊥ with v ∈ N , z ∈ N⊥, we define |u|2ω = |v|2ω + |z|2ω, then |u|ω ≤ ‖u‖, ∀u ∈ E.
Particularly, if (un = vn + zn) is ‖.‖−bounded and un −→|.|ω u, then vn ⇀ v weakly in
N , zn −→ z strongly in N⊥, un ⇀ v+z weakly in E. Next, let us recall some definitions:
(i) A functional f : E −→ R is said to be |.|ω −upper semi-continuous, i.e., un −→|.|ω u
in E implies lim supn−→∞ f(un) ≤ f(u).
(ii) Let f ∈ C1(E,R). f ′ is said to be weakly sequentially continuously, i.e., un −→ u
in E implies limn−→∞ f ′(un)w = f ′(u)w for all w ∈ E.
Let E = E+ ⊕ E−, z0 ∈ E+ with ‖z0‖ = 1. Let N = E− ⊕ Rz0 and E+

1 = N⊥ =
(E− ⊕Rz0)

⊥. For R > 0, let

M =
{

u = u− + sz0/s ∈ R+, u− ∈ E−, ‖u‖ < R
}

with P0 = s0z0 ∈ M , s0 > 0. We define

D =
{

u = sz0 + z+/s ∈ R, z+ ∈ E+
1 ,

∥

∥sz0 + z+
∥

∥ = s0
}

.

For f ∈ C1(E,R), let Γ be the set of γ : [0, 1]× M̄ −→ E satisfying














γ is |.|ω − continuous,
γ(0, u) = u and f(γ(s, u)) ≤ f(u) for all u ∈ M̄,
for any (s0, u0) ∈ [0, 1]× M̄, there is a |.|ω − neighborhood
U(s0,u0) s.t.

{

U − γ(s, u)/(t, u) ∈ U(s0,u0) ∩ ([0, 1] ∩ M̄)
}

⊂ Efin,

where Efin denotes various finite dimensional subspaces of E, Γ is not empty since id ∈ Γ.

Theorem 2.1 Let (fλ) be a family of C1−functionals having the form

fλ(u) = g(u)− λh(u), u ∈ E, λ ∈ [1, 2].

a) h(u) ≥ 0, ∀u ∈ E, f1 = f ;

b) g(u) −→ +∞ or h(u) −→ +∞ as ‖u‖ −→ ∞;

c) fλ is |.|ω − upper semi− continuous, f
′

λ is weakly sequentially continuous on E.

Moreover, fλ maps bounded sets into bounded sets;

d) sup
∂M

fλ < inf
D

fλ, ∀λ ∈ [1, 2].

Then for almost all λ ∈ [1, 2], there exists a sequence (un) such that

sup
n

‖un‖ < ∞, fλ(un) −→ cλ, f
′

λ(un) −→ 0 as n −→ ∞,

where

cλ = inf
γ∈Γ

sup
u∈M

fλ(γ(1, u)) ∈ [inf
D

fλ, sup
M̄

f ].
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As usual, we say f ∈ C1(E,R) satisfies the Palais-Smale condition ((PS) in short)
if any sequence (un) ⊂ E for which (f(un)) is bounded and f ′(un) −→ 0 as n −→ ∞,
possesses a convergent subsequence.

3 Proof of Theorem 1.1

For 1 ≤ s < ∞, let Ls
Q(0, T ;R

N) be the Banach space of measurable functions u defined

on [0, T ] with values in RN satisfying
∫ T

0 eQ(t) |u(t)|s dt < ∞, with the norm

‖u‖Ls
Q
= (

∫ T

0

eQ(t) |u(t)|s dt)
1
s

and L∞
Q (0, T ;RN) denote the Banach space of measurable functions u defined on [0, T ]

with values in RN under the norm

‖u‖L∞

Q
= esssupt∈[0,T ]e

Q(t)
2 |u(t)| .

The space L2
Q(0, T ;R

N) provided with the inner product

< u, v >L2
Q
=

∫ T

0

eQ(t)u(t).v(t)dt, u, v ∈ L2
Q(0, T ;R

N)

is a Hilbert space. Let E be the space defined by

E =
{

u ∈ L2
Q(0, T ;R

N) : u̇ ∈ L2
Q(0, T ;R

N), u(0) = u(T )
}

.

