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Abstract: The objective of this paper is three fold. Firstly, a new modeling approach
for direct contact membrane distillation (DCMD) is developed. Based on dynamic
bi-dimensional configuration, an uncertain non linear state space model that takes
into account all the uncertainties generated by discretization errors and plant param-
eters variation is derived. It is worth noticing that most of the MD configuration
processes have been modeled as steady-state one-dimensional systems. Stationary
two-dimensional MD models have been considered only in very few studies. The ob-
tained bi-dimensional state space model of DCMD process is also implemented using
Matlab and compared with data published in the literature. Secondly, it is theoreti-
cally demonstrated that, by measuring only the inlet and outlet temperatures of the
DCMD process, one can recover the temperature profile inside the DCMD process
using observers. This is an important point, since most of the existing literatures
compute the temperature profile by empirical methods without taking into account
disceretization errors and uncertainties. Thirdly, a new unknown input observer is
developed to estimate temperature polarization inside the membrane. The conver-
gence of the temperature estimation error to zero is theoretically proved and verified
by simulation. Of particular interest, the designed observer can be used for the as-
sessment of temperature polarization phenomena and hence preventing some fouling
problems.
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1 Introduction

Membrane distillation (MD) process is an emerging technology for water treatment. The
driving force of the MD process results from the pressure difference of vapor formed by
a difference in solution’s temperature on both sides of a hydrophobic membrane [1]. The
advantages of DCMD lie in its simplicity, the need of only small temperature differences
and nearly 100% rejection of dissolved solids [1]. Furthermore, thanks to their low energy
demand, DCMD processes can be equipped with renewable energy equipment such as
solar collectors [2] and solar distillers [3].

Most of researches on DCMD focus on modeling the heat and mass transfer phe-
nomenon inside the membrane, and most of the MD configuration processes have been
modeled as steady-state one-dimensional systems using empirical heat and mass transfer
equations [4]. Only few publications use stationary one or two-dimensional heat-transfer
equation to simulate a particular configuration more accurately. Although many semi-
empirical models have been developed, a detailed model for temperature polarization on
flat-plate MD processes is still lacking. [5]. In [4] theoretical modeling and experimental
analysis of direct contact membrane distillation has been done in steady-state. In [6] a
dynamic modeling of direct contact membrane distillation processes has been presented.
In [7] performance investigation of a solar-assisted direct contact membrane distillation
system is conducted.

This paper presents a different approach using a new bi-dimensional dynamic model
to predict the membrane temperature and the pure water flux. It proposes to derive
an uncertain state model based on the finite element approximation of the tempera-
ture partial differential equations (PDE) and then to build an observer to estimate all
temperatures and temperature dependant parameters inside the process from the only
measurable data which are inlet and outlet temperatures.

Because temperature distribution inside the membrane is not accessible for measure-
ment this observer is very useful and can be considered as a software sensor to estimate
it. The observer developed in this paper is designed in a cascade structure and is specific
to the presented DCMD model. It is useful as a means to monitor inner temperature
evolution in order to prevent and avoid severe or irreversible fouling situations by pre-
dicting their occurrence with a good timing and launching the predefined appropriate
maintenance routine [8].

The paper is organized as follows: in the next section, the theoretical equations
describing heat and mass transfer in DCMD are introduced and followed by a brief
description of fouling phenomenon and its effect on polarization coefficient. In Section 3,
a new bi-dimensional state model for DCMD process is developed and simulated. After
that, the observability of the whole set of internal dynamic variables is demonstrated, and
the new unknown input observer that predicts inner temperature profiles is presented in
Section 4. Simulations are conducted to show the efficiency of the proposed observer.

2 DCMD Theoretical Modeling

In Direct Contact Membrane Distillation (DCMD) both sides of the membrane are in
direct contact with a liquid stream. On the upper side of the membrane shown in
Figure 1 the hot liquid (i.e. hot seawater) flows in the evaporator channel, whilst on the
bottom side, a cold liquid (i.e. cooled permeate or distillate) is circulated. Heat and mass
transfer occurs from the hotter to the colder side. The liquid in the evaporator channel is



374 M. CHAKIR, B. KHOUKHI, M. TADJINE AND MS. BOUCHERIT

constantly refilled and reheated, whilst the volume of the liquid in the permeate channel
increases and heats up. One of the main features of DCMD is that the gas gap between
the membrane surface and the condensate stream is very narrow and only exists due to
the hydrophobic nature of the membrane. This causes the temperature of the membrane
surface in contact with the condensate to be very close to that of the condensate stream
itself, thus allowing high temperature drops across the membrane, i.e. high driving forces
for mass transfer. Conversely, the direct contact configuration causes a relatively high
heat loss as the membrane is the only barrier for the transfer of sensible heat [2].

Mathematical equations describing those phenomena are given in the following para-
graphs.

Figure 1: Schematic diagram of DC membrane distillation process [4].

2.1 Mass transfer

The mass transfer driving force across the membrane is the difference in saturated pres-
sure components on both membrane surfaces due to the temperature gradient. The
general mass flux form can be expressed as follows:

J = cm∆P sat = cm
(
P sat
a − P sat

b

)
, (1)

where P sat
a , P sat

b are the saturated pressure of water on the hot and the cold feed
membrane surfaces respectively and cm is the membrane coefficient.

