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Abstract: This paper is intended to provide a framework for further developments
of the theory of generalized Fourier series of the form

∞∑

k=1

ak exp[iλk(t)], t ∈ R, (1)

where ak ∈ C, k ≥ 1, λk : R → R, k ≥ 1. Series of the form (1) will be called, in
this paper, series representing oscillatory functions, by the last term understanding
the sum of any series of the form (1), when convergent in some sense, classical or
generalized, such as summability procedure or, in respect to a certain norm on the
space of series, or in the associated function space of sums or generalized sums. A
basic idea we follow is to start from linear spaces of series like (1), then to organize
them by introducing a norm or a kind of convergence. The connection between a space
of generalized trigonometric series of the form (1) and the space of functions resulting
from introducing a topology/norm is our main objective. It is also emphasized that
the preceding stages of Fourier analysis, i.e., the classical trigonometric series (the
first stage) or the almost periodic functions (the second stage) are also parts of the
third stage in the development of Fourier analysis. This study is based on classical
theory of Fourier Analysis and on the theory of almost periodicity, as developed since
1920’s to present. It is also based on methods and results of functional analysis.
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1 Introduction

Series of the form (1) and construction of spaces of oscillatory functions, consisting of the
sum or generalized ‘sum’, have been investigated by researches during the last 20-25 years.
We shall further provide the references, adequate to the subject. It has to be emphasized
that both engineering and mathematical literature contain results related to this topic,
generated by the applied problems. Mathematicians have started a theory related to
the series of the form (1) and their attached oscillatory function spaces. The method
used consists in completing certain spaces of generalized trigonometric polynomials, with
respect to uniform convergence as basic tool, or the convergence in the mean (of order 2).

Since we take the series as primary element in the construction of function spaces of
oscillatory functions, we need to proceed with the investigation of spaces whose elements
are series of the form (1), to organize them algebraically and then topologically to obtain
the series spaces. After the construction of series spaces, we shall be able to obtain the
function spaces, consisting of oscillatory functions.

First, let us briefly present the examples already existing in the literature, due to
Osipov [15] and Zhang [17]– [20]. These mathematical constructions have been preceded
by contributions coming from the engineering literature, due to several researchers, and
mentioned in the references to Zhang’s papers quoted above. Such applied sources have
appeared, particularly, in the IEEE publications, during the last two decades, sporadi-
cally, in other journals.

It is interesting to mention the fact that the first stage of development of Fourier anal-
ysis (in its main goal of establishing the connection between series and functions), besides
many other aspects, started in the 18-th century with names like Euler and continued
its vigorous development in the 19-th century, when a great number of mathematicians
brought very important contributions, starting with Fourier.

An example connected to the advancement of the first stage is the proof of a conjecture
due to Luzin (from 1915), about the convergence almost everywhere, of the Fourier series
of any functions f : [0, 2π] → R, f ∈ L2([0, 2π], R). In such case,

f ≃
a0

2
+

∞
∑

j=1

(aj sin jt+ bj cos jt),

where aj , bj are given by the classical Euler formulae. The sign ≃ above can be substi-
tuted by the sign =, excepting a subset of [0, 2π] of Lebesgue measure zero. This result
is due to Carleson (1966).

The books by Bary [1] and Zygmund [22] are almost of encyclopedic type for the
Fourier Analysis, the first stage, since its inception until the mid of the 20-th century.
Needless to say that the first stage is not yet quitting the scene and new contributions
are abundant.

In the 1920’s, the second stage is appearing with Bohr, followed by Stepanov, Bochner
and Besicovitch, to mention only a few of the great contributors to the theory of almost
periodicity, a kind of oscillatory motion, more complex than periodicity.

The current mathematical literature, dedicated to the case of almost periodic func-
tions is quite rich, the following quotations providing a rather complete source for this
subject: Bohr [3], Besicovitch [2], Favard [11], Levitan [13], Fink [12], Levitan [13] and
Zhikov [14], Corduneanu [4, 5].

The development of Science and Technology, especially in the 20-th century, lead to
the new form, a generalized one, for Fourier series (trigonometric, when not generated by
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a function). This new type of series is of the form presented in formula (1) above, with
the functional exponents λk(t) : R → R, k ≥ 1, subject to conditions further specified.
In Zhang’s papers quoted above, several spaces of oscillatory functions are constructed,
starting with a class of generalized Fourier exponents, of the form

λ(t) =

m
∑

k=1

ck exp[iqk(t)], t ∈ R, ck ∈ C, (2)

where qk(t) are defined by formulae like

q(t) =



















m
∑

i=1

λjt
αj , t ≥ 0,

−
m
∑

j=1

λj(−t)αj , t < 0,

(3)

with λj ∈ R, j = 1, 2, ...,m and α1 > α2 > · · · > αm > 0. The class of generalized
exponents in (2), (3), is denoted by Q(R,R) and, according to Zhang [21], it has been
considered by Gelfand in another context.

The first space of oscillatory function, defined by Zhang [19], has been called the space
of strong limit power functions and denoted by SLP (R,R), is obtained by completing
the linear space of all generalized trigonometric polynomials of the form

P (t) =
n
∑

k=1

ck exp[iqk(t)], t ∈ R, (4)

with qk(t) as in (3) and ck ∈ C, k = 1, 2, ..., n = n(P ), the norm being the supremum, on
R, of the polynomial P (t) in (4). Of course, the topology induced by this norm is that
of uniform convergence on R. Consequently, the construction of the space SLP (R, C)
is achieved by the method of completion of linear vector spaces, in this case, the norm
being the sup

R
| · |.

Therefore, the space SLP (R, C) is a Banach space over C, which is also a subspace
of the richer Banach space BC(R, C), of continuous and bounded maps from R into C,
with the uniform convergence on R.

Taking the space SLP (R, C) as a base space, new oscillatory function spaces have
been constructed by Zhang [20], namely the Besicovitch type spaces, similar to the spaces
B1(R, C), or B2(R, C). For the first case, one has to complete SLP (R, C) with respect to
the norm f → M(|f |), while in the second case, of the space B2(R, C), the norm chosen
for the completion procedure will be f → {M(|f |2)}1/2.

The interested reader can find the details in Zhang’s papers, quoted above, or in the
book by Corduneanu et al. [10]. Many properties are known for classical almost periodic
functions, in which case the functional exponents are linear functions, of the form λt,

t ∈ R, λ ∈ R.
In summarizing the discussion above, about the oscillatory function spaces con-

structed by Zhang, one can notice the following steps which are necessary in the proce-
dure: first, one needs a set (possibly with an algebraic structure) of generalized functional
exponents, say {f(t)}, such that exp[if(t)] has the following property:

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

f(t) exp[if(t)]dt
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exists (as a finite complex number); second, for the completion property of the space
of oscillatory functions, one needs to choose a topology, or a norm, based on which we
obtain the completed (or Banach) space. In the case we use a seminorm, instead of a
norm, the need to work with a factor space is required. See, for instance, Corduneanu [5].

