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Abstract: This paper concerns with approximate (exact) controllability of nonlocal
impulsive fractional order semilinear control system with time varying delay. Simple
sufficient conditions for the controllability are derived by assuming that the corre-
sponding linear control system is controllable. The results are established under the
Lipschitz continuity of nonlinear function. In particular, compactness of the semi-
group and uniform boundedness of nonlinear function both are dropped. Finally,
some examples are given to illustrate the developed theory.
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1 Introduction

During the last three decades, various problems on fractional order systems have been
investigated. Fractional order semilinear equations arise in the modeling of the prob-
lems in engineering, physics, medicine, finance, control and many other fields. Particu-
larly, fractional order equations frequently appear in diffusion process, electrical science,
electrochemistry, control science and several more. For more details see [1–6] and the
references cited therein.

Controllability is the qualitative property of dynamical systems and is of particular
importance in mathematical control theory. In literature various controllability problems
for different types of semilinear dynamical systems have been studied [7–19] using several
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methods. Among these methods, the fixed point approach is frequently used to show the
controllability of the system, in which the authors converted the controllability problem
into a fixed point problem with the assumption that the controllability operator has an
induced inverse in a function space [20–24]. In this approach, an inequality condition is
always required that involves various system parameters and sometimes this condition is
difficult to verify in applications.

A large number of physical dynamic systems and biological processes include time
varying delay. The delays in engineering systems such as electric systems are often time-
varying and sometimes vary violently with time. It is however not necessary that a system
containing either time-invariant or time-varying delays is controllable. Thus the study
of various types of controllability is important for application points of view. Tomar and
Kumar [25] proved the approximate controllability of first order semilinear system with
time varying delay. In [26] Muthukumar et al. showed the approximate controllability of
nonlinear stochastic evolution time-varying delay systems. The approximate controlla-
bility of semilinear system in which the nonlinear term contains fixed delay in the state
has been addressed in [14, 27]. The approximate controllability of semilinear fractional
control systems, where the control function depends on multi-delay arguments and the
nonlocal condition is fractional, is discussed by Debbouche and Torres [28]. Recently,
Ji [29] studied the approximate controllability of fractional order control system without
the compactness conditions or Lipschitz conditions for the nonlocal function.

The dynamics of many processes are subject to abrupt changes, such as shocks, har-
vesting and natural disasters. Short term perturbations from continuous and smooth
dynamics are involved in these phenomena and the duration of these perturbations is
negligible in comparison with the duration of an entire evolution. Impulsive equations
have been developed in important fields of science and technology such as modeling of
impulsive problems in physics, population dynamics, ecology, biotechnology, etc. and
hence the study of such systems is important. The existence and uniqueness of the
mild solution of fractional order impulsive semilinear system is discussed in [30, 31].
Using Krasnoselskii’s fixed point theorem Tai and Wang [32] studied the controllabil-
ity of fractional order impulsive neutral functional integrodifferential systems in Banach
space. Sufficient conditions for the controllability of the impulsive fractional evolution
integrodifferential equations in Banach spaces are established using Banach’s fixed point
theorem [33]. Kumar and Sukavanam [34] proved approximate controllability of frac-
tional order semilinear delayed systems under the Lipschitz continuity of nonlinear func-
tion and extended the results for impulsive systems also. Using Darbo-Sadovskii’s fixed
point theorem, sufficient conditions for approximate controllability of impulsive fractional
integro-differential systems with nonlocal conditions in Hilbert space are derived by Bal-
asubramaniam et al. [35]. However, it should be stressed here that there is no paper on
approximate controllability of impulsive nonlocal fractional order system so far in which
the nonlinear term contains time varying delay. This is the motivation of the present
paper.

The main objective of this paper is to provide simple sufficient conditions for approx-
imate controllability of semilinear systems (2). In this approach, uniform boundedness
of nonlinear function, compactness of C0-semigroup and inequality condition involving
system parameters are not required. Hence the results are more general and applied to a
large number of class of semilinear systems. To establish the results a relation between
the reachable set of semilinear system and that of the corresponding linear system is
shown. Finally, sufficient conditions for the controllability of fractional order impulsive
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system (1) are obtained. The nonlinear term and nonlocal condition make the paper
different from [34].

The paper is organized as follows: in Section 2, the problem formulation is presented.
We give some basic definitions and lemma in Section 3. Sufficient conditions for approx-
imate controllability are obtained in Section 4. To illustrate the theory some examples
are provided in Section 5.

2 Problem Formulation

Let V , V̂ be Banach spaces and Z = L2([0, τ ];V ), Y = L2([0, τ ]; V̂ ) be the corresponding
function spaces. Further, let Ct := C([−r, t];V ), r > 0, 0 ≤ t ≤ τ < ∞ be a Banach
space of all continuous functions from [−r, t] into V and the norm on Ct be defined by

‖ϕ‖Ct
= sup

−r≤η≤t
‖ϕ(η)‖V .