For non-ideal binary mixtures [9], [10], the flux can be determined by:

J = cm
[
(1− xNaCl)

(
1− 0.5xNaCl − 10x2

NaCl

)
P sat
a − P sat

b

]
, (2)

where xNaCl is the mole fraction of NaCl in saline solution.
In the following, the index “s” stands for “side”. I.e. s = a for the hot side and s = b

for the cold side.
Saturated pressures can be determined by the Antoine equation where Ts is the

temperature in
◦

C, s = a, b:

P sat
s = 133.32× 10(8.10765−(

1450.286
Ts+235 ) ). (3)

The membrane coefficient cm in (1) can be estimated by a weighted sum via parame-
ters α(T ) and β(T ) of the Knudsen diffusion and the Poiseuille (viscous) flow models [11]:

cm = ck + cp,
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cm = 1.064 α (T )
εr

τδm

√

Mw

RTm

+ 0.125β (T )
εr2

τδm

MwPm

ηvRTm

, (4)

where α (T ) and β (T ) are the Knudsen diffusion model and Poiseuille flow model con-
tributions, respectively, Mw is the molecular weight of water, Pm is the mean saturated
pressure in membrane, R is the gas constant, r is the pore radius, Tm is the mean temper-
ature in membrane, δm is the thickness of membrane, ε is the porosity of membrane, ηv
is the gas viscosity and τ is the tortuosity factor. The tortuosity of a porous hydrophobic
membrane was estimated by [12].

2.2 Heat transfer

For a laminar and symmetrical flow, symmetrical temperature distribution and without
internal energy generation; the temperature propagation in DCMD process is described
by the following equation [10]:

ρCp







∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂z
︸ ︷︷ ︸

convection







= k







∂2T

∂x2
+

∂2T

∂z2
︸ ︷︷ ︸

conduction







. (5)

Considering that conduction effect is along x axis and that convection effect is along
z axis, we obtain the basic equation used in DCMD modeling [4]:

ρCp

(
∂T

∂t
+ v

∂T

∂z

)

= k
∂2T

∂x2
. (6)

Velocity along z axis is given by

v(x) = 6vs

(
x

ds
−

x2

d2s

)

, (7)

where vs = v = Q
dsW

is the mean velocity, Q the volumetric flow, W is the channel width
and ds is its height. Here da = db = d.

We rewrite (5) as follows:

∂T

∂t
=

k

ρCp

∂2T

∂x2
− v

∂T

∂z
= α

∂2T

∂x2
− v

∂T

∂z
, (8)

α =
k

ρCp

. (9)

”α” or convective heat transfer coefficient is a time/temperature varying parameter [13]
since it depends on thermal conductivity (k), specific heat (Cp ) and the density of the
seawater (ρ). One can consider variation of α using empirical relations found in specific
literature such as those proposed in [4].

2.3 Boundary conditions

The boundary conditions for modelling the DCMD process are given in [4]:
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Ts (x, 0) = Ts,in,
dTs(0,z)

dx
= 0,

ka
∂Ta(d,z)

∂x
= −

[

λJ + km

δm
(Ta (d, z)− Tb (d, z))

]

,

kb
∂Tb(d,z)

∂x
=

[

λJ + km

δm
(Ta (d, z)− Tb (d, z))

]

.

(10)

2.4 Fouling and polarization coefficient in DCMD

2.4.1 Fouling

Fouling in general is the accumulation of unwanted deposits (foulants) on the surface
or inside the pores of the membrane that degrade its permeation flux and salt rejection
performances (see [8] and references therein such as [14] and [15] ). It is one of the major
problems in membrane-based processes that reduce the temperature difference across
the membrane or increase in temperature polarization leading to lesser driving force [16]
(Figure 2).

Figure 2: Fouling layer on membrane [8].

The foulants found in membrane technology can be divided into three broad groups
according to the fouling material [17]. (a) Inorganic fouling or the deposition of inorganic
particles such as calcium carbonate, calcium sulfate, NaCl, ferric oxide, aluminum oxide,
etc; (b) organic fouling or the deposition of organic matters such as humic acid, fulvic
acid, protein, polysaccharides, and polyacrylic polymers and (c) biological fouling caused
by microorganisms such as bacteria and fungi, sludge, algae, yeast, etc. In most cases,
a single fouling mechanism does not occur in real MD processes, but a combination of
different fouling materials and mechanisms that makes it more complicated to deal with.

Fouling occurs as an external surface fouling referring to the build-up of deposits
or gel-like layers on the outer surface of the feed-side of the membrane. Two types of
fouling layers are observed [18] both of which decrease the permeate flux: the porous
that provides additional heat resistance, thus decreasing the permeate flux and the non-
porous deposit layers which reduce the transport of water vapor across the membrane.
It also occurs as pore blocking fouling which happens when scales or foulants are formed
inside the pores of the membrane causing a partial blocking or gradual narrowing of the
pore, or a complete pore blocking (Figure 3) [19].
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Figure 3: Surface (external) and pore-blocking (internal) fouling [8].

External surface fouling is usually reversible and can be eliminated by chemical clean-
ing, while internal fouling or pore blocking is in most cases, irreversible leading to damage
of the membrane due to compaction of foulants [20].

Fouling is affected by different factors such as [21] (a) foulant characteristics (concen-
tration, molecular size, solubility, diffusivity, hydrophobicity, charge,etc.); (b) membrane
properties (hydrophobicity, surface roughness, pore size, surface charge, and surface func-
tional groups); (c) operational conditions (flux, solution temperature, and flow velocity),
and (d) feed water characteristics (solution chemistry, pH, ionic strength, and presence
of organic/ inorganic matters).

2.4.2 Temperature polarization coefficient

In most MD fouling investigations, membrane fouling is represented by the permeate flux
decline [22]. Although membrane fouling is generally interpreted by flux decline, this
approach is inadequate for characterizing fouling development in MD, especially due to
the effect of temperature in the operation [23] , [24]. Characterizing the foulant on the MD
membrane would provide valuable guidance to the effective application of MD operation
such as membrane cleaning as well as deciding the necessity for a pretreatment [25]. It
is then important to investigate fouling situations taking into account the temperature
distribution characteristics such as Temperature Polarization Coefficient (TPC).

