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Abstract: In this brief note we present a simple proof of global existence and unique-
ness of a solution of an integro-differential equation

x
′(t) = g(t, x(t)) +

∫
t

0

A(t− s)f(s, x(s))ds,

where f and g satisfy a Lipschitz condition with constant K = K(t) where K(t)
is allowed to tend to infinity with t. The proof employs the idea of progressive
contractions. It is a general fixed point theorem for differential equations.
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1 Introduction

This is the third in a series of very short notes which we are constructing to illustrate
the power, flexibility, and simplicity of a technique which we call progressive contractions
to obtain a unique global solution of various kinds of differential and integral equations.
We have applied the method to integral equations [4], fractional differential equations [6]
of the type considered in [2], and integral equations of the Krasnoselskii type featuring a
sum of two operators [5]. Each of the problems is of an essentially different type and the
title of each note is chosen to allow interested readers to detect which subject is being
treated.

In most of the existing literature investigators prove existence and uniqueness of
solutions of differential equations by writing them as integral equations and applying
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some type of fixed point theorem which can be tedious and challenging, often patching
together solutions on short intervals after making complicated translations. Here, we
make three simple short steps, two of which are actually the same. Moreover, we treat
the equation directly without changing into an integral equation and we use a method
which we introduced earlier and called direct fixed point mappings. Each of the three
steps is an elementary contraction mapping on a short interval.

Examples of direct fixed point mappings can be seen in [1, 3, 7, 8]. In each case
there are excellent reasons for not first converting to an integral equation. In this note
there are two reasons. First, while one can prove that there is an inversion because of
the fundamental properties of contractions, we see no way to actually achieve it in a
workable form. The second reason is accidental. We had begun by asking a contraction
condition on g which had been necessary in earlier work with integral equations, but
noticed that the integral in the mapping allowed us to ask only a Lipschitz condition.
The result is still true when f is identically zero and that means there is a simple proof of
global existence in case of an ordinary differential equation with only a (possibly growing)
Lipschitz condition.

The equation we treat is the scalar equation

x′(t) = g(t, x(t)) +

∫ t

0

A(t− s)f(s, x(s))ds, ′ =
d

dt
, x(0) = a ∈ ℜ, (D)

although a vector system is handled in the same way. In that case, x, g, f are vectors
and A is an n × n matrix. As we are obtaining solutions on [0,∞) and asking no sign
conditions, it is clear that we will need some growth restrictions. As we are asking for
uniqueness it is also clear that we will need something of a Lipschitz condition. In fact,
we will ask for a Lipschitz condition on f and g, but the Lipschitz “constant” can grow
to infinity as t tends to infinity.

In order to obtain an integral equation for mapping, we write the direct fixed point
equation as

ξ(t) = g

(

t, a+

∫ t

0

ξ(s)ds

)

+

∫ t

0

A(t− s)f

(

s, a+

∫ s

0

ξ(u)du

)

ds (1.1)

so that if we obtain a continuous solution of (1.1), then

x(t) = a+

∫ t

0

ξ(s)ds

will be a continuously differentiable solution of the original equation (D).
Specifically, we ask that

f, g : [0,∞)×ℜ → ℜ are continuous, (1.2)

and for each E > 0 there is a K = K(E) > 0 such that

0 ≤ t ≤ E, x, y ∈ ℜ =⇒ |g(t, x)− g(t, y)| ≤ K|x− y|, (1.3)

0 ≤ t ≤ E, x, y ∈ ℜ =⇒ |f(t, x)− f(t, y)| ≤ K|x− y|. (1.4)

Finally, we ask that

A : (0,∞) → ℜ be continuous, (1.5)
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that if φ : [0,∞) → ℜ is continuous then

∫ t

0

A(t− s)φ(s)ds be continuous, (1.6)

and that
∫ t

0

|A(s)|ds be continuous and converge to zero as t ↓ 0. (1.7)

For the E and K pick α ∈ (0, 1) and then choose a positive T ∗ < 1 with KT ∗ < α.
Finally, select T = T (K,T ∗) > 0 with T < T ∗ < 1 so that, collecting:

K

∫ T

0

|A(s)|ds <
1− α

2
, T ∗K < α, 0 < T < T ∗ < 1. (1.8)

We begin with a solution to (1.1) on [0, E] and parlay it to [0,∞).