To briefly summarize the connection between the series and its sum, let us denote
this connection by

f(t) ≃

∞
∑

k=1

ck exp[iqk(t)] (5)

and provide the formulae (k ≥ 1)

ck = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

f(t) exp[−iqk(t)]dt. (6)

As proved in Zhang’s quoted papers, the Parseval equation

∞
∑

k=1

|ck|
2 = lim

ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt (7)

also holds. It has many implications, among them we mention the uniqueness of the
generalized Fourier series attached to a function f ∈ SLP (R, C). Or, the one to one
correspondence between the elements of the space SLP (R, C) and those of the space ℓ2.

For more details on these matters, the reader is invited to consult the Appendix to the
book of Corduneanu et al. [10]. See also the paper by Zhang [19], for the construction of
the spaces of Besicovitch type, B1(R, C) and B2(R, C), by using the completion method,
as specified above, by using the norms M(|f |) and {M(|f |2)1/2, with respect to which the
space SLP (R, C) is not complete. In the paper of Corduneanu [8], the space B2

λ(R, C)
is constructed by this method, for an arbitrary set λ = {λα, α ∈ an arbitrary set of
generalized Fourier exponents}.

The remaining part of the Introduction will be concerned with the space constructed
by Osipov [15], also pertaining to the third stage in the development of Fourier Analysis.

The Osipov space is known under the name of Bohr-Fresnel almost periodic functions
space. Actually, these functions are oscillatory in the sense of adopted definition and a
result of Osipov states: Let f(t) : R → C be a Bohr-Fresnel almost periodic function.
Then, there exists a Bohr almost periodic function F (t, x) : R × R → C, such that
f(t) = F (t, t2), t ∈ R. Of course, the result shows the close relationship between Bohr
and Bohr-Fresnel almost periodic functions, but the theory of the later is much more
complex, as it appears in the book of Osipov, quoted above.

Following our procedure in constructing new spaces of oscillatory functions, we shall
start from the set of all formal trigonometric series, of the form

∞
∑

k=1

ck exp(iαt
2 + 2iλkt), (8)

where ck ∈ C, α, λk ∈ R, k ≥ 1. One usually assumes that λk’s are distinct.
It follows from Zhang’s case discussed above that each term in (8) has a finite limit

(Poincaré) on the whole real axis. Moreover, if the series in (8) is absolutely convergent
and denotes the sum by f(t), then the connections between f and series (8) are given by



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (4) (2016) 398–419 402

the formulae for coefficients, in terms of f(t):

ck = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

f(t) exp(−iαt2 − 2iλkt)dt. (9)

Let us note that α is a real number which is determined by the function f(t). Also, the
formula (9) is valid in cases when the series (8) is not necessarily absolute (hence, also
uniform) convergent. The right hand side of (9) makes sense in more general situations,
as we shall see. It is, again, the Poincaré mean value on R.

If one assumes the condition
∞
∑

k=1

|ck|
2 < ∞, (10)

which is less restrictive than the condition of absolute convergence, we obtain a larger
space of oscillatory functions, which is in a slighter modified form – the space of Osipov
[15], consisting of oscillatory functions.

We shall list now some properties of the space of Bohr–Fresnel almost periodic func-
tions, presented in detail in Osipov’s book quoted above.

We point out the fact that the Parseval type equation

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt =

∞
∑

k=1

|ck|
2, (11)

where the ck’s are given by (9), holds true for every B2-almost periodic function.
Another property, following from (1) and some extra arguments, is the uniqueness of

the generalized Fourier series, associated to a function in the Bohr-Fresnel space.

As shown in Section 2 below, to each sequence {ck; k ≥ 1} satisfying (10), there
corresponds a unique Bohr-Fresnel function. The approximation property is also valid,
in the following format (different than in Osipov’s text): Any function f(t), in the class of
Bohr-Fresnel almost periodic functions, can be approximated with any degree of accuracy
by polynomials in this class, with frequencies belonging to the set of frequencies in its
generalized Fourier series. Using the norm derived from the Poincaré mean value

M(f) = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

f(t)dt, (12)

the approximation property can be stated: for each ε > 0, there exists n ∈ N , such that

M

{

|f(t)| −

n
∑

k=1

ck exp(iαt
2 + 2iλkt)|

2

}

< ε2, (13)

with ck, k = 1, 2, ..., n, given by (9). We notice that, unlike in the case of Zhang’s space
SLP (R, C), the ’measure’ of length used is based on the Poincaré mean value, inducing
a convergence in the mean (of order 2), instead of the uniform convergence, achieved by
the sup-norm.

We shall conclude this introductory remarks related to the oscillatory function spaces
constructed by Osipov and Zhang, mentioning the fact that, in the paper [21] by Zhang et
al. the case of generalized Fourier exponents having the form of a quadratic polynomial,
with real valued coefficients, has been thoroughly investigated, all possible cases (for
constructing a space of oscillatory functions) being emphasized.
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2 Finding Generalized Functional Fourier Exponents

From the form of formula (1), we realize that in order to attach a function to the series
which we would like to represent an oscillatory function, with some basic properties
encountered for classical Fourier series or the ones characterizing various types of almost
periodic functions, two necessary conditions have to be satisfied:

First, we must find the generalized Fourier exponents, denoted by λk(t), k ≥ 1;
more precisely, we need to identify sets we shall represent by Λ, containing sequences of
functions R → C, at least locally integrable on R. Since each sequence of λk(t)’s must
contain distinct terms, it is obvious that Λ has to be at least countable. Moreover, in
case we want to represent certain functions R → C by such series, which means we have
to determine the coefficients of the series like (1), we realize that, each sequence involved,
must be formed from mutually ’orthogonal’ elements. This condition will be imposed in
the form suggested by Poincaré mean value, namely

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

exp[i(λj(t)− λk(t))]dt =

{

0, j 6= k,

1, j = k.
(14)

This condition is also suggested by the theory of Hilbert (rather pre-Hilbert) spaces,
but we are not getting into details here.

Second, one needs to make precise the kind of attaching to a given series of the type
(1), a function that could be reasonably called a generalized sum. Of course, the most
natural way is to have a condition assuring the convergence of the series with respect to
a certain norm. Since this is a rather restrictive condition (if, for instance, we keep in
mind the fact that the classical Fourier series of a continuous function is only summable
to the generating function, using Euler’s formulae for coefficients), we may use, when
adequately, instead of a norm, a seminorm. This feature will lead to further problems
when constructing the spaces of oscillatory functions, but it serves well our purpose, as
we see below, in this paper.

We can obtain sequences {λk(t); k ≥ 1}, such that (14) is satisfied, if we can construct
distinct solutions of the equation/relation

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

exp[iλ(t)]dt =

{

0, λ(t) 6≡ 0,

1, λ(t) ≡ 0.
(15)

Indeed, if λk(t), k ≥ 1, are distinct solutions of (15), then the sequence {λk(t); k ≥ 1}
satisfies obviously the relationship (14).

Let us determine solutions of the equation/relation (15), choosing a simple procedure
based on Cauchy’s integral theorem.