The temperatures at the boundary layers of both the feed (hot side) and permeate
(cold side) Tam and Tbm respectively are different from those at the bulk temperatures
Ta and Tb due to temperature polarization. Changes in the driving force (i.e., difference
in partial water vapor pressure caused by temperature difference) are usually evaluated
through TPC given by TPC = Tam−Tbm

Ta−Tb
. It indicates the thermal efficiency of the

MD system, wherein a value nearing unity suggests good thermal efficiency, and values
nearing zero means otherwise [26].

TPC was found to decrease with the decrease of the pore diameter of the fouling
layer and also with the decrease of the membrane resistance with respect to the external
resistance (see [8] for more information about fouling effects on TPC and methods for
fouling monitoring and cleaning).
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3 State Space Model Developpement

3.1 Formulation

Since the temperature has a bidimensional space distribution T = T (x, z), we first
consider (M + 1) columns separated by constant distance ∆z along the z axis with
indexes j = 0, . . . M that divide each side of the process into (M) subsystems Σs

j=1,..,M .
In both sides of the process, we consider (N + 2) lines separated by constant distance
∆x along the x axis with indexes i = 0, . . . N + 1. Let jT s,i be the temperature of the
point (i, j) defined by column j and line i in the side s as depicted in Figure 4 bellow.

Figure 4: System subdivision.

3.1.1 Derivative terms approximation

Most papers simplify the partial differential equations into an ordinary differential equa-
tions system by using the finite difference techniques derived from Taylor’s formula with
first or second order accuracy [4], [13]







f
′′

(x) = 1
h2 [f (x+ h)− 2f (x) + f(x− h)] ,

f
′

(x) = 1
h
[f (x+ h)− f (x)] or

f
′

(x) = 1
2h [−3f (x) + 4f (x+ h)− f (x+ 2h)] ,

(11)

so that for a given point (i, j), conduction term along x axis can be approximated by

∂2
(
jTi

)

∂x2
=

1

∆x2

(
jT i+1 − 2jT i +

jT i−1

)
(12)

and the convection term along z axis by

∂
(
jTi

)

∂z
=

1

∆z

(
j+1T i −

jT i

)
. (13)

For our modeling purpose we consider that temperature propagation along z axis
is low and can be approximated by a perturbed linear function, therefore we use the

following expression for
∂(jTi )

∂z
where jβi is a bounded perturbation term resulting from

modeling approximation

∂
(
jTi

)

∂z
=

1

∆z

(
jT i −

j−1T i

)
+ jβi . (14)
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The velocity profile for the considered point (i, j) is the same for all columns and is
given by

{

vi = 6v
(

xi

d
− xi

2

d2

)

,

x0 = 0, xi = i.∆x, xN+1 = d.
(15)

Writing (8) for a given point (i, j) in ”s” side and substituting ((12),(14)) in it, gives:

∂
(
jTs,i

)

∂t
= jαs,i

∂2
(
jTs,i

)

∂x2
− vi

∂
(
jTs,i

)

∂z
, (16)

∂
(
jTs,i

)

∂t
=

[

jαs,i

1

∆x2

(
jT s,i+1 − 2jT s,i +

jT s,i−1

)

−
vs,i

∆z
jT s,i

]

+

+
vs,i

∆z
j−1T s,i + vs,i

jβs,i .

(17)

The sign of
(

vi
jβs,i

)

does not matter because the perturbation term jβs,i is unknown

and parameter α for a given subsystem Σs
j is (see [4] for ks,i , ρs,i expressions)

jαs,i =
ks,i

ρs,iCps

. (18)

3.2 Notations and boundary conditions

3.2.1 State variables, output, and input

For a given subsystem Σs
j , consider lines with indexes i = 1, . . . N and build a state

vector where each state variable reflects the temperature of (i, j) point

jxs =
[
jxs,1 . . .

jxs,N

]T
=

[
jT s,1 . . .

jT s,N

]T

. (19)

Figure 5: Subsystems in cascade.

Since the flow is laminar one can consider that the output of each subsystem is its
own entire state vector. In addition, due to boundary conditions the measurable output
temperature of the whole DCMD process given by the last subsystem (j = M) is the
same at all lines. That means:

jys =
jCs

jxs =
jxs ∀ j. (20)
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With the choices made above for jxs and jys, it is easy to see from (17) that the
input of each subsystem is the output of the previous one, i. e.

jus =
j−1ys. (21)

3.2.2 Boundary conditions

Application of boundary conditions (10) gives:

At the first (resp. last) column: j = 0 (resp. j = M) that correspond to the first and
last inner vertical wall of the DCMD process for both sides, the temperature is the same
at all lines and is equal to the inlet (resp. outlet) temperature:

{
0T s,i = Ts,in ∀ i,
MT s,i = Ts,out ∀ i.

(22)

At the first line i = 0 (corresponds to the first inner horizontal wall of the DCMD
process)

jT s,0 =
4jT s,1 −

jT s,2

3
. (23)

At the last line i = N+1 (corresponds to the boundary layer with the membrane) [4].

For the hot side

jT a,N+1 =
1

3

[

4jT a,N − jT a,N−1 −
2∆x

ka,N

(

λJ +
km

δm

(
jT a,N − jT b,N

))]

. (24)

And for the cold side

jT b,N+1 =
1

3

[

4jT b,N − jT b,N−1 +
2∆x

kb,N

(

λJ +
km

δm

(
jT a,N − jT b,N

))]

. (25)

3.3 Parameter variation and modelling approximation

Considering for both sides that parameter jαs,i has small unknown but bounded vari-
ations around a nominal well-known constant value αsn gives (index n means nominal
value) :

jαs,i = αsn +∆jαs,i , s = {a, b} , (26)







αsn = kan

ρsnCps
,

∣
∣∆jαs,i

∣
∣ 6 σαs

; σαs
> 0.