The space E provided with the inner product

< u, v >0=

∫ T

0

eQ(t)[u(t).v(t) + u̇(t).v̇(t)]dt, u, v ∈ E

and the associated norm

‖u‖0 = (

∫ T

0

eQ(t)[|u(t)|2 + |u̇(t)|2]dt)
1
2 , u ∈ E

is a Hilbert space. Define an operator K : E −→ E by

< Ku, v >0=

∫ T

0

eQ(t)(IN×N − L(t))u(t).v(t)dt

for all u, v ∈ E, where IN×N is the N ×N identity matrix. Then it is easy to check that
K is a bounded self-adjoint linear operator. By the assumption (L) and the classical
spectral theory, we can decompose E into the orthogonal sum of invariant subspaces
for I −K: E = E− ⊕ E+, where E− (respectively E+) is the subspace of E on which
I −K is negative (respectively positive) definite. Here, I denotes the identity operator.
Besides, E− is finite dimensional since K is compact. Furthermore, we introduce on E
the equivalent new inner product

< u, v >=< (I −K)u+, v+ >0 − < (I −K)u−, v− >0
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for u = u− + u+ and v = v− + v+ ∈ E and the equivalent norm ‖.‖ =< ., . >
1
2 . It is

well known that E is compactly embedded in Ls
Q(0, T ;R

N) for all s ∈ [1,∞] and as a
consequence for all s ∈ [1,∞], there exists a constant µs > 0 such that

‖u‖Ls
Q
≤ µs ‖u‖ , ∀u ∈ E. (3.1)

By definition of < ., . >, E− and E+ we have

< (I −K)u, u >0= ±‖u‖2 , ∀u ∈ E±.

For (DV), we consider the functional f(u) = χ(u)− g(u) defined on the space E, where
χ is the quadratic form

χ(u) =
1

2

∫ T

0

eQ(t)[|u̇(t)|2 + L(t)u(t).u(t)]dt

and

g(u) =

∫ T

0

eQ(t)W (t, u)dt.

By the definition of K, the functional f can be rewritten as

f(u) =
1

2
< (I −K)u, u >0 −g(u) =

1

2
(
∥

∥u+
∥

∥

2
−
∥

∥u−∥
∥

2
)− g(u), u ∈ E.

By (W4), for |x| ≥ r and t ∈ [0, T ], we have

|∇W (t, x)|σ ≤ cW̃ (t, x) |x|σ ≤
c

2
|∇W (t, x)| |x|σ+1

,

thus
|∇W (t, x)| ≤ (

c

2
)

1
σ−1 |x|p−1 ,

where p = 2σ
σ−1 . Let c1 = maxt∈[0,T ],|x|≤r |∇W (t, x)|, then

|∇W (t, x)| ≤ c1 + (
c

2
)

1
σ−1 |x|p−1 , ∀t ∈ [0, T ], x ∈ RN . (3.2)

By (W1), for all ǫ > 0, there exists rǫ > 0 such that

|∇W (t, x)| ≤ 2ǫ |x| , ∀t ∈ [0, T ], |x| ≤ rǫ. (3.3)

For |x| ≥ rǫ, we have by (3.2), |∇W (t, x)| ≤ pCǫ |x|
p−1, where Cǫ = 1

p
( c1
r
p−1
ǫ

+ ( c2 )
1

σ−1 ).

So
|∇W (t, x)| ≤ 2ǫ |x|+ pCǫ |x|

p−1 , ∀t ∈ [0, T ], x ∈ RN . (3.4)

Hence, for all t ∈ [0, T ] and x ∈ RN

W (t, x) =

∫ 1

0

∇W (t, sx).xds ≤ ǫ |x|2 + Cǫ |x|
p
, ∀t ∈ [0, T ], x ∈ RN . (3.5)

By Proposition B.37 in [13], the inequality (3.4) implies that the functional g is contin-
uously differentiable on E and for all u, v ∈ E

g′(u)v =

∫ T

0

eQ(t)∇W (t, u).vdt.
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It is easy to see that the quadratic form χ is continuously differentiable and for all
u, v ∈ E, we have

χ′(u)v =

∫ T

0

eQ(t)[u̇.v̇ + L(t)u.v]dt.

Therefore the functional f is continuously differentiable on E and for all u, v ∈ E

f ′(u)v =

∫ T

0

eQ(t)[u̇.v̇ + L(t)u.v −∇W (t, u).v]dt

=< u+, v+ > − < u−, v− > −

∫ T

0

eQ(t)∇W (t, u).vdt.