Namely, limiting our considerations to those λ(t) : R → R, which constitute restric-
tions of entire functions λ = λ(z), z ∈ C and applying Cauchy’s theorem for a closed
contour, consisting of the interval of the real axis (−ℓ, ℓ) and the semicircle Cℓ having
(−ℓ, ℓ) as diameter, situated in the half-plane Im z ≥ 0, one obtains for ℓ > 0

∫ ℓ

−ℓ

exp[iλ(t)]dt+

∫

Cℓ

exp[iλ(z)]dz = 0, (16)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (4) (2016) 398–419 404

on Cℓ being from ℓ to −ℓ. Let Λ(z) be a primitive of eiλ(z), which is also an entire
function. Then (16) yields for ℓ > 0,

∫ ℓ

−ℓ

exp[iλ(t)]dt = Λ(−ℓ)− Λ(ℓ). (17)

From (15) one derives now the condition for λ:

ℓ−1[Λ(ℓ)− Λ(−ℓ)] = o(1), ℓ → ∞. (18)

Consequently, the equation/relation (18) provides a source for obtaining λ(z), such that
Λ′(z) = exp(iλ(z)) and, taking a sequence of distinct solutions of (18), we have the
possibility of constructing series of the form (1).

Let us notice that the second case in (15) is obviously verified, i.e., when λ(z) ≡ 0.
If one chooses λ(z) = λz, λ ∈ R, λ 6= 0, z ∈ C, then we derive from above

lim(iλℓ)−1[eiλℓ − e−iλℓ] = 0, as ℓ → ∞. (19)

Since the bracket is bounded as ℓ → ∞, there results the validity of (18).
Hence, the series resulting from the above considerations, namely

∞
∑

k=1

ak exp(iλkt), t ∈ R, (20)

with λk being arbitrary real numbers, are series for oscillatory functions.
But we recognize in (20) the Fourier series corresponding with the almost periodic

functions. Depending on the nature of their convergence of summability, we obtain
the classical Bohr almost periodic functions and its multiple generalizations (Stepanov,
Besicovitch, the APr-almost periodic functions).

Remark 2.1 From the formula (17), we can draw the following conclusion. If Λ(z)
is a function satisfying the condition Λ(ℓ) = Λ(−ℓ), i.e., is an even function, then (17) is
verified. This is a rather special case and we invite the readers to find other solutions to
the equation/relation (18), in the class of entire functions.

We shall deal now, with another condition imposed, to the function λ(t), namely

λ(−t) = −λ(t), t ∈ R. (21)

Finding generalized Fourier exponents, in the class of odd functions on R, leads to another
relation/equation similar to (18). This restriction was also imposed by Zhang, when
constructing the space SLP (R, C).

Let us notice that the left hand side in (17) can be rewritten as

∫ ℓ

−ℓ

exp[iλ(t)]dt =

∫ 0

−ℓ

exp[iλ(t)]dt+

∫ ℓ

0

exp[iλ(t)]dt

= 2

∫ ℓ

0

cosλ(t)dt, ℓ > 0,

(22)
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if we take into account (21) and change t for −t in the first integral. Therefore, in
order to satisfy the first condition of (15) it is necessary and sufficient to satisfy the
equation/relation

∫ ℓ

0

cosλ(t)dt = o(ℓ), as ℓ → ∞. (23)

Only odd solutions λ(t) at least locally integrable are candidates for functional exponents
in series representing oscillatory functions.

In what follows, we shall deal with finding nontrivial solutions to the equation/relation
(23), as well as (18).

The relation/equation (23) has, indeed, nontrivial solutions. We notice that any
function of the form λ(t) = µt, with µ = const. ∈ R and t ∈ R, is an odd function
which satisfies both (18) – as seen above, and (23). Hence, we reobtain the functional
exponents that characterize various classes of almost periodic functions. This remark
is a confirmation of the fact that the oscillatory functions contain the classical cases of
periodic and almost periodic functions. More comments on these matters will be made
in forthcoming text.

Of course, it is interesting to emphasize classes of generalized exponents, using the
equation/relation (23). And let us examine the case of oscillatory functions of Osipov [15]
type.

Still remaining in the classical field, let us remind the Fresnel integrals, related to his
theory in Optics: for α > 0, one has

∫

∞

0

cos(αt2)dt = (2α)−1

√

π

2
· (24)

Taking (24) into account, we find out that the relation/equation (23) is verified by any
function αt2, α > 0, t ≥ 0. In order to obtain the odd function satisfying (21), one has
to consider (on R) λ(t) = αt2 for t ≥ 0 and λ(t) = −αt2 for t < 0. Then we rely on
Zhang’s et al. results in [21] to find that λ(t) defined above can be used to construct
generalized trigonometric polynomials, based on quadratic algebraic polynomials. This
means, generalized trigonometric polynomials of the form

P (t) =
m
∑

k=1

ak exp[i(αt
2 + βkt)], (25)

with α, βk ∈ R, 1 ≤ k ≤ m. There is no free term at the exponent, because it is absorbed
by ak. This approach, used by Zhang and his collaborators, does not lead to the original
space constructed by Osipov. The method used by Osipov [15] requires that polynomials
of the form (25), with λ(t) = αt2 + βkt, t ∈ R, be used to construct the functions ”sum”
on the whole R. More precisely, (24) can be used only on R+, or on the whole R. In such
a way, we actually obtain two spaces of oscillatory functions, based on second degree
algebraic polynomials as functional exponents. In the introduction, we have sketched the
construction of the original Osipov space. The details are given in Osipov’s book [15],
besides a short presentation of Bohr’s theory, to serve for the parallelism between two
concepts of almost periodicity (actually, Bohr-Fresnel functions constitute an example of
oscillatory functions, even though they can be represented by the classical Bohr almost
periodic functions). Their Fourier series is representative for the third stage of Fourier
Analysis.
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Concerning Zhang’s SLP (R, C) functions, one sees from their construction that they
are odd functions. The fact of possessing a finite Poincaré mean value is proven in the
paper by Zhang [19].

Let us now consider an example corresponding to λ(z) = sinλz, a ∈ R, z ∈ C.
Obviously, λ(z) is an odd function. But this λ(z) is not a solution of (23). The associated
generalized Fourier series is

∞
∑

k=1

ak exp[i sinλkt], t ∈ R, (26)

which is characteristic for the third stage of Fourier Analysis. If we admit the condition
{ak; k ≥ 1} ∈ ℓ1(N, C), then (26) is absolutely and uniformly convergent on R. Since
every term is a Bohr almost periodic function, the series is convergent to a function
f ∈ AP (R, C). In other words, this case is an example of a series whose construction
is not based on the use of equation (18) or (23), but the sum is an oscillatory function,
even of classical type.

Of course, if instead of the condition imposed above, {ak; k ≥ 1} ⊂ ℓ1(N, C), one
chooses another similar one, the result may lead to other classical spaces of almost
periodic or oscillatory functions. It is also clear that the same oscillatory function can
be represented by different types of generalized Fourier series. An in depth study of this
fact would be welcome.