(27)

In addition, the bounded perturbation term jβs,i introduced in (14) is such that:

∣
∣
∣
jβs,i

∣
∣
∣ 6 σβs

; σβs
> 0 . (28)
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Then, gathering all variations ∆jαs,i in one vector jθαs and all perturbation terms
jβs,i in one vector jθβs gives :

jθαs =
[
jθαs,1 . . .

jθαs,N

]T

=
[
∆jαs,1 . . . ∆jαs,N

]T
, (29)

jθβs =
[
jθβs,1 . . .

jθβs,N

]T

=
[
jβs,1 . . .

jβs,N

]T

. (30)

3.4 Equations for state model

The previous states, inputs, and outputs choices, with parameter variation and pertur-
bation terms (17), give a state model of temperature variation at each point (i, j) of the
whole process as follows:

j ẋs,i =

[

αsn

1

∆x2

(
jxs,i+1 − 2jxs,i +

jxs,i−1

)

−
v;s,i
∆z

jxs,i

]

+
vs,i

∆z
jus,i+

+
1

∆x2

(
jxs,i+1 − 2jxs,i +

jxs,i−1

)
jθαs,i + vs,i

jθβs,i .

(31)

Equation (31) needs to be detailed for indexes i = 1 and i = N in order to include
boundary conditions.

For i = 1 , jxs,0 is obtained from (23), and then (31) gives

j ẋs,1 =

[(

−
2

3

αsn

∆x2 −
vs,1

∆z

)

jxs,1 +
2

3

αsn

∆x2
jxs,2

]

+
vs,1

∆z
jus,1+

+
1

∆x2

(

−
2

3
jxs,1 +

2

3
jxs,2

)

jθαs,1 + vs,1
jθβs,1 .

(32)

For 1 < i < N , (31) gives:

j ẋs,i =

[
αsn

∆x2
jxs,i−1 −

(

2
αsn

∆x2 +
vs,i

∆z

)

jxs,i +
αsn

∆x2
jxs,i+1

]

+
vs,i

∆z
jus,i+

+
1

∆x2

(
jxs,i−1 − 2jxs,i +

jxs,i+1

)
jθαs,i + vs,i

jθβs,i .

(33)

For i = N , getting jxa,N+1 and jxb,N+1 from (24-25) and then considering the

following coupling term between Σa
j and Σb

j

jxab = 2∆x

(

λJ +
km

δm

(
jxa,N − jxb,N

))

(34)

gives

jxa,N+1 = 1
3

[

4jxa,N − jxa,N−1 −
jx

ab

ka,N

]

jxb,N+1 = 1
3

[

4jxb,N − jxb,N−1 +
jx

ab

kb,N

]







. (35)

This has a compact form as we introduce the variable s
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s =
2s− a− b

b− a
=

{
−1, if s = a,

+1, if s = b.
(36)

Equations (35) become:

jxs,N+1 =
1

3

[

4jxs,N − jxs,N−1 + s
jxab

ks,N

]

. (37)

Thus (31) gives for i = N

j ẋs,N =

[
2

3

αsn

∆x2
jxs,N−1 −

(
2

3

αsn

∆x2 +
vs,i

∆z

)

jxs,N

]

+
vs,N

∆z
jus,N+

+
αsn

∆x2 s
jxab

3ks,N
+

1

∆x2

(
2

3
jxs,N−1 −

2

3
jxs,N +

s

3ks,N
jxab

)

jθαs,N + vs,N
jθβs,N .

(38)

Now, before presenting our first proposition about the new in cascade state model for
the DCMD, in particular the state model of a given subsystem Σs

j , let us introduce the
following matrices, derived from (32), (33) and (38).

• dynamic matrices

jAs =






jAs1
...

jAsN




 . (39)

The lines of jAs and their elements are







jAs1 = [ as1,1 as1,2 0 0 . . . 0] ,

jAsi = [0 . . . 0 asi,i−1 asi,i asi,i+1 0 . . . 0] ,

jAsN = [0 . . . 0 asN,N−1 asN,N ] ,







(40)







as1,1 = −
(
2
3

αsn

∆x2 +
vs,1
∆z

)
, as1,2 = 2

3
αsn

∆x2 ,

asi,i−1 = αsn

∆x2 , asi,i = −
(
2 αsn

∆x2 +
vs,i
∆z

)
, asi,i+1 = αsn

∆x2 ,

asN,N−1 =
2
3

αsn

∆x2 , asN,N = −
(
2
3

αsn

∆x2 +
vs,N
∆z

)
,







(41)

• input and output matrices

jBs = diag
(
jBsi

)
, jBsi =

vs,i
∆z

∀ i,

jCs = IN , ∀ j,






(42)

• perturbation term.
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Let jθs be the vector of all unknown bounded uncertainties due to parameter variation
and modeling approximation and jΨ s

(
jxs,

jθs
)
be the vector containing all the resulting

perturbation terms. It follows:

jθs =

[
jθαs
jθβs

]

, (43)

jΨ s

(
jxs,

jθs
)
=






jΨ s1
...

jΨ sN




 . (44)

For i = 1

jΨ s1 =
1

∆x2

(

−
2

3
jxs,1 +

2

3
jxs,2

)

jθαs,1 + vs,1
jθβs,1 . (45)

For 1 < i < N

jΨsi =
1

∆x2

(
jxs,i−1 − 2jxs,i +

jxs,i+1

)
jθαs,i + vs,i

jθβs,i . (46)

For i = N :

jΨ sN =
αsn

∆x2 s
jxab

3ks,N
+

1

∆x2

(
2

3
jxs,N−1 −

2

3
jxs,N +

s

3ks,N
jxab

)

jθαs,N + vs,N
jθβs,N ,

jΨsN =

[

αsn

∆x2 s
jxab

3ks,N

1
jθαs,N

+
1

∆x2

(
2

3
jxs,N−1 −

2

3
jxs,N +

s

3ks,N
jxab

)]

jθαs,N

+vs,N
jθβs,N .