Let 0 < t1 < t2 < ... < tm < τ . Consider the following fractional order nonlocal
impulsive system with time varying delay

cDα
t x(t) = Ax(t) +Bu(t) + f(t, x(σ(t))), t ∈]0, τ ];
h(x) = ϕ, on [−r, 0];

∆x|t=tk = Ik(x(tk)), k = 1, 2, ...,m,







(1)

where cDα
t is the Caputo fractional derivative of order α; 1/2 < α < 1. The state x(·)

takes values in Banach space V ; the control function u(·) takes values in Y ; A : D(A) ⊆
V → V is a linear operator with dense domain D(A) generating a C0-semigroup T (t); B
is a bounded linear operator from V̂ to V ; the function f : [0, τ ] × V → V is nonlinear;
σ : [0, τ ] → [−r, τ ] is a nondecreasing, non-expensive map such that it satisfies delay
property i.e. σ(t) ≤ t, ∀ t ∈ [0, τ ]; h : C0 → C0 and there exists a function χ ∈ C0 such
that h(χ) = ϕ. For some examples of h one can see [36]. Here Ik, k = 1, 2, ...,m are
appropriate functions and ∆x|t=tk = x(t+k )−x(t

−
k ), where x(t

+
k ) and x(t

−
k ) represent the

right and left limits of x(t) at t = tk, respectively. Let PC([−r, τ ], V ) = {x : [−r, τ ] →
V : x(t) be continuous everywhere except for some tk at which x(t−k ) and x(t+k ) exist
and x(t−k ) = x(tk)}. It is easy to see that PC([−r, τ ], V ) is a Banach space with the
norm

‖x‖PC = sup{‖x(t)‖ : t ∈ [0, τ ]}.

To establish sufficient conditions for controllability of system (1), we first discuss
controllability of the following nonlocal fractional order semilinear control system with
time varying delay

cDα
t x(t) = Ax(t) +Bu(t) + f(t, x(σ(t))), t ∈]0, τ ];
h(x) = ϕ, on [−r, 0].

}

(2)

3 Preliminaries

In this section some basic definitions and lemma, which are useful for further develop-
ments, are given.
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Definition 3.1 A real function f(t) is said to be in the space Cα, α ∈ R if there
exists a real number p > α, such that f(t) = tpg(t), where g ∈ C[0,∞[ and it is said to
be in the space Cm

α iff f (m) ∈ Cα, m ∈ N .

Definition 3.2 The Riemann-Liouville fractional integral operator of order β > 0 of
function f ∈ Cα, α ≥ −1 is defined as

Iβf(t) =
1

Γ(β)

∫ t

0

(t− s)β−1f(s)ds,

where Γ is the Euler gamma function.

Definition 3.3 If the function f ∈ Cm
−1 and m is a positive integer then we can

define the fractional derivative of f(t) in the Caputo sense as

cDα
t f(t) =

1

Γ(m− α)

∫ t

0

(t− s)m−α−1fm(s)ds, where m− 1 ≤ α < m.

Definition 3.4 [37] A function x ∈ Cτ is said to be the mild solution of (2) if it
satisfies

x(t) = Sα(t)χ(0) +

∫ t

0

(t− s)α−1Tα(t− s)[Bu(s) + f(s, x(σ(s)))]ds, t ∈ [0, τ ];

x(t) = χ(t), t ∈ [−r, 0],

where

Sα(t)x =

∫ ∞

0

φα(θ)T (t
αθ)xdθ,

Tα(t)x = α

∫ ∞

0

θφα(θ)T (t
αθ)xdθ.

Here φα(θ) = 1
αθ

−1−1/αψα(θ
−1/α) is the probability density function defined on

(0,∞), that is φα(θ) ≥ 0, and
∫∞

0 φα(θ)dθ = 1. We define ψα(θ) as ψα(θ) =
1
πΣ

∞
n=1(−1)n−1θ−nα−1 Γ(nα+1)

n! sin (nπα), θ ∈ (0,∞).

Definition 3.5 Let x(τ) be the state value of system (2) at time τ corresponding to
the control u. The system (2) is said to be approximately controllable in time interval
[0, τ ], if for every desired final state ξ and ǫ > 0 there exists a control function u ∈ Y
such that the solution of (2) satisfies

‖x(τ)− ξ‖ ≤ ǫ.

The above definition gives exact controllability of system (2) iff ǫ = 0.