One can find many other sequences of generalized Fourier exponents, just relying on
above considerations. An example, also resulting from Zhang’s constructions, is given by
a sequence of odd degree polynomials, say like µ(z) = a1z + a3z

3 + · · ·+ a2k+1
2k+1. Indeed,

these polynomials and their linear combinations are satisfying the request appearing in
Zhang’s construction of generalized Fourier series [19]. These exponents satisfy, starting
with k = 1, requirements coming from applications.

We shall prove now a lemma, showing how one can get more complex generalized
exponents, relying on some already found.

Lemma 2.1 Let us assume we are given a set of generalized exponents, say Λ =
{λα(t) : α ∈ A}, where A is a set of indices, at least countable. If ϕ : R → R is a locally
integrable map, such that lim exp]iϕ(t)] exists when t → ∞, while {λj(t); j ≥ 1} ∈ Λ and
form an orthogonal system as shown in (14), then the sequence {ϕ(t)+λj(t); j ≥ 1} ⊂ Λ
is also orthogonal in the sense shown by (14).

The proof is immediate if we notice that [ϕ(t)+λj(t)]− [ϕ(t)+λk(t)] = λj(t)−λk(t),
and take (14) into account.

In this way, we have obtained in case of Osipov’s kind of generalized Fourier series,
i.e., the Bohr-Fresnel case of almost periodic functions: αt2 + βkt, k ≥ 1, representing
the exponents of terms in the series for Osipov’s oscillatory functions.

We invite the reader to investigate solutions of the form λ(t) = tα, α ∈ R+, for the
equation (23). Also, for the relation/equation (18). In particular, the odd polynomials
mentioned above, justified by Zhang’s argument.

In concluding this section, we shall make two brief remarks/suggestions, which may
be helpful in the search of new classes of generalized Fourier exponents.

First one is related to the use of the general formula for residues, instead of Cauchy’s
integral theorem. This formula has the form, with notations similar to those in (16),

∫ ℓ

−ℓ

eiλ(t)dt+

∫

cℓ

eiλ(z)dz = 2πi
∑

res(eiλ(z)), (27)
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the Σ being extended at the poles of exp[iλ(z)], within the interior of the semidisc
formed by cℓ and (−ℓ, ℓ). The function exp(iλ(z)) must be meromorphic, with zeros at
(z1, z2, ..., zn) ∈ Cn, so that, for large enough ℓ, one can take the limit of both sides in
(21), as ℓ → ∞. Apparently, this is not an easy task, but in the affirmative case it will
provide other solutions for determining generalized Fourier exponents.

Second remark relates to the notation Λ for the set of generalized exponents. It is
obvious that, from algebraic point of view, this set of real valued functions must form
at least an additive group. This can be seen, for instance, from the formulas providing
the coefficients of a generalized Fourier series, such as (6), (9), or the orthogonality
conditions.

Zhang [19] required more algebraic conditions, for instance the ring structure for Λ,
a necessity imposed by the fact that the product of two function in Λ, must be in Λ.

3 Construction of a Space of Oscillatory Functions

In Section 1, we have summarily presented the construction of the oscillatory function
spaces, following the two authors who have brought significant contributions to the de-
velopment of the third stage of Fourier Analysis. We shall present, in this section, the
construction of a space of oscillatory functions, denoted by ’AP1(R, C; Λ), the AP just
reminding us of the case of almost periodic functions, which functions are also oscillatory
type (see the definition in the Abstract of the paper). It is the corresponding, more
general, case of the space AP1(R, C), see Corduneanu [6, 7], the name of Poincaré being
properly attached, since he has provided the first example of an almost periodic function
(Bohr), in a rather important case: when the Fourier series attached is absolutely and
uniformly convergent on R.

The first step in the construction consists in specifying the set/class of generalized
Fourier/trigonometric series, of the form (1), which will be the elements of AP1(R, C; Λ).
Namely, to obtain the space AP1(R, C; Λ), we shall assume that all series of the form (1),
for which

∞
∑

k=1

|ak| < ∞, (28)

will be the elements of AP1(R, C; Λ), and only them.
Since the series satisfying (28) imply the absolute convergence, due to the fact

|ak exp[iλk(t)]| ≤ |ak|, k ≥ 1, t ∈ R, λk ∈ Λ, the norm on this space appears natu-
rally to be the one given in (28), i.e.,

∣

∣

∣

∣

∣

∞
∑

k=1

ak exp[iλk(t)]

∣

∣

∣

∣

∣

AP1

=
∞
∑

k=1

|ak|. (29)

Hence, the set AP1(R, C; Λ) is a linear normed space on C. Moreover, this space is a
Banach space, i.e., complete as a linear metric space, a statement which is implied by
the completeness of the space ℓ1(R, C).

We shall try now to derive some properties of this space, particularly looking at its
connections with function spaces on R. The natural approach seems to be in attaching
to the series (1), the function representing its sum. This means the correspondence/map
is given by

∞
∑

k=1

ak exp[iλk(t)] →

∞
∑

k=1

ak exp[iλk(t)], t ∈ R, (30)
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with the left hand side in (39) regarded as the formal series, while the right hand side is
the sum of the series, i.e., a function f : R → C.

It is obvious that f = f(t), t ∈ R, is a complex valued function, defined on R

and taking values which are uniformly bounded, by the right side in (29). It is also a
continuous and bounded map from R into C, which tells us that AP1(R, C; Λ) ⊂ BC(R, C)
= the space of bounded and continuous maps from R into C. We have admitted that Λ
consists of continuous functions. When this condition does not hold for the elements of
AP1(R, C; Λ), we can obtain spaces of measurable functions (for instance), more general
than BC(R, C).

Let us summarize now the discussion above regarding the space AP1(R, C; Λ) and its
Banach space structure, over the field C. We need to keep in mind that AP1(R, C; Λ)
can be regarded either as a series space or a function space. Their isomorphism is the
motivation for using the same notation for both of them. We shall write now the formula
which represents the space AP1(R, C; Λ):

AP1(R, C; Λ) =

{

f : R → C, f(t) =

∞
∑

k=1

ak exp[iλk(t)],

∞
∑

k=1

|ak| < ∞, λk(t) ∈ Λ, k ≥ 1

}

.

(31)

The norm is given by formula (29). The completion of the space AP1(R, C; Λ) follows
easily from the following argument. Indeed, from our assumption (25), there follows that
AP1(R, C; Λ) is the closure of the subset of generalized trigonometric polynomials of the

form
n
∑

k=1

ak exp[iλk(t)], with ak and λk(t), k ≥ 1, as considered above.

Since the completion of a linear normed space is the minimal complete Banach space,
containing the given linear normed space, while any element of AP1(R, C; Λ) can be
regarded as the limit in the sense of the norm, we obtain a contradiction if we assume
that there exists a complete linear space, larger than AP1(R, C; Λ), i.e., containing at
least one element outside AP1(R, C; Λ), which can be reached by the limit process with
terms from the space of trigonometric polynomials of the above shown form (sections of
the series in the space AP1(R, C; Λ)).