(47)

A more compact expression of jΨ s

(
jxs,

jθs
)
would be :

jΨ s

(
jxs,

jθs
)
= jΨ sα

jθαs +
jΨ sβ

jθβs =
jΨ s

(
jxS

)
jθs (48)

such that

jΨ sβ = diag
(
jΨsβi

)

, jΨ sα = diag
(
jΨ sαi

)
,

jΨ s

(
jxS

)
=

[
jΨ sα

jΨ sβ

]

,







, (49)

jΨsαi and
jΨ sβi are the coefficients of jθαs,i and

jθβs,i in relations (45) to (47) and
jθs is introduced in (43).

In the following, we give the statement of the uncertain bi-dimensional cascade state
model for DCMD process.
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Proposition 3.1 Consider the DCMD process theoretically modeled in Section 2 with
the above mentioned matrices and vectors jAs,

jBs,
jCs,

jxs,
jus,

jys,
jΨ s and jθs.

Then, the inner temperature profile can be predicted using the following set of state space
models defined for subsystems Σs

j (Figure 5)

Σs
j :

{
jẋs =

jAs
jxs +

jBs
jus+

jΨ s

(
jxS

)
jθs,

jys=
jCs

jxs j = 1, . . . M.
(50)

Proof. Direct consequence of the above developments and relations. ✷

Remark 3.1

• The model is built in cascade as represented in Figure 5 where each subsystem Σs
j

is supplied by the previous one ( Σs
j−1) and acts on the next one (Σs

j+1) .

• This form of bi-dimensional state model of DCMD process is introduced for the first
time to the best of our knowledge [5] and gives a complete description of the process
behavior. It is appropriate for observer based control/monitoring approaches as we
will demonstrate in next sections.

• On the basis of this model, we will build an unknown input observer which gives
access to suitable information such as polarization ratio and polarization coefficient
since it permits to estimate all (i, j) points’ temperatures.

• The aim of the work is to give a means to monitor inner temperature evolution
in order to prevent and avoid severe or irreversible fouling situations by predict-
ing their occurrence with a good timing and launch the predefined appropriate
maintenance routine.

• jΨs

(
jxS

)
jθs behaves as a perturbation term and contains errors due to approxi-

mation and parameter variation.

• Simulations were conducted to compare model results with some literature data.

3.5 Model simulation

Simulation of the developed state model showed steady state results comparable to [4]
using the same data such as geometry, physical properties and operating conditions. The
bi-dimensional simulation depicted in Figure 6 shows that temperature in the hot side
decreases along x and z axes of the membrane, in the same way the cold side temperature
increases along the x and the z axes, which is in agreement with the polarization phe-
nomenon. Figure 7 to Figure 10 show vertical and longitudinal temperature distribution
as well as the variation of mass flux densities and velocity effect on pure water production
and membrane temperature.

4 Prediction of Temperature Profiles Using Observers

4.1 States and inputs observing

In practice, only the inlet and outlet temperatures are measurable. The profile and longi-
tudinal temperature distributions are not accessible but are very important because they
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Figure 6: Temperature distribution in two dimensions (up: hot, down: cold).

Figure 7: Temperature along x axis for a given z.

Figure 8: Temperature distribution along the membrane.

describe the polarization phenomenon which is the major driving force for pure water pro-
duction. The need of an observer arises. The observer should estimate all temperatures
inside the process and from those temperatures one could estimate temperature-variable
parameters such as polarization coefficient, polarization ratio, and pure water flux.



386 M. CHAKIR, B. KHOUKHI, M. TADJINE AND MS. BOUCHERIT

Figure 9: Velocity effect on water production.

Figure 10: Velocity effect on membrane temperature.

It was stated in Section 3, that the measurable outlet temperature is the same at all
lines of the last subsystem Σs

M which gives a measurement of the entire output vector.
This is due to boundary condition, laminar flow and because generally channel depth (d)
is small in DCMD.

On the other hand, outputs, states and inputs have equivalent roles: knowing the
state of a subsystem, gives its output and the input of the next one. Conversely, the
input informs about the output and the state of the previous one. This motivates the
need to build an unknown input observer (UIO) starting from the known (measurable)
output of the last subsystem Σs

M . The proposed global UIO is built in cascade form (like
the state model) as shown bellow in Figure 11 for one side of the process.

The known output M ŷs (so the state) of the last subsystem Σs
M is used with the UIO

to estimate its unknown input vector which is the output (and the state) of the previous
subsystem Σs

M−1 (M ûs = M−1ŷs). The obtained output (M−1ŷs) is then used with the
UIO to estimate the input of the subsystem Σs

M−1. This principle is applied to ascend
to the first subsystem which has a known input (inlet temperature) and so doing one can
have access to all temperatures inside the process.

This structure has a lot of advantages; increasing the accuracy of the model by in-
creasing the number of subsystems; when estimating temperatures inside the process, it
is possible to estimate the flux in each part of the membrane, the total flux, and different
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Figure 11: Diagram of the unknown input observer (UIO).

parameters such as polarization ratio and polarization coefficient.