The set Kτ (f) = {x(τ) ∈ V : x(·), is the mild solution of (2)} and is called the reach-
able set of the system (2). If f ≡ 0, then the system (2) is known as the corresponding
linear system and denoted by (2)∗. In this case, Kτ (0) denotes the reachable set of the
linear system (2)∗.

Definition 3.6 The system (2) is said to be approximately (exactly) controllable on
[0, τ ] if Kτ (f) = V (Kτ (f) = V ), where Kτ (f) denotes the closure of Kτ (f). Clearly, the
corresponding linear system (2)∗ is approximately controllable if Kτ (0) = V.
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Lemma 3.1 For any fixed t ≥ 0, Sα(t) and Tα(t) are linear and bounded operators,
that is, for any x ∈ V , ‖Sα(t)x‖ ≤ M‖x‖ and ‖Tα(t)x‖ ≤ Mα

Γ(α+1)‖x‖, where M is a

constant such that ‖T (t)‖ ≤M , for all t ∈ [0, τ ] (see Lemma 3.2 [37]).

We now define the operator F : Z → Z as

[Fx](t) = f(t, x(σ(t))); x ∈ Z.

The following conditions are required to establish the results:

[H1] The nonlinear function satisfies the Lipschitz continuity, i.e. there exists some
positive constant l such that

‖f(t, x)− f(t, y)‖V ≤ l‖x− y‖Cτ
, for all x, y ∈ V.

Remark 3.1 Under assumption [H1] one can easily verify that the mild solution of
system (2) exists and is unique.

[H2] Range of function F is a subset of closure of range of B, i. e.

R(F ) ⊆ R(B).

Remark 3.2 To support this condition an example is given. Also if B = I the
range condition is trivially true. In several real life problems the above condition is also
satisfied [38].

[H3] The linear system (2)∗ is approximately controllable.

4 Main Results

4.1 Controllability of semilinear system

Theorem 4.1 Under the assumptions [H1]-[H3] the fractional order semilinear con-
trol system (2) is approximately controllable.

Proof. To prove the result, we will show that Kτ (0) ⊂ Kτ (f). For this, we assume
that x(·) is the mild solution of (2)∗ corresponding to a control u ∈ Y which is given by

x(t) = Sα(t)χ(0) +
∫ t

0 (t− s)α−1Tα(t− s)Bu(s)ds, t ∈ [0, τ ];
x(t) = χ(t), t ∈ [−r, 0].

}

(3)

Since Fx ∈ R(B) (by [H2]), for a given ǫ > 0 there exists a control function w ∈ Y such
that

‖Fx−Bw‖Z ≤ ǫ. (4)

We now assume that y(t) is the mild solution of (2) corresponding to the control (u−w)
in Y then

y(t) = Sα(t)χ(0) +
∫ t

0 (t− s)α−1Tα(t− s){B(u− w) + [Fy]}(s)ds, t ∈ [0, τ ];
y(t) = χ(t), t ∈ [−r, 0].

}

(5)
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If t ∈ [0, τ ] then from (3) and (5), we have

x(t) − y(t) =

∫ t

0

(t− s)α−1Tα(t− s)[Bw − Fy](s)ds

=

∫ t

0

(t− s)α−1Tα(t− s)[Bw − Fx](s)ds

+

∫ t

0

(t− s)α−1Tα(t− s)[Fx− Fy](s)ds.

Taking norm on both sides and using (4), we get

‖x(t)− y(t)‖V ≤

∫ t

0

(t− s)α−1‖Tα(t− s)‖‖Bw(s)− Fx(s)‖V ds

+

∫ t

0

(t− s)α−1‖Tα(t− s)‖‖[Fx](s)− [Fy](s)‖ds

≤
Mα

Γ(α+ 1)

(

∫ t

0

(t− s)2α−2ds
)1/2

×

(

∫ t

0

‖Bw(s) − Fx(s)‖2ds
)1/2

+
Mα

Γ(α+ 1)

∫ t

0

(t− s)α−1‖[Fx](s)− [Fy](s)‖V ds

≤
Mα

Γ(α+ 1)

(

∫ t

0

(t− s)2α−2ds
)1/2(

‖Fx−Bw‖Z

)

+
Mα

Γ(α+ 1)

∫ t

0

(t− s)α−1‖[Fx](s)− [Fy](s)‖V ds

≤
Mαǫ

Γ(α+ 1)

(

∫ t

0

(t− s)2α−2ds
)1/2

+
Mα

Γ(α+ 1)
×

∫ t

0

(t− s)α−1‖f(s, x(σ(s))) − f(s, y(σ(s)))‖V ds

≤
Mαǫ

Γ(α+ 1)

√

τ2α−1

2α− 1

+
Mlα

Γ(α+ 1)

∫ τ

0

(τ − s)α−1‖x− y‖Cτ
ds.