Theorem 3.1 The space of oscillatory functions AP1(R, C; Λ) is constructed in the
following steps:

1) One chooses a set Λ, at least countable, consisting of continuous functions R → R,
such that any sequence {λk(t); k ≥ 1} ⊂ Λ is orthogonal in the sense of Poincaré’s
mean value on R, as shown in formula (14).

2) See Section 2 for details in obtaining such a set Λ.

3) One considers the set of all generalized Fourier series of the form (1), with
{λk(t), k ≥ 1} ⊂ Λ, which can be routinely organized as a linear space over C.

4) In order to introduce a topology/convergence on this linear space, we have denoted
it by AP1(R, C; Λ), we consider on it the norm defined by (29).

5) One derives, as shown above, that the space AP1(R, C; Λ) is a Banach space, by
proving its completeness in the norm (29).
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Remark 3.1 The isomorphism of the series space AP1(R, C; Λ) and the function
spaces of the sums of its series, in other words, the one to one correspondence between
the series and functions-sums, will follow easily when we are able to prove the uniqueness
theorem for Fourier generalized series in AP1(R, C; Λ), based on Parseval’s formula

∞
∑

k=1

|ak|
2 = lim

ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt, (32)

to be established in the sequel. There is an alternative approach, based on the formula
for the coefficients, in terms of the sum of the series

ak = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

f(t) exp[−iλk(t)]dt. (33)

Both approaches will be substantiated in the presentation to follow.

Remark 3.2 Since we shall deal with product of elements/series of AP1(R, C), we
notice that this operation (Cauchy’s rule of multiplication can be performed only in case
when Λ is an additive group of real valued functions λ = λ(t) : R → R, which we shall
use to form the generalized Fourier series.

Now, let us prove the formula (32), which establishes the connection between the
function f(t) : R → C, and its generalized Fourier series in (30). One obtains, by
multiplying both sides by exp[−iλj(t)] 6= 0, the following relation:

f(t) exp[iλj(t)] =
∞
∑

k=1

ak exp[i(λk(t)− λj(t)], (34)

which we can integrate from −ℓ to ℓ, both sides, the second, term by term. This follows
from the condition {ak; k ≥ 1} ⊂ ℓ1(N, C), taking also into account the fact that each
exponential has module equal to 1. This leads to the equation

∫ ℓ

−ℓ

f(t) exp[−iλj(t)]dt =

∫ ℓ

−ℓ

∞
∑

k=1

ak exp[i(λk(t)− λj(t))]dt

=

∫ ℓ

−ℓ

n
∑

k=1

ak exp[i(λk(t)− λj(t)]dt

+

∫ ℓ

−ℓ

∞
∑

k=n+1

ak exp[i(λk(t)− λj(t)]dt,

(35)

assuming n > j. Both sides of this equation must be multiplied by (2ℓ)−1 and then take
the limit as ℓ → ∞. Taking into account the equations (14), one obtains from above,
since

∣

∣

∣

∣

∣

(2ℓ)−1

∫ ℓ

−ℓ

∞
∑

k=n+1

ak exp[iλk(t)− λj(t)]dt

∣

∣

∣

∣

∣

≤
∞
∑

k=n+1

|ak| < ε,

provided n > N(ε) ⊂ N, and what remains from (33) when ℓ → ∞ is:

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

f(t)[−iλj(t)]dt = ak,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 16 (4) (2016) 398–419 410

i.e., the formula (32) for the coefficients of the function f(t) = the sum of the associated
Fourier series, with generalized exponents from Λ.

We can now proceed to prove the validity of the Parseval formula (32), for any
f ∈ AP1(R, C; Λ). Indeed, we have

∫ ℓ

−ℓ

|f(t)|2dt =

∫ ℓ

−ℓ

f(t)f̄(t)dt =

∫ ℓ

−ℓ

ΣΣdt, (36)

with Σ from (29)-(31); but, for large n, we can also write

f(t)f̄(t) =
n
∑

k=1

|ak|
2 +

n
∑

k,j=1

k 6=j

akāje
i[λk(t)−λ̄j(t)]

+

[

∞
∑

k=n+1

ake
iλkt

]

r̄n(t) +

[

∞
∑

k=n+1

āke
−iλk(t)

]

rn(t) + |rn(t)|
2,

(37)

with

rn(t) =
∞
∑

k=n+1

ake
iλkt.

Let us integrate both sides of the last equation (37) above, from −ℓ to ℓ, and multiply
both sides by (2ℓ)−1. If one takes into account the relationships (14), n is sufficiently
large, such that |rn(t)| < ε < 1 for n ≥ N(ε), then, integrating leads to the inequality
(38) below, as ℓ → ∞:

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt−

n
∑

k=1

|ak|
2 ≤ (2M + 1)ε, (38)

where M =
∞
∑

k=1

|ak| < ∞, because each of the last two terms in (37) is dominated in

modulus by M , while |rn(t)|
2 < ε2 < ε. From (38) one obtains the Bessel inequality,

which easily leads to Parseval (32). See our book [5], for instance.
Therefore, we conclude that Parseval’s formula (32) is valid for any f ∈ AP1(R, C; Λ).

We shall see, in the sequel, that its validity takes place in richer spaces of generalized
Fourier series, containing AP1(R, C; Λ).

To continue with the properties of the elements/functions of the space
AP1(R, C; Λ), we shall remark first that the boundedness on R, of each f ∈ AP1(R, C; Λ),
with Λ consisting of continuous generalized exponents, is a direct consequence of the
norm definition in formula (31). Let us point out the fact that this property remains
valid in more general spaces than C, for example when C is substituted by a complex
Banach space.

Another important fact following from the Parseval formula (32) is the existence of
the Poincaré mean value of the square of any f ∈ AP1(R, C; Λ). This property will be
taken in constructing a richer space of oscillatory functions, denoted by AP2(R, C; Λ).

We notice the property of continuity of the functions in AP1(R, C; Λ), fact easily
derived if we admit the continuity of elements in Λ (the generalized Fourier exponents)
and we rely on the absolute and uniform convergence of the series constituting the space
AP1(R, C; Λ).
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Concerning the property of uniform continuity of functions in AP1(R, C; Λ), known
to be valid for the special case when Λ = {λt; λ, t ∈ R}, we notice that we should look
closer at the set Λ of generalized exponents, the answer to the problem being certainly
determined by the properties of the elements of Λ.

Let us consider the formula from (31), namely

f(t) =

∞
∑

k=1

ak exp[iλk(t)], t ∈ R, (31)′

and estimate the difference f(t + h) − f(t), h > 0. One finds, based on the absolute
convergence of the series involved,

f(t+ h)− f(t) =

∞
∑

k=1

ak[exp iλk(t+ h)− exp iλk(t)], t ∈ R, h > 0, (39)

with help from the classical formula

exp iα = cosα+ i sinα, α ∈ R, (40)

one easily derive the Lipschitz type inequality for t ∈ R, h > 0, ε ≥ 1:

| exp i[λk(t+ h)]− exp[iλk(t)]| ≤ 2|λk(t+ h)− λk(t)|.