2 Existence and Uniqueness

Theorem 2.1 If conditions (1.2) –(1.8) hold then for each E > 0 and each a ∈ ℜ
there is a unique solution ξ(t) of (1.1) on [0, E].

Proof. For the given E > 0 find K > 0 satisfying (1.3) and(1.4), while T satisfies
(1.8) with

0 < T < T ∗ < 1, KT ∗ < α < 1. (2.1)

Divide [0, E] into n pieces of length S < T and with end points 0 = T0, T1, ..., Tn = E so
that

S = Ti − Ti−1 < T < 1. (2.2)

We will take two steps leading to an induction which generalizes the second step. The
first step takes place in a Banach space, but the subsequent step is in a complete metric
space.

Step 1. Let (M1, | · |1) be the Banach space of continuous functions φ : [0, T1] → ℜ
with the supremum norm. Define P1 : M1 → M1 by φ ∈ M1 which implies that

(P1φ)(t) = g

(

t, a+

∫ t

0

φ(s)ds

)

+

∫ t

0

A(t− s)f

(

s, a+

∫ s

0

φ(u)du

)

ds. (2.3)

Notice that if P1 has a fixed point ξ1, then

d

dt

[

a+

∫ t

0

ξ1(u)du

]

= ξ1(t)

and

x(t) = a+

∫ t

0

ξ1(s)ds

satisfies (D) with x(0) = a.
Let us see that we have a contraction. If φ, ψ ∈ M1 then by (1.8)

∫ t

0

|φ(s) − ψ(s)|ds ≤ T ∗|φ− ψ|1 ≤ |φ− ψ|1, KT ∗ < α
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so

|(P1φ)(t) − (P1ψ)(t)| ≤ K

∣

∣

∣

∣

a+

∫ t

0

φ(s)ds − a−

∫ t

0

ψ(s)ds

∣

∣

∣

∣

+

∫ t

0

|A(t− s)|K

∫ s

0

|φ(u)− ψ(u)|duds

≤ α|φ − ψ|1 + |φ− ψ|1K

∫ t

0

|A(s)|ds

≤ |φ− ψ|1

[

α+
1− α

2

]

=
1 + α

2
|φ− ψ|1,

a contraction with unique fixed point ξ1 solving (2.3) on [0, T1].
Step 2. Let (M2, | · |2) be the complete metric space of continuous functions

φ : [T0, T2] → ℜ with the supremum metric and φ(t) = ξ1(t) for T0 ≤ t ≤ T1. Define
P2 : M2 → M2 by φ ∈ M2 which implies

(P2φ)(t) = g

(

t, a+

∫ t

0

φ(s)ds

)

+

∫ t

0

A(t− s)f

(

s, a+

∫ s

0

φ(u)du

)

ds. (2.4)

As ξ1 is a fixed point of P1 on [T0, T1] for 0 ≤ t ≤ T1 we have for any φ ∈M2 that

(P2φ)(t) = g

(

t, a+

∫ t

0

ξ1(s)ds

)

+

∫ t

0

A(t− s)f

(

s, a+

∫ s

0

ξ1(u)du

)

ds

= ξ1(t) (2.5)

and so P2 does map M2 → M2.

Let us see that P2 is a contraction. If φ, ψ ∈ M2 then

|(P2φ)(t) − (P2ψ)(t)| ≤ K

∣

∣

∣

∣

∫ t

0

[φ(s) − ψ(s)]ds

∣

∣

∣

∣

+

∫ t

0

|A(t − s)|K

∣

∣

∣

∣

∫ s

0

[φ(u)− ψ(u)]du

∣

∣

∣

∣

ds.