Lemma 3.1 If u is a T−periodic solution of the Euler equation f ′(u) = 0, then u is

a solution of problem (DV).

Proof. Since f ′(u) = 0, then for all v ∈ E

0 = f ′(u)v =

∫ T

0

eQ(t)u̇.v̇dt+

∫ T

0

eQ(t)[L(t)u−∇W (t, u)].vdt.

By the fundamental lemma and remarks in ([14], pages 6,9), we know that eQu̇ has a
weak derivative and

d

dt
(eQu̇) = eQ(L(t)u−∇W (t, u)) a.e. t ∈ [0, T ], (3.6)

eQ(t)u̇(t) =

∫ t

0

eQ
(s)

[L(s)u(s)−∇W (s, u(s))]ds+ c a.e. t ∈ [0, T ], (3.7)

∫ T

0

eQ(s)[L(s)u(s)−∇W (s, u(s))]ds = 0, (3.8)

where c is a constant. We identify the equivalence class eQ(t)u̇(t) and its continuous

representation
∫ t

0 eQ(s)[L(s)u(s) − ∇W (s, u(s))]ds + c. Thus by (3.7), (3.8) and the
existence of u̇, one has

u̇(0)− u̇(T ) = u(0)− u(T ) = 0.

In order to apply Theorem 2.1, we consider the family of functionals

fλ(u) =
1

2

∥

∥u+
∥

∥

2
− λ(

1

2

∥

∥u+
∥

∥

2
+

∫ T

0

eQ(t)W (t, u)dt),

λ ∈ [1, 2]. It is easy to see that fλ satisfies conditions a), b) in Theorem 2.1. To verify
condition c), let un −→|.|ω u, then u+

n −→ u+ and u−
n ⇀ u− in E. Taking a subsequence

if necessary, we have un −→ u a.e. on [0, T ]. By (W3), Fatou’s lemma and the weak
lower semi-continuity of the norm, we have

lim sup
n−→∞

fλ(un) ≤ fλ(u),

which means that fλ is |.|ω −upper semi-continuous. f
′

λ is weakly sequentially continuous
on E is due to [15].

To continue the discussion, it remains to verify condition d) in Theorem 2.1.
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Lemma 3.2 Under assumptions (L), (W1)− (W4), we have

(i) There exists ρ > 0 independent of λ ∈ [1, 2] such that m = inf fλ(S
+
ρ ) > 0, where

S+
ρ =

{

u ∈ E+/ ‖u‖ = ρ
}

.

(ii) For fixed z0 ∈ E+ with ‖z0‖ = 1 and any λ ∈ [1, 2], there is R > ρ > 0 such that

sup fλ(∂M) ≤ 0, where

M =
{

u = u− + sz0/s ∈ R+, u− ∈ E−, ‖u‖ < R
}

.

Proof. (i) By (3.5) and (2.1), for any u ∈ E+, we have

fλ(u) ≥
1

2
‖u‖2 − λǫ ‖u‖2L2

Q
− λCǫ ‖u‖

p

L
p
Q

≥
1

2
‖u‖2 − 2ǫµ2

2 ‖u‖
2 − 2Cǫµ

p
p ‖u‖

p
.

Taking ǫ = 1
8µ2

2
, we get

fλ(u) ≥
1

4
‖u‖2 − 2Cǫµ

p
p ‖u‖

p .

Since p > 2, there exists a constant ρ > 0 independent of λ ∈ [1, 2] satisfying inf fλ(S
+
ρ ) >

0.
(ii) Assume by contradiction that there exists un ∈ E−⊕R+z0 such that fλ(un) > 0 for
all n and ‖un‖ −→ ∞ as n −→ ∞. Let vn = un

‖un‖ = snz0 + v−n , then

0 <
fλ(un)

‖un‖
=

1

2
(s2n − λ

∥

∥v−n
∥

∥

2
)− λ

∫ T

0

eQ(t)W (t, un)

|un|
2 |vn|

2
dt. (3.9)