Therefore, one obtains from (39)

|f(t+ h)− f(t)| ≤ 2
∞
∑

k=1

|ak| |λk(t+ h)− λk(t)|, (41)

an inequality which can be discussed in regard to the properties of the set Λ of
generalized exponents.

The most direct answer seems to be the following:
The sequence {λk(t), k ≥ 1} ⊂ Λ admits a continuity module on R, say ω(h), with

h → 0 implying ω(h) → 0. In other words, one obtains from (41), f(t + h) → f(t) as
h → 0, uniformly with respect to t ∈ R. A more stringent condition would be to have
ω as a continuity module for all λ(t) ∈ Λ. This answer, in the weak form, is suggested
by the case when Λ = {λt; λ ∈ R, t ∈ R}, i.e., the almost periodic case for the space
AP1(R, C) of Poincaré. In this case, with λk(t) = λkt, λk ∈ R−{0}, t ∈ R, the continuity
module is ωk(h) = |λk|h.

Another formulation related to the concept of module of continuity could be phrased
in terms of equicontinuity of functions in the set Λ, or some of its parts; for instance, the
sequence of exponents {λk(t); k ≥ 1} is equicontinuous if, for each ε > 0, there exists
δ = δ(ε) > 0, such that |λk(t) − λk(s)| < ε, for any t, s ∈ R, such that |t − s| < δ.
In particular, any sequence {λk(t); k ≥ 1} ⊂ Λ, which is uniformly convergent on R,
satisfies the conditions of equicontinuity. Also, a compact subset, countable or not, of Λ,
which is compact in respect to the uniform convergence (for instance, a compact subset
of the space BC(R, C).

Obviously, from the discussion above, we can infer that the problem of uniform con-
tinuity of functions in AP1(R, C; Λ) has more than one answer. We invite the reader to
consider other cases when the uniform continuity is assured.
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In the last part of this section, we will consider an example of a space in the same
category as the space AP1(R, C; Λ), which presents a particular flavour and allows the
illustration of several kinds of convergence. Also, this example will display a sort of
classical type of space.

Namely, we shall assume that the set of generalized exponents is given by Λ =
AP (R,R), i.e., the space of real valued almost periodic functions in the sense of Bohr.

In this case, the series of the real parts of the terms in
∞
∑

k=1

ak exp[iλk(t)], which has

the form α0 +
∞
∑

k=1

[αk cosλk(t) + βk sinλk(t)], appears to belong to the third stage of

generalized Fourier Analysis.
Let us notice that each term in the series above reminding us of the classical form

of Fourier series is in APr(R), which means that a third stage in Fourier Analysis can
produce spaces of oscillatory functions also belonging to the classical heritage. Of course,
the main problem in constructing spaces of oscillatory functions consists in obtaining new
spaces, not pertaining to the classical category. The kind of convergence we associate
with the linear space of formal series, like (1), may or may not lead to the space AP (R, C),
or to a subspace of the latter in the case Λ = AP (R,R).

With these considerations, we end the problems/properties related to the space
AP1(R, C; Λ), moving to another space of oscillatory functions, constructed in a simi-
lar manner as above and relying on the construction and the consequences for the space
AP1(R, C; Λ).

4 Construction of the Space AP2(R, C; Λ)

In constructing the space of oscillatory functions, denoted by AP2(R, C; Λ), we can asso-
ciate the names of Besicovitch and Zhang to this type of space. In case of classical spaces
of almost periodic functions, the space AP2(R, C) represents the Besicovitch space. In
case of oscillatory functions spaces, the first examples are those described in Section 1
(Introduction) of this paper, when Λ = Q(R,R). See formulae (3) and (4) for details.
This type of space, with a special choice of Λ, is due to Zhang, who was the first to
express the need of getting more comprehensive spaces of oscillatory functions, than the
spaces of almost periodic functions. This need is motivated by the applications of Fourier
Analysis, found in engineering literature and pertinent references are included in Zhang’s
papers. His pseudo almost periodic functions (1992, Ph.D. thesis), which have generated
a vast literature in the last 20 years constitute a convincing example that shows the ne-
cessity of constructing new spaces of oscillatory functions. Moreover, the pseudo almost
periodic functions appear as ”perturbations” of the classical almost periodic functions,
while their theory has many points of contact with the old theory.

In order to construct the space of oscillatory functions AP2(R, C; Λ), we will introduce
in the linear (algebraic) space of generalized trigonometric series, with Λ as in the case
of the space AP1(R, C; Λ) already described, the norm

∣

∣

∣

∣

∣

∞
∑

k=1

ak exp[iλk(t)]

∣

∣

∣

∣

∣

AP2

=

(

∞
∑

k=1

|ak|
2

)1/2

, (42)

i.e., the norm of the classical space ℓ2 =

{

ak, k ≥ 1,
∞
∑

k=1

|ak|
2 < ∞

}

of Hilbert.
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In the space of sum functions, associated to the series space AP2(R, C; Λ), we shall
use the seminorm, compatible with (42), which looks

|f |AP2
=

[

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

|f(t)|2dt

]1/2

, (43)

which is derived from Poincaré mean value on R and has been used by Besicovitch in
the space B2(R, C) of his almost periodic functions (a natural generalization of Bohr’s
theory).

The compatibility will result from the validity of Parseval’s formula (32), whose va-
lidity has been already established in AP1. In order to obtain Parseval’s formula in case
f ∈ AP2(R, C; Λ), we can proceed in the same way as in case of the space AP1(R, C; Λ).

But we need, first, to look closely to the relationship/correspondence between series
in AP2 and sum-function attached. We shall show, first, that to each series in AP2 one
can attach a function belonging to the space L2

loc(R, C). Indeed, for such a series of

the form
∞
∑

k=1

ak exp[iλk(t)], with {ak; k ≥ 1} ⊂ ℓ2 and λk : R → R, we can write for

n, p ∈ N ,

lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

∣

∣

∣

∣

∣

n+p
∑

k=n+1

ak exp(iλk(t)]

∣

∣

∣

∣

∣

2

dt =

n+p
∑

k=n+1

|ak|
2, (44)

taking into account the orthogonality of the sequence of λk(t)’s and the relationship
|u|2 = uū. From (44) and our assumption, we have included in defining the AP2(R, C; Λ),

∞
∑

k=1

|ak|
2 < ∞, (45)

we conclude that the series of AP2(R, C; Λ) are convergent with respect to the seminorm
chosen for this space. Moreover, the convergence in AP2(R, C; Λ) is implying the
convergence in L2

loc(R, C). This property of Fourier series is proven in our paper [8], in
the special case Λ = {λt; λ ∈ R, t ∈ R}. It remains valid in the general case, when
λk(t), k ≥ 1, are more general functions than in the case λk(t) = λkt, k ≥ 1, λ ∈ R,
corresponding to the almost periodic functions of all known types.