Let T1 ≤ t ≤ T2 and fix s at any value 0 ≤ s ≤ T1. Then examine the last integral
above. As s ≤ T1, then 0 ≤ u ≤ T1 and so φ(u) = ψ(u) and that last integral is zero.
This is true for every value of s with 0 ≤ s ≤ T1. If |φ|[T1,T2] denotes the sup then as
S = T2 − T1 < T ∗

∫ T2

T1

|φ(s) − ψ(s)|ds ≤ T ∗|φ− ψ|[T1,T2] ≤ |φ− ψ|[T1,T2] = |φ− ψ|2. (2.6)

Hence we may continue the above display as

= K

∣

∣

∣

∣

∫ t

T1

[φ(s)− ψ(s)]ds

∣

∣

∣

∣

+

∫ t

T1

|A(t− s)|K

∫ s

T1

|φ(u)− ψ(u)|duds

≤ KT ∗|φ− ψ|[T1,T2] +

∫ t

T1

|A(t− s)|K|φ− ψ|[T1,T2]ds

( by a change of variable and |φ− ψ|2 = |φ− ψ|[T1,T2])

≤ |φ− ψ|2

[

α+
1− α

2

]

=
1 + α

2
|φ− ψ|2
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a contraction with unique fixed point ξ2 on [0, T2]. Note that ξ1 = ξ2 on [0, T1] because
both are unique and the definition of the space demands it.

This Step 2 is the first step in the induction since it has the first complete metric
space with the function ξ1. We pattern the induction on M2 which uses ξ1 from Step 1,
the mapping P2 which truncates the integrals using the ξ1, and the fixed point ξ2 which
is the final product of Step 2 and upon which Step 3 relies.

Inductive hypothesis. Assume that we have a solution ξi−1(t) satisfying (1.1) for
0 ≤ t ≤ Ti−1.

From this and the assumptions (1.2)–(1.8) we will obtain a solution ξi(t) satisfying
(1.1) for 0 ≤ t ≤ Ti. That will complete the induction for we can then reach E with the
solution ξn satisfying (1.1) on [0, E]. The proof will then be complete.

Let ξi−1 satisfy (1.1) on [0, Ti−1] for i − 1 ≥ 1. Let (Mi, | · |i) be the complete
metric space of continuous functions φ : [0, Ti] → ℜ with the supremum metric and for
0 ≤ t ≤ Ti−1 every function satisfies φ(t) = ξi−1(t). Next, we define Pi : Mi → Mi by
φ ∈ Mi which implies that

(Piφ)(t) = g

(

t, a+

∫ t

0

φ(s)ds

)

+

∫ t

0

A(t− s)f

(

s, a+

∫ s

0

φ(u)du

)

ds.

Because ξi−1 is a solution on [0, Ti−1] if 0 ≤ t ≤ Ti−1 then (Piξi−1)(t) = ξi−1(t) and so
the mapping is into Mi.

We now show that Pi is a contraction. If φ, ψ ∈ Mi then

|(Piφ)(t) − (Piψ)(t)| ≤ K

∣

∣

∣

∣

∫ t

0

[φ(s)− ψ(s)]ds

∣

∣

∣

∣

+

∫ t

0

|A(t− s)|K

∣

∣

∣

∣

∫ s

0

[φ(u)− ψ(u)]du

∣

∣

∣

∣

ds

(as in Step 2 at this same point in the display and now Ti−1 ≤ t ≤ Ti )

= K

∣

∣

∣

∣

∫ t

Ti−1

[φ(s) − ψ(s)]ds

∣

∣

∣

∣

+

∫ t

Ti−1

|A(t− s)|K

∫ s

Ti−1

|φ(u)− ψ(u)|duds

≤ KT ∗|φ− ψ|[Ti−1,Ti] +

∫ t

Ti−1

|A(t− s)|K|φ− ψ|[Ti−1,Ti]ds

(by a change of variable and |φ− ψ|i = |φ− ψ|[Ti−1,Ti])

≤ |φ− ψ|i

[

α+
1− α

2

]

=
1 + α

2
|φ− ψ|i,

a contraction with unique fixed point ξi on [0, Ti]. Note that ξi−1 = ξi on [0, Ti−1] because
both are unique and the definition of the space demands it. ✷

Theorem 2.2 Under the conditions of Theorem 2.1 there is a unique solution ξ of
(1.1) on [0,∞).

Proof. Using Theorem 2.1 we construct a unique solution ξn on every interval [0, n]
for every positive integer n. Extend each of those solutions to the interval [0,∞) by
defining ξn past n by the function ξ∗n = ξn(n) for t > n. Thus we have a sequence of
uniformly continuous functions on [0,∞) which converge uniformly on compact sets to a
continuous function ξ which is a solution of (1.1) because at every value of t the function
on [0, t] coincides with any ξn for n > t. ✷
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