It follows from (W3) that

∥

∥v−n
∥

∥

2
≤ λ

∥

∥v−n
∥

∥

2
< s2n = 1−

∥

∥v−n
∥

∥

2
,

therefore ‖v−n ‖
2
≤ 1√

2
and 1 − 1√

2
≤ sn ≤ 1. Taking a subsequence if necessary, we can

assume that sn −→ s 6= 0, vn ⇀ v and vn −→ v almost everywhere on [0, T ]. Hence
v = sz0+v− 6= 0, and since |un| −→ ∞ almost everywhere on [0, T ], it follows from (W2)
and Fatou’s lemma that

∫ T

0

eQ(t)W (t, un)

|un|
2 |vn|

2
dt −→ ∞ as n −→ ∞

which contradicts (3.9). The proof is finished.
Under assumptions (L) and (W1) − (W4), we obtain by applying Theorem 2.1, that

for all λ ∈ [1, 2], there exists a sequence (un) such that

sup
n

‖un‖ < ∞, f
′

λ(un) = 0, fλ(un) −→ cλ ∈ [m, sup
M̄

f ]. (3.10)

Lemma 3.3 Under assumptions (L) and (W1)− (W4), for all λ ∈ [1, 2], there exists

uλ ∈ E − {0} such that

f
′

λ(uλ) = 0, fλ(uλ) ≤ sup
M̄

f. (3.11)
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Proof. Let (un) be the sequence obtained in (3.10), write un = u−
n + u+

n with
u±
n ∈ E±. Since (un) is bounded, then (u+

n ) is bounded, so un ⇀ uλ and u+
n ⇀ u+

λ in E,
after going to a subsequence.
We claim that u+

λ 6= 0. If not, then after going to a subsequence, we can assume that
u+
n −→ 0 in Ls(R,RN ) for all s ∈ [1,∞] since E is compactly embedded in Ls(R,RN ).

It follows from inequality (3.4) and Hölder’s inequality that

0 ≤

∫ T

0

eQ(t)
∣

∣∇W (t, u).u+
n

∣

∣ dt ≤ 2ǫ

∫ T

0

|un|
∣

∣u+
n

∣

∣ dt+ ρCǫ

∫ T

0

eQ(t) |un|
p−1 ∣

∣u+
n

∣

∣ dt

≤ 2ǫ ‖un‖L2
Q

∥

∥u+
n

∥

∥

L2
Q

+ ‖un‖
p−1
L

p

Q

∥

∥u+
n

∥

∥

L
p

Q

−→ 0

as n −→ ∞. Hence by (3.10), we get

fλ(un) ≤
∥

∥u+
n

∥

∥

2
= f

′

λ(un)u
+
n + λ

∫ T

0

eQ(t)∇W (t, u).u+
n dt −→ 0

as n −→ ∞, which contradicts the fact that fλ(un) ≥ m > 0. Therefore u+
λ 6= 0 and

thus uλ 6= 0. Note that fλ is weakly sequentially continuous on E, thus

f
′

λ(uλ)w = lim
n−→∞

f
′

λ(un)w = 0, ∀w ∈ E,

which implies that f
′

λ(uλ) = 0. By (3.10), (W3) and Fatou’s lemma, we have

sup
M̄

f ≥ cλ = lim
n−→∞

(fλ(un)−
1

2
f

′

λ(un)un)

= lim
n−→∞

λ

∫ T

0

eQ(t)(
1

2
∇W (t, un).un −W (t, un))dt

≥ λ

∫ T

0

eQ(t)(
1

2
∇W (t, uλ).uλ −W (t, uλ))dt = fλ(uλ).

Thus we get fλ(uλ) ≤ supM̄ f .

Lemma 3.4 Assume (L) and (W1)− (W4) hold, then there exist a sequence (λn) of
[1, 2] converging to 1 and a bounded sequence (uλn

) on E such that

f
′

λn
(uλn

) = 0, fλn
(uλn

) ≤ sup
M̄

f.

Proof. Let (λn) ⊂ [1, 2] be a sequence such that λn −→ 1. By Lemma 3.3, there
exists a sequence (uλn

) such that

f
′

λn
(uλn

) = 0, fλn
(uλn

) ≤ sup
M̄

f.