For all values of t ∈ [−r, τ ], we have

‖x(t)− y(t)‖V ≤
Mαǫ

Γ(α+ 1)

√

τ2α−1

2α− 1
+

Mlα

Γ(α+ 1)

∫ τ

0

(τ − s)α−1‖x− y‖Cτ
ds.

Using Gronwall’s inequality, we get

‖|x− y‖Cτ
≤

Mαǫ

Γ(α+ 1)

√

τ2α−1

2α− 1
exp

(

Mlα

Γ(α+ 1)

∫ t

0

(t− s)α−1ds

)

≤
Mαǫ

Γ(α+ 1)

√

τ2α−1

2α− 1
exp

(

Mlτα

Γ(α+ 1)

)

.
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Since the right hand side of above inequality depends on ǫ > 0 and ǫ is arbitrary, it is
clear that ‖x − y‖Cτ

can be made arbitrary small by choosing suitable value of control
function w. It now follows that the reachable set of system (2) is dense in the reachable
set of system (2)∗, which is dense in V due to condition [H3]. Hence the approximate
controllability of (2)∗ implies that of the semilinear control system (2). This completes
the proof.

4.2 Controllability of Impulsive System

We now prove the approximate controllability of the system (1).

Definition 4.1 [30, 31] The mild solution of the system (1) is a function x ∈
PC([−r, τ ];V ) such that it satisfy the following integral equation

x(t) =











































Sα(t)χ(0) +
∫ t

0 (t− s)α−1Tα(t− s)[Bu(s) + f(s, x(σ(s)))]ds, t ∈]0, t1];

Sα(t− t1)[x(t
−
1 ) + I(x(t−1 ))] +

∫ t

t1
(t− s)α−1Tα(t− s)[Bu(s)

+f(s, x(σ(s)))]ds, t ∈]t1, t2];
· · ·

Sα(t− tm)[x(t−m) + I(x(t−m))] +
∫ t

tm
(t− s)α−1Tα(t− s)[Bu(s)

+f(s, x(σ(s)))]ds, t ∈]tm, τ ];
χ(t), t ∈ [−r, 0].

To establish the result we need one more hypothesis on the impulsive function as follows:
[H4] The functions Ik, k = 1, 2, · · · ,m are continuous and uniformly bounded.

Theorem 4.2 Under the assumptions [H1]–[H4] the fractional order semilinear con-
trol system (1) is approximately controllable.

Proof. Let y(t) be the mild solution of (1) corresponding to the control (u−w) then

y(t) =



















































Sα(t)χ(0) +
∫ t

0 (t− s)α−1Tα(t− s)[B(u − w)(s)
+f(s, y(σ(s)))]ds, t ∈]0, t1];

Sα(t− t1)[y(t
−
1 ) + I(y(t−1 ))] +

∫ t

t1
(t− s)α−1Tα(t− s)[B(u− w)(s)

+f(s, y(σ(s)))]ds, t ∈]t1, t2];
· · ·

Sα(t− tm)[y(t−m) + I(y(t−m))] +
∫ t

tm
(t− s)α−1Tα(t− s)[B(u − w)(s)

+f(s, y(σ(s)))]ds, t ∈]tm, τ ];
χ(t), t ∈ [−r, 0].

The mild solution x(t) of (2)∗ corresponding to a control u is given by

x(t) = Sα(t)χ(0) +

∫ t

0

(t− s)α−1Tα(t− s)Bu(s)ds, t ∈]0, τ ];

x(t) = χ(t), t ∈ [−r, 0].

To show the approximate controllability of semilinear system (1), we divide the interval
[−r, τ ] into subintervals [−r, 0], ]0, t1], ]t1, t2], · · · , ]tm, τ ]. Now if t ∈]− r, t1] the approx-
imate controllability of the system follows from Theorem 4.1. If t ∈]t1, t2], since both
y(t−1 ) and I(y(t

−
1 )) are bounded, we are able to prove the approximate controllability in

the interval t ∈]t1, t2] as shown in Theorem 4.1. Similarly, we can show the approximate
controllability in subsequent intervals. This completes the proof of the theorem.
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5 Examples

In this section, we give examples to show the effectiveness of the developed theory.

Example 5.1 Let V = L2(0, π) and A ≡ d2

dx2 with D(A) consisting of all y ∈ V with
d2y
dx2 and y(0) = 0 = y(π). Put

φn(x) = (
2

π
)1/2 sin(nx); 0 ≤ x ≤ π, n = 1, 2, · · · ,

then {φn} is an orthonormal base for V and φn is the eigenfunction corresponding to the
eigenvalue λn = −n2 of the operator A. Then the C0-semigroup T (t) generated by A has
exp(λnt) as the eigenvalues and φn