Proposition 4.1 The states and inputs of models defined in equation (50) are fully
observable.

Proof. Considering the model of Σs
j and keeping in mind that for 1 < j < M , the

state vector is the output of the subsystem and the input of the next one, we gather
all state vectors in one global vector and write the global unperturbed state model that
includes all subsystems. Then, we prove the global state observabilty by showing that
global observabilty matrix has a full rank. State and input observablity of each subsystem
Σs

j follows from the global state observabilty as they are parts of the global state vector.

The unperturbed model of Σs
j (without jΨ s

(
jxS

)
jθs ) is :

(
jCs = IN

jus =
j−1ys =

j−1Cs
j−1xs = j−1xs

)

=⇒ j ẋs =
jAs

jxs +
jBs

j−1xs , (51)

which gives for j = M, . . . , 1







M ẋs =
MAs

Mxs +
MBs

M−1xs,
...

1ẋs =
1As

1xs +
1Bs

0xs,

(52)

with the compact writing
{

Ẋg = AgXg +BgUg,

Yg = CgXg,
(53)

where Xg is the global [(N ·M)× 1] state vector, Ug = 0xs = 1us and Yg = Mys are
both external measurable input and output temperatures.

Xg =
[
Mxs

T M−1xs
T
. . . 1xs

T
]T

, Ug = 1us, and Yg = Mys =
MCs

Mxs =
Mxs ,

(54)
where Ag is a square [(N ·M)× (N ·M)] matrix formed by (N ×N) sized zero matrices
except for the main diagonal blocks formed by matrices jAs , j = M, . . . , 1 and upper



388 M. CHAKIR, B. KHOUKHI, M. TADJINE AND MS. BOUCHERIT

next diagonal blocks formed by matrices jBs , j = M, . . . , 2,




















Ag =






Ag1

...
AgM




 ,







Ag1 =
[ [

MAs

] [
MBs

]
[0] . . . [0]

]
,

Agj =
[
[0] . . . [0]

[
jAs

] [
jBs

]
[0] . . . [0]

]
,

AgM =
[
[0] . . . [0]

[
1As

] ]
,

−−−−−−−−−−−−−−−−− −−−−−−−−

Bg =








[0]
...
[0]

[
1Bs

]







, Cg =

[ [
MCs

]
[0] . . . [0]

]
= [ [IN ] [0] . . . [0] ] .




















(55)

Observability matrix is calculated as follows

O (Ag, Cg) =






O1

...
OM




 =








Cg

CgAg

...
CgA

M−1
g







, (56)

where O (Ag, Cg) is triangular due to the particular form of Cg and Ag







O1 = Cg = [[IN ] [0] . . . [0]] ,

O2 = CgAg =
[[

MAs

] [
MBs

]
[0] . . . [0]

]
,

O3 = O2Ag =
[
[O31] [O32]

[
MBs

M−1Bs

]
[0] . . . [0]

]
,

O4 = O3Ag =
[
[O41] [O42] [O43]

[
MBs

M−1Bs
M−2Bs

]
[0] . . . [0]

]
,

...
Or = [[Or1] . . . [Orr−1] [Orr] [0] . . . [0]] ,

(57)

with diagonal blocks given by

{
O11 = IN ,

Orr =
∏k=r−2

k=0
M−kBs.

(58)

This yields the simple expression of its determinant

|O (Ag, Cg)| =
∏

r

|Orr| . (59)

Due to regularity of all jBs matrices (
∣
∣jBs

∣
∣ 6= 0) it follows that O (Ag, Cg) has a full

(N ·M) rank and thus the global state Xg is fully observable. The state and input of all
subsystems Σs

j are observable since they are parts of the global state vector.✷

4.2 Observer design

The state-models obtained above have the same form for all subsystems in both sides.
In order to avoid useless notations, we built the observer (without loss of generality) on



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (4) (2016) 372–397 389

the basis of the following state form where vectors u, x, y and θ and matrices A, B, C

and Ψ respectively have the same form and role as in (50)

{
ẋ = Ax+Bu+Ψ (x) θ,
y = Cx.

(60)

Based on the “known” output of system (60) the design aim is to ensure that observer
state and input (x̂, û) converge to the system state and input (x, u) even with the effect
of the unknown perturbation term Ψ (x) θ. We deal with the worst case by considering
the maximum possible deviation of θ since we don’t need a precise estimation for it.

Proposition 4.2 Consider the perturbation term Ψ (x, θ) introduced in (44), and a
vector θm, such that

max
(

‖θ‖ ,
∥
∥
∥θ̂

∥
∥
∥

)

6 ‖θm‖ 6 σθ , (61)

where θ̂ is the estimate of θ and σθ is a positive scalar. Then, Ψ has the following
properties:

1) Ψ (x, θ) is bounded on θ i.e.







‖Ψ (x, θ)‖ 6 ‖Ψ (x, θm)‖ 6 σθ ‖Ψ (x)‖ ,

∥
∥
∥Ψ

(

x, θ̂
)∥
∥
∥ 6 ‖Ψ (x, θm)‖ 6 σθ ‖Ψ (x)‖ .

(62)

2) Ψ (x, θ) is Lipchitz on x i.e.

∃ σΨ > 0 | ‖Ψ (x, θ)−Ψ (x̂, θ)‖ 6 σΨ ‖x− x̂‖ 6 σΨ x̃ (63)

and ∥
∥
∥Ψ (x) θ −Ψ (x̂) θ̂

∥
∥
∥ = ‖∆Ψ‖ 6 σΨσθx̃ . (64)

Proof. Property 1 results from the multiplicative form of Ψ (x, θ) given in (48).
Properties 2 of Ψ are proved in appendix. ✷

These properties are used in the following.