It remains to prove the boundedness of (uλn
). Arguing by contradiction, suppose that

‖uλn
‖ −→ ∞ as n −→ ∞. Let vλn

=
uλn

‖uλn‖ , then ‖vλn
‖ = 1. By going to a subsequence
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if necessary, we can assume that vλn
⇀ v in E and vλn

−→ v almost everywhere on
[0, T ]. Since f

′

λn
(uλn

) = 0, then for any w ∈ E, we have

< u+
λn
, w > −λn < u−

λn
, w >= λn

∫ T

0

eQ(t)∇W (t, uλn
).wdt. (3.12)

Consequently, (vλn
) satisfies

< v+λn
, w > −λn < v−λn

, w >= λn

∫ T

0

eQ(t)∇W (t, uλn
).w

‖uλn
‖

dt. (3.13)

Let w = v±λn
in (3.13) respectively. Then we have

∥

∥v+λn

∥

∥

2
= λn

∫ T

0

eQ(t)
∇W (t, uλn

).v+
λn

‖uλn
‖

dt,

∥

∥v−λn

∥

∥

2
= −

∫ T

0

eQ(t)
∇W (t, uλn

).v−
λn

‖uλn
‖

dt.

Since 1 = ‖vλn
‖2 =

∥

∥v+λn

∥

∥

2
+
∥

∥v−λn

∥

∥

2
, we have

1 =

∫ T

0

eQ(t)
∇W (t, uλn

).(λnv
+
λn

− v−λn
)

‖uλn
‖

dt. (3.14)

For s ≥ 0, let

ϕ(s) = inf
{

W̃ (t, x)/t ∈ [0, T ], x ∈ RN , |x| ≥ s
}

.

By (W3), we have ϕ(s) > 0 for all s > 0. By (W3) and (W4), we have for t ∈ [0, T ] and
|x| ≥ r

W̃ (t, x) ≥
1

c

( |∇W (t, x)|

|x|

)σ

≥
2σ

c

( |W (t, x)|

|x|2

)σ

,

so by (W2) we have ϕ(s) −→ +∞ as s −→ ∞. For 0 ≤ a < b, let

An(a, b) = {t ∈ [0, T ]/a ≤ |uλn
(t)| ≤ b} ,

ka,b = inf

{

W̃ (t, x)

|x|2
/t ∈ [0, T ], x ∈ RN , a ≤ |x| ≤ b

}

.

Since W (t, x) depends periodically on t, then by (W3), we have ka,b > 0 for a > 0 and

W̃ (t, uλn
(t)) ≥ ka,b |uλn

(t)|2 for all t ∈ An(a, b).

Since f
′

λn
(uλn

) = 0 and fλn
(uλn

) ≤ supM̄ f , there exists a constant c0 > 0 such that for
all n ∈ N

c0 ≥ fλn
(uλn

)−
1

2
f

′

λn
(uλn

)uλn
=

∫ T

0

eQ(t)W̃ (t, uλn
)dt

=

∫

An(0,a)

eQ(t)W̃ (t, uλn
)dt+

∫

An(a,b)

eQ(t)W̃ (t, uλn
)dt+

∫

An(b,∞)

eQ(t)W̃ (t, uλn
)dt
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≥

∫

An(0,a)

eQ(t)W̃ (t, uλn
)dt+ ka,b

∫

An(a,b)

eQ(t) |uλn
|2 dt+ ϕ(b)

∫

An(b,∞)

eQ(t)dt. (3.15)

Combining (3.15) with the fact that ϕ(s) −→ ∞ as s −→ ∞, yields

∫

An(b,∞)

eQ(t)dt −→ 0 as b −→ ∞, uniformly in n. (3.16)

Let γ ∈]p,∞[. By Hölder’s inequality and (2.1), we have

∫

An(b,∞)

eQ(t) |vλn
|p dt ≤ (

∫ T

0

eQ(t) |vλn
|γ dt)

p
γ (

∫

An(b,∞)

eQ(t)dt)1−
p
γ

≤ µp
γ(

∫

An(b,∞)

eQ(t)dt)1−
p
γ −→ 0 as b −→ ∞, uniformly in n. (3.17)

By (3.15), we have

∫

An(a,b)

eQ(t) |vλn
|2 dt =

1

‖uλn
‖2

∫

An(a,b)

eQ(t) |uλn
|2 dt ≤

c0

ka,b ‖uλn
‖2

−→ 0 (3.18)

as n −→ ∞.
Let 0 < ǫ < 1

3 . By (W1) there exists aǫ > 0 such that |∇W (t, x)| ≤ ǫ
2µ2

2
|x| for all

|x| ≤ aǫ. Consequently, by Hölder’s inequality and (2.1)