We shall write, as usual in the theory of oscillatory functions, including the classical
types, in the traditional form

f(t) ≃

∞
∑

k=1

ak exp[iλk(t)], t ∈ R, (46)

the fact that the function f(t) is constructed by means of the series in the right hand
side of (46). The manner of determining the coefficients ak, k ≥ 1, in terms of f(t), will
be discussed in this section. The formulae providing the ak’s are

ak = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

f(t) exp[−iλk(t)]dt, (47)

i.e., formally, the same as (32), valid for f ∈ AP1(R, C; Λ).
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In order to derive (47) for f ∈ AP2(R, C; Λ), we shall mention the fact that the space
AP1(R, C; Λ) is everywhere dense in the space AP2(R, C; Λ). This property follows from
the fact that, taking into account the definitions of the norm/seminorm in the spaces
AP1 and AP2, the generalized trigonometric polynomials of the form

P (t) =

n
∑

k=1

ak exp[iλk(t)], t ∈ R, (48)

constitute everywhere dense sets in both spaces AP1 and AP2. Of course, the exponents
λk(t), 1 ≤ k ≤ n, are chosen from Λ, for either space.

Let us notice that (49) is elementary in case of f(t) being polynomial of the form
(48). We have proven its validity, above in this section, for any f ∈ AP1(R, C; Λ). Since
AP1 ⊂ AP2, due to the inclusion ℓ1 ⊂ ℓ2, we can regard the whole operations as taking
place in the space AP2(R, C; Λ).

As observed above, for each f ∈ AP2(R, C; Λ), there exists a sequence in AP1(R, C; Λ),
such that for each f ∈ AP2(R, C; Λ) one has f (j) → f in AP2(R, C; Λ), as j → ∞. But
the convergence of a sequence in either space AP1 or AP2, is uniform on coordinates.
That means that from

f (j) → f in AP2(R, C; Λ), (49)

there follow the convergence relations

a
j
k → ak as j → ∞, k ≥ 1, uniformly. (50)

There remains to prove that ak, k ≥ 1, are indeed the coefficients of f ∈ AP2(R, C; Λ).

It is useful to remark the following: If one deals with a countable set of series like the
set of series for f (j), j ≥ 1, there is no loss of generality if we assume that all series have
the same generalized Fourier exponents. This is achieved by adding terms, with zero
coefficients, after having the set of all exponents, forming a sequence, hence a countable
set. This operation does not influence the conditions of convergence (31) and (45).

There remains to prove that the limits ak, k ≥ 1, are given by the formulae (47), i.e.,

a
(j)
k − ak = lim

ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

[f (j)(t)− f(t)] exp[−iλk(t)]dt, (51)

tends to zero as j → ∞, k ≥ 1.
The following estimates are routine in a calculus course. Indeed, one has

∣

∣

∣

∣

∣

(2ℓ)−1

∫ ℓ

−ℓ

[f (j)(t)− f(t)] exp[−iλk(t)]dt

∣

∣

∣

∣

∣

≤ (2ℓ)−1

∫ ℓ

−ℓ

|f (j)(t)− f(t)|dt

≤ (2ℓ)−1

[

∫ ℓ

−ℓ

|f (j)(t)− f(t)|2dt

]1/2

(2ℓ)1/2

=

[

(2ℓ)−1

∫ ℓ

−ℓ

|f (j)(t)− f(t)|2dt

]1/2

.

(52)
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The last term in (52) is as ℓ → ∞, exactly the norm of f (j)(t) − f(t) ∈ AP2(R, C; Λ),
which implies it tends to zero as j → ∞, by the choice of the approximating sequence
{f (j)(t); j ≥ 1} ⊂ AP2(R, C; Λ). Taking into account (51) and (52), one obtains what is
required to derive that (49) is correct, it representing the connection between the Fourier
series and its generalized sum, in AP2(R, C; Λ).

Based on facts easily obtained in case of the space AP1(R, C; Λ), which is dense in
the space AP2(R, C; Λ), we can extend results from AP1(R, C; Λ) to the richer space
AP2(R, C; Λ), using the procedure above, when getting the formulae for the coefficients
of the generalized Fourier series.

For instance, the Parseval equality (32), valid for f ∈ AP1(R, C), can be extended as
proceeded above for f ∈ AP2(R, C; Λ). It will look exactly as (32), which in the geometry
of the Hilbert space ℓ2 = ℓ2(N, C) means that the ”length” of the limit of a convergent
sequence is the limit of the sequence of lengths of the terms in the sequence. We leave to
the reader the task of carrying out the details of the proof of (32), for f ∈ AP2(R, C; Λ).
Of course, Λ has to be the same set of generalized Fourier exponents, in AP1 and AP2.

Another proof of the Parseval formula (32) can be obtained based on the model we
inherited from the classical period of almost periodicity. The details can be found in
the author’s book [5], as well as in many other sources. Instead of the exponents λkt,
for almost periodic functions, one can substitute the general exponents λk(t) ∈ Λ, for
oscillatory functions.

Further properties of the space AP2(R, C; Λ) can be derived, taking into account its
structure of a Banach space, whose elements are generalized Fourier series of the form
(1).

We want to define the identity of two series of the form
∞
∑

k=1

ak exp[iλk(t)], with the

usual significance of the data involved: one must have λk(t) ∈ Λ = the set of general-
ized exponents, the same in both formal series and with equal coefficients for the same
exponent.

When a norm or a seminorm is defined, usually implying a kind of convergence,
we obtain a linear normed space which requires the completeness in order to become a
Banach space. Another type of condition can be imposed, to help organizing the space
of series (for instance, a kind of summability).

Once found a way of organizing the space of series like a linear metric space, the
next step is to move from the series space to a function space, the series playing the
role of a vehicle, or an intermediate stage, in the construction of the function space.
We have illustrated this in constructing the spaces AP1(R, C; Λ) and AP2(R, C; Λ). In
the literature, see particularly the quotation in the bibliography to this paper under
the names of Osipov and Zhang, cases which we have summarily presented in the
Introduction. Basically, one obtains such spaces of oscillatory functions by using the
procedure of completion with respect to various norms or seminorms of simpler spaces
(usually, classical ones).

5 More Spaces of Oscillatory Functions

It is clear from the preceding sections of this paper, including the Introduction, that once
we succeed to find a set Λ of generalized Fourier exponents, one can construct several
types of spaces of oscillatory functions. So far, we’ve got acquainted, to some extent,
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with the spaces built up by Osipov, Zhang and those in Sections 3 and 4, denoted by
AP1(R, C; Λ) and AP2(R, C; Λ). In case of spaces AP1(R, C; Λ) and AP2(R, C; Λ), the set
of generalized Fourier exponents Λ does not possess an algebraic structure, necessarily.
The operations of multiplication of elements will imply the necessity of having the set
Λ organized as an additive group of real-valued functions on R. The classical examples,
periodic and almost periodic, illustrate the need and the involved groups: in the periodic
case, the set Λ is given by Λ = {λt; λ = kω, k ∈ Z, ω > 0, constant} = any closed
subgroup of the topological group R; in the almost periodic case, Λ = {λt; λ, t ∈ R}.
In the Introduction, in case of the examples due to Osipov and Zhang, the generalized
exponents for the Osipov type oscillatory functions have the form Λ = {at2 + bkt; a ∈
R, bk ∈ R}, while in case of Zhang constructions, the generalized Fourier exponents
belong to the set Q(R;R); see formulae (3), (4), where the definition of the set Q(R;R)
is provided.