Proposition 4.3 Consider the state space model (60) and the following unknown
input observer:







˙̂x = Ax̂+Bû+Ψ (x̂) θ̂ + L (y − ŷ) ,
ŷ = Cx̂,
˙̂u = η(y − ŷ).

(65)

Then, estimation errors x̃ = x − x̂ and ũ = u − û converge asymptotically to zero
if we find symmetric positive-definite matrices P , R and gains η, L with appropriate
dimensions that fulfill the following LMI condition:

[ [

(A− LC)
T
P + P (A− LC) + 2σΨσθP

] [
PB − CT ηTR

]

[
BTP −RηC

]
0

]

< 0. (66)
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Proof. State estimation error dynamic is:

˙̃x = (A− LC) x̃+Bũ+
(

Ψ (x) θ −Ψ (x̂) θ̂
)

,

˙̃x = (A− LC)x̃+Bũ+∆Ψ . (67)

Dynamics of u are negligible with respect to û due to earlier supposed almost linear
temperature propagation along z axis. Thus :

˙̃u = u̇− ˙̂u = u̇− ηCx̃ = −ηCx̃ . (68)

Now consider the Lyapunov function ( [27], [28]) with symmetric positive-definite
matrices P , R:

V = x̃TP x̃+ ũTRũ, (69)

V̇ = ˙̃x
T
P x̃+ x̃TP ˙̃x+ ũTR ˙̃u+ ˙̃u

T
Rũ,

V̇ = ˙̃x
T
P x̃+ x̃TP ˙̃x− ũTRηCx̃− x̃TCT ηTRũ,

V̇ = x̃T
[

(A− LC)
T
P + P (A− LC)

]

x̃+ ũTBTP x̃

+x̃TPBũ+2x̃TP∆Ψ − ũTRηCx̃− x̃TCT ηTRũ
,

V̇ = x̃T
[

(A− LC)
T
P + P (A− LC)

]

x̃+ ũT
[
BTP −RηC

]
x̃

+x̃T
[
PB − CT ηTR

]
ũ+2x̃TP∆Ψ .

(70)

From (64):
2x̃TP∆Ψ ≤ 2σΨσθx̃

TP x̃ . (71)

Therefore,

V̇ ≤ x̃T
[

(A− LC)
T
P + P (A− LC) + 2σΨσθP

]

x̃+ ũT
[
BTP −RηC

]
x̃

+x̃T
[
PB − CT ηTR

]
ũ

(72)

or also V̇ ≤ [x̃ ũ]TMV

[
x̃

ũ

]

.

MV is a matrix given by

MV =

[ [

(A− LC)
T
P + P (A− LC) + 2σΨσθP

] [
PB − CT ηTR

]

[
BTP −RηC

]
0

]

. (73)

The estimation errors (x̃, ũ) asymptotically converge to zero if we find matrices η, L,
P and R that give a negative-definite V̇ (V̇ < 0). This condition can be announced in
the LMI form of Proposition 4.

V̇ < 0 ⇔ MV < 0 ⇔
[ [

(A− LC)
T
P + P (A− LC) + 2σΨσθP

] [
PB − CT ηTR

]

[
BTP −RηC

]
0

]

< 0 .
(74)

✷

Remark 4.1

• The LMI given in (66) can be solved using the LMI toolbox of MATLAB.

• The proposed observer is similar in spirit the adaptive observers developed in [29],
[30], [31], [32].
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4.3 Observer simulation

Observer simulation generated a distribution of internal temperatures comparable to
those obtained by the model as shown in Figure 12. Figures 13 and 14 show convergence
of state estimation errors to zero respectively for hot and cold stream.

Figure 12: Temperature distribution obtained by the observer.

Figure 13: State error convergence in hot side.

Figure 14: State error convergence in cold side.
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Figure 15: Temperature distribution along z axes.

Figure 16: Temperature estimating error along z axes.

Figure 17: Pure water flux production estimation error.

Other simulations have been made using a different set of parameters for the observer.
Figures 15 and 16 show a good estimation of longitudinal temperature distribution
compared to those obtained using the model, while Figure 17 shows the ability of the
observer to estimate pure water production under varying working conditions (inlet
temperature decreases at t=400s) and Figure 18 shows the evolution of temperature
polarization coefficient estimating error for a given longitudinal position.
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Figure 18: Polarization coefficient estimating error inside DCMD.

Having a good TPC estimation can be very helpful when investigating fouling situa-
tions on the basis of pure water decrease information. Thus, the observer-based approach
would serve as a means to make further studies about fouling characterization considering
in the same time temperature polarization effect on pure water production.

5 Conclusion

In this paper, an observer-based approach is proposed to estimate the temperature pro-
files inside DCMD unit. This allows predicting the polarization coefficient of the latter
and hence can be used to monitor fouling situations. Of particular importance, the
convergence of the observation error is proved using Lyapunov direct method and LMI
constraints. The performed simulations show the effectiveness of the proposed approach
which can be generalized to others types of membrane distillation processes.

Appendix: 2nd Property of Ψ (x, θ)

The objective is to verify that Ψ (x, θ) is Lipchitz on x i.e.