∫

An(0,aǫ)

eQ(t)
∇W (t, uλn

).(λnv
+
λn

− v−λn
)

‖uλn
‖

dt

≤

∫

An(0,aǫ)

eQ(t) |∇W (t, uλn
)|

|uλn
|

|vλn
|
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣
dt

≤
ǫ

2µ2
2

∫

An(0,aǫ)

eQ(t) |vλn
|
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣
dt

≤
ǫ

2µ2
2

(

∫

An(0,aǫ)

eQ(t) |vλn
|2 dt)

1
2 (

∫

An(0,aǫ)

eQ(t)
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣

2

dt)
1
2

≤
ǫ

2µ2
2

λn ‖vλn
‖2L2

Q
≤ ǫ, ∀n ∈ N . (3.19)

Now, by Hölder’s inequality, (W4) and (3.17), we can take bǫ ≥ r large enough so that

∫

An(bǫ,∞)

eQ(t)
∇W (t, uλn

).(λnv
+
λn

− v−λn
)

‖uλn
‖

dt

≤

∫

An(bǫ,∞)

eQ(t) |∇W (t, uλn
)|

|uλn
|

|vλn
|
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣
dt

≤ (

∫

An(bǫ,∞)

eQ(t)
( |∇W (t, uλn

)|

|uλn
|

)σ

dt
1
σ (

∫

An(bǫ,∞)

eQ(t)(|vλn
|
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣
)σ

′

dt)
1
σ′

≤ (

∫

An(bǫ,∞)

eQ(t)cW̃ (t, uλn
)dt)

1
σ (

∫

An(bǫ,∞)

eQ(t) |vλn
|2σ

′

dt)
1

2σ′
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·(

∫

An(bǫ,∞)

eQ(t)
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣

2σ′

dt)
1

2σ′

≤ (cc0)
1
σ (

∫

An(bǫ,∞)

eQ(t) |vλn
|p dt)

2
p < ǫ (3.20)

for all integer n, where 1
σ
+ 1

σ′
= 1. Since ∇W is continuous, there exists d = d(ǫ) such

that |∇W (t, x)| ≤ d |x| for all t ∈ [0, T ] and x ∈ [aǫ, bǫ]. So, for all t ∈ An(aǫ, bǫ), we
have |∇W (t, uλn

)| ≤ d |uλn
|. Hence by Hölder’s inequalitty and (3.18), there exists an

integer n0 such that

∫

An(aǫ,bǫ)

eQ(t)
∇W (t, uλn

).(λnv
+
λn

− v−λn
)

‖uλn
‖

dt

≤

∫

An(aǫ,bǫ)

eQ(t) |∇W (t, uλn
)|

|uλn
|

|vλn
|
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣
dt

≤ d

∫

An(aǫ,bǫ)

eQ(t) |vλn
|
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣
dt

≤ d(

∫

An(aǫ,bǫ)

eQ(t) |vλn
|2 dt)

1
2 (

∫

An(aǫ,bǫ)

eQ(t)
∣

∣

∣
λnv

+
λn

− v−λn

∣

∣

∣

2

dt)
1
2

≤ 2d

∫

An(aǫ,bǫ)

eQ(t) |vλn
|2 dt < ǫ (3.21)

for all integer n ≥ n0. Therefore, combining (3.19)− (3.21) yields for n ≥ n0

∫ T

0

eQ(t)
∇W (t, uλn

).(λnv
+
λn

− v−λn
)

‖uλn
‖

dt ≤ 3ǫ < 1,

which contradicts (3.14). Hence (uλn
) is bounded.

Lemma 3.5 Let (uλn
) be the sequence obtained in Lemma 3.4, then it is a (PS)

sequence of f satisfying

lim
n−→∞

f
′

(uλn
) = 0, lim

n−→∞
f(uλn

) ≤ sup
M̄

f.