Section 2 is attempting to provide some tools in finding generalized exponents for
series forming oscillatory spaces. The problem of finding such exponents must be inves-
tigated further. Some suggestions must come from the applicative problems. One can
construct already many spaces of oscillatory functions, but their significance is depending
of their area of applications.

In this closing section, we shall briefly list and describe some other spaces of oscil-
latory functions, constructed in several ways, always starting with a set of formal series
characteristic for oscillatory functions and giving some comments on possible develop-
ments of the theory, formulating also some open problems. Of course, these ideas are
directed toward the theoretic, but also deeply practical aim, to have in the future a de-
veloped theory of the spaces of oscillatory functions. This development, if achieved, will
certainly constitute the third stage in the Fourier theory of vibrations and waves.

We shall start with the definition of the oscillatory function spaces we shall denote
by APr(R, C; Λ), 1 < r < 2, the cases r = 1, 2 being treated in the preceding section.
Taking the example from existing literature, namely Shubin [16] and Corduneanu [5],
the series spaces APr(R, C; Λ) will be formed from the generalized Fourier series like (1),

i.e.,
∞
∑

k=1

ak exp[iλ(t)], with ak ∈ C and λk ∈ C(R,R), λk ∈ Λ, k ≥ 1, with the following

property:
∞
∑

k=1

|ak|
r < ∞. (53)

We introduce the norm, in the linear space (over C), of the set of formal series of the
form (1), by the formula

∣

∣

∣

∣

∣

∞
∑

k=1

ak exp[iλk(t)]

∣

∣

∣

∣

∣

AP1

=

(

∞
∑

k=1

|ak|
r

)1/r

. (54)

These norms are known as Minkowski’s norms and the related inequalities are making
easier the proof of the norm properties in linear normed spaces. The completion of
the space of series satisfying (53) follows from the simple remark that the polynomials

associated to such series (sections like
n
∑

k=1

ak exp[iλk(t)]), form an everywhere dense set

in AP (R, C; Λ). Hence, the spaces APr(R, C; Λ) can be organized as Banach spaces.
These spaces, with 1 < r < 2, enjoy many properties that can be derived from the
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inclusions
AP1 ⊂ APr ⊂ APs ⊂ AP2, 1 < r < s < 2, (55)

which show that they are part of AP2, the space we have constructed above. In particular,
being also AP2-series, they have Fourier type series (generalized) of the form (1).

For a more detailed discussion of one space in the categories of APr-spaces, one
can consult the author’s paper [6]. Several applications are provided for several types
of functional differential equations, including integral equations, convolution and mixed
types of functional equations (integro-differential, convolutions, delay type).

Like in the special case when Λ = {λt; λ, t ∈ R}, i.e., the almost periodic type of
functions, the series spaces APr(R, C; Λ), with the same Λ, they form a scale of oscillatory
functions when we regard their elements as parts of AP2(R, C; Λ), for which space we
have more accessible information (they are modeled on the Hilbert space ℓ2(N, C)). The
stronger type of convergence we find in AP1(R, C; Λ), while the weaker one corresponds
to AP2(R, C; Λ).

We point out the fact that spaces of this scale have been seldom in attention of
researchers. Many problems, like convergence of their series in different meanings (say,
pointwise to uniform or a.e.) still wait for detailed investigation. Also, the problem of
compactness for sets in such spaces is still unsolved, excepting in case of Zhang’s space
SLP (R, C; Λ), for Λ = Q(R;R). See Zhang [19] and the Appendix in Corduneanu’s et
al. book [10].

With regard to the space SLP (R, C; Λ), in more general cases than a specific Λ has
been considered, it is worth getting in some details of the construction. This type of
space is different from those in the scale APr(R, C; Λ), 1 ≤ r ≤ 2, in the fact that,
instead of conditions on the coefficients only, like (28), (45), from the beginning one
imposes the type of convergence. Namely, the space SLP (R, C; Λ) is the function space
whose elements/functions can be uniformly approximated on R by means of generalized
trigonometric polynomials of the form (4).

Since Zhang wanted to organize the space as an algebra, which idea brought some
advantages, the special type of Λ has been used. A question: are there other choices for
Λ, in order to achieve new spaces in the family of SLP (R,Q)?

Zhang [19] relied on this space (Λ = Q) to construct two new spaces of generalized
Fourier type (oscillatory functions spaces).

These new spaces generalize the Besicovitch type of almost periodicity. In very brief
format, the first of these spaces is obtained by completing the space SLP (R, C;Q) with
respect to the norm

f → {M(|f |2)}1/2, (56)

while the second is the completion of SLP (R, C; Λ) with respect to the norm

f → M(|f |), (57)

where M stands for the Poincaré mean value on R. It turns out that the normed spaces
with either norm (56) or (57) are not complete, in general. For instance, the norm which
is given by (57), derives from

M(g) = lim
ℓ→∞

(2ℓ)−1

∫ ℓ

−ℓ

g(t)dt,

and satisfies the inequality |M(g)| ≤ |g|, where |g| represents the supremum norm (as
used by Zhang in constructing SLP (R, C;Q)). But, in the case of almost periodic
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functions space AP (R, C), the space itself generates the Besicovitch space B(R, C),
or B = B1, which is not complete. See an example in Corduneanu et al. [10], the
Appendix, or in [8]. Examples for oscillatory functions spaces await their apparition.
That’s depending on the possibility of getting an adequate Λ.

In the author’s paper [7], one finds a reconstruction of the Bohr space AP (R, C),

starting from the set of all formal trigonometric series of the form
∞
∑

k=1

ak exp[iλt], t ∈ R,

with ak ∈ C and λk ∈ R, k ≥ 1.
The condition which allows us to detach those that characterize those of Bohr almost

periodic functions is somewhat of a different nature than conditions (28) and (45), utilized
above. Instead of imposing conditions on coefficients, of a quantitative nature, we shall
require that the series be summable by a linear method (for instance, the Cesaro-Fejer-
Bochner method), with respect to the uniform convergence on R. The set of exponents,
apparently, does not play a direct role, such method being also based on the coefficients.

Indeed, it is known, from the theory of Bohr almost periodic functions, that their
series are summable by the Cesaro-Fejer-Bochner method with respect to the uniform
convergence on R. Then, the ”sum” is Bohr almost periodic. In other words, a trigono-

metric series like
∞
∑

k=1

ak exp[iλkt], ak ∈ C, λ ∈ R, k ≥ 1, is characterizing an almost

periodic function in Bohr space AP (R, C), iff it is summable with respect to the uniform
convergence on RF . As we know, the uniform convergence is induced by the supremum
norm.

In concluding this paper, we emphasize again the need of investigation of these spaces
of series, like (1), defining the third stage of development in generalized Fourier Analysis.
Of course, the Fourier Analysis has many other chapters, inspired by the investigation of
classical series and the extension of such aspects appears as a future task for researchers.
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