∃ σΨ > 0, ‖Ψ (x, θ)−Ψ (x̂, θ)‖ ≤ σΨ ‖x− x̂‖ ≤ σΨ x̃ . (75)

For more simplicity, relations (43) to (49) describing the vector jΨs

(
jxs,

jθs
)
of all

perturbation terms, are used without indexes s and j. Therefore, given that Ψβ in (49)

does not depend on x, then for the same constant vector θ = [θα θβ ]T , (48) gives:

Ψ (x, θ)−Ψ (x̂, θ) = [Ψα (x)−Ψα (x̂)] θα . (76)

It is then sufficient having (61) to verify that Ψα (x) is Lipchitz on x

‖Ψ (x, θ)−Ψ (x̂, θ)‖ ≤ ‖Ψα (x)−Ψα (x̂)‖ ‖θα‖ ≤

‖Ψα (x)−Ψα (x̂)‖ ‖θm‖ ≤ σθ ‖Ψα (x)−Ψα (x̂)‖ .
(77)

Consider the vector ∆Ψα = Ψα (x) −Ψα (x̂) = [∆Ψα,i] , i = 1, . . . , N such that

‖Ψ (x)−Ψ (x̂)‖
2
= ‖∆Ψα‖

2
=

N∑

i=1

(∆Ψα,i)
2

(78)
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in the following we will make use of this simple property :

(p± d)
2
≥ 0 ⇔ p2+d2 ≥ ∓2pd . (79)

We have for i = 1

∆Ψα,1 =
2

3

1

∆x2 (−x̃1 + x̃2) ,

(∆Ψα,1)
2
=

4

9

1

∆x4

(
x̃2
1 + x̃2

2 − 2x̃1x̃2

)
.

Using (79) gives : −2x̃1x̃2 ≤ x̃2
1 + x̃2

2 . Then

(∆Ψα,1)
2
≤

8

9

1

∆x4

(
x̃2
1 + x̃2

2

)
≤

1

∆x4

(
x̃2
1 + x̃2

2

)
. (80)

For 1 < i < N

∆Ψα,i =
1

∆x2 (x̃i−1 − 2x̃i + x̃i+1) ,

(∆Ψα,i)
2
=

1

∆x4

(
x̃2
i+1 + 4x̃2

i + x̃2
i−1 − 4x̃i+1x̃i − 4x̃ix̃i−1 + 2x̃i+1x̃i−1

)
.

Using (79) gives 2x̃i+1x̃i−1 ≤ x̃2
i+1 + x̃2

i−1, −4x̃i+1x̃i ≤ 4x̃2
i+1 + x̃2

i , and −4x̃ix̃i−1 ≤
4x̃2

i−1 + x̃2
i . Thus

(∆Ψα,i)
2
≤

6

∆x4

(
x̃2
i+1 + x̃2

i + x̃2
i−1

)
. (81)

For i = N :

∆Ψα,N =
1

∆x2

[
2

3
(x̃N−1 − x̃N ) +

(
αn

θα,N
+ 1

)

x̃ab

]

≤
1

∆x2

[
2

3
(x̃N−1 − x̃N ) + σ1x̃ab

]

,

where σ1 is a majoration of
(

αn

θα,N
+ 1

)

and x̃ab obtained from (34) verifies :

x̃ab = ∆2xkm

δm
(x̃a,N − x̃b,N ) ⇒ x̃2

ab =
(

2∆xkm

δm

)2

(x̃a,N − x̃b,N )
2
≤ σ2x̃

2
N where σ2 is

an appropriate majoration.

It follows:

(∆Ψα,N)
2
≤

1

∆x4

[(
2

3
(x̃N−1 − x̃N )

)2

+ 2
2σ1

3
x̃ab (x̃N−1 − x̃N ) + σ2

1 x̃
2
ab

]

. (82)

As for ∆Ψα,1 we obtain
(
2
3 (x̃N−1 − x̃N )

)2
≤ x̃2

N + x̃2
N−1 and (79) gives:

2x̃ab (x̃N−1 − x̃N ) ≤ x̃2
ab + (x̃N−1 − x̃N )

2
≤ σ2x̃

2
N + 2x̃2

N + 2x̃2
N−1 .

Gathering the terms and taking σN =
(
1 + σ2

2σ1

3 + 2 2σ1

3 + σ2
1σ2

)
, one gets:

(∆Ψα,N )
2
≤

1

∆x4

[

x̃2
N

(

1 + σ2
2σ1

3
+ 2

2σ1

3
+ σ2

1σ2

)

+ x̃2
N−1

(

1 + 2
2σ1

3

)]

(∆Ψα,N )
2
≤

σN

∆x4

[
x̃2
N + x̃2

N−1

]
. (83)
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Finally from (80), (81)-(83)

N∑

i=1

(∆Ψα,i)
2 = (∆Ψα,1)

2 +
N−1∑

i=2

(∆Ψα,i)
2 + (∆Ψα,N)2

≤
1

∆x4

[

x̃2
1 + x̃2

2 + 6

N−1∑

i=2

(
x̃2
i+1 + x̃2

i + x̃2
i−1

)
+ σN

[
x̃2
N + x̃2

N−1

]

]

≤
max (6, σN )

∆x4

[

x̃2
1 + x̃2

2 +

N∑

i=3

x̃2
i +

N−1∑

i=2

x̃2
i+

N−2∑

i=1

x̃2
i + x̃2

N + x̃2
N−1 + x̃2

1 + x̃2
N

]

N∑

i=1

(∆Ψα,i)
2
≤

3max (6, σN )

∆x4

N∑

i=1

x̃2
i (84)

and

‖Ψα (x)−Ψα (x̂)‖ ≤

√

3max (6, σN)

∆x4

√
√
√
√

N∑

1

x̃2
i . (85)

There exists σΨ > 0 such that

‖Ψ (x, θ)−Ψ (x̂, θ)‖ ≤ σΨ ‖x− x̂‖ ≤ σΨ x̃ ,

i.e. Ψ (x, θ) is Lipschitz on x.
From the above inequality and relation (61), one has

∥
∥
∥Ψ (x) θ − Ψ (x̂) θ̂

∥
∥
∥ = ‖∆Ψ‖ ≤ σΨσθx̃ .

✷
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