Proof. We have

lim
n−→∞

f(uλn
) = lim

n−→∞
[fλn

(uλn
) + (λn − 1)(

1

2

∥

∥u−
λn

∥

∥

2
+

∫ T

0

eQ(t)W (t, uλn
)dt)]. (3.22)

By (3.5) and (2.1), we have

∫ T

0

eQ(t)W (t, uλn
)dt ≤ ǫµ2

2 ‖uλn
‖2 + Cǫµ

p
p ‖uλn

‖p . (3.23)

It follows from (3.22), (3.23) and the boundedness of (uλn
) that

lim
n−→∞

f(uλn
) = lim

n−→∞
fλn

(uλn
) ≤ sup

M̄

f.
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Similarly, for all w ∈ E, we have

lim
n−→∞

f ′(uλn
)w = lim

n−→∞
[f ′

λn
(uλn

)w+(λn−1)(
1

2
< u−

λn
, w > +

∫ T

0

eQ(t)∇W (t, uλn
).wdt)]

= lim
n−→∞

f ′
λn

(uλn
)w = 0,

for all w ∈ E. The proof is complete.
Now, let (uλn

) be the bounded sequence obtained in Lemma 3.4. Taking a subse-
quence if necessary, we can assume that uλn

⇀ u in E and uλn
−→ u in Ls

Q(0, T ) for all
s ∈ [1,∞] since E is compactly embedded in Ls

Q(0, T ). By f ′
λn

(uλn
) = 0, (3.4), Hölder’s

inequality and (2.1), we obtain

∥

∥u+
λn

∥

∥

2
= λn

∫ T

0

eQ(t)∇W (t, uλn
).u+

λn
dt

≤ 4ǫ

∫ T

0

eQ(t) |uλn
|
∣

∣u+
λn

∣

∣ dt+ 2pCǫ

∫ T

0

eQ(t) |uλn
|p−1 ∣

∣u+
λn

∣

∣ dt

≤ 4ǫ ‖uλn
‖L2

Q

∥

∥u+
λn

∥

∥

L2
Q

+ 2pCǫ ‖uλn
‖p−1
L

p
Q

∥

∥u+
λn

∥

∥

L
p

Q

≤ 4ǫ ‖uλn
‖L2

Q

∥

∥u+
λn

∥

∥

L2
Q

+ 2pCǫ ‖uλn
‖p−1
L

p

Q

∥

∥u+
λn

∥

∥

L
p
Q

≤ 4ǫµ2
2 ‖uλn

‖2 + 2pCǫµ
2
p ‖uλn

‖p−2
L

p

Q

‖uλn
‖2 . (2.24)

Similarly, we have

∥

∥u−
λn

∥

∥

2
≤ 4ǫµ2

2 ‖uλn
‖2 + 2pCǫµ

2
p ‖uλn

‖p−2
L

p

Q

‖uλn
‖2 . (2.25)

Combining (3.24) and (3.25) yields

‖uλn
‖2 ≤ 8ǫµ2

2 ‖uλn
‖2 + 4pCǫµ

2
p ‖uλn

‖p−2
L

p
Q

‖uλn
‖2 . (2.26)

Combining Lemma 3.3 and (3.26) yields

1− 8ǫµ2
2 ≤ 4pCǫµ

2
p ‖uλn

‖p−2
L

p

Q

. (3.27)

Taking ǫ = 1
16µ2

p
, we get ‖uλn

‖p−2
L

p
Q

≥ (8pµ2
pCǫ)

−1 > 0, for all n. Since uλn
−→ u in

Lp
Q([0, T ]) then u 6= 0. The fact that f ′ is weakly sequentially continuous on E and

uλn
⇀ u in E imply f ′(u) = 0.

Let K = {u ∈ E/f ′(u) = 0} be the critical set of f and m0 = inf {f(u)/u ∈ K − {0}}.
For any critical point u of f , assumption (W3) implies that

f(u) = f(u)−
1

2
f ′(u)u =

∫ T

0

eQ(t)[
1

2
∇W (t, u).u−W (t, u)]dt ≥ 0.

Therefore, m0 ≥ 0. Let (uj) ⊂ K − {0} be such that f(uj) −→ m0. Arguing as in the
proof of Lemma 3.4, we can prove that (uj) is bounded and by going to a subsequence
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if necessary, we can assume that uj ⇀ u in E and uj −→ u almost everywhere on [0, T ],
and as above u 6= 0. Thus by (W3) and Fatou’s lemma

m0 = lim
j−→∞

f(uj) = lim
j−→∞

∫ T

0

eQ(t)[
1

2
∇W (t, uj).uj −W (t, uj)]dt

≥

∫ T

0

eQ(t)[
1

2
∇W (t, u).u −W (t, u)]dt = f(u) ≥ m0.

So m0 = f(u) and m0 > 0 because u 6= 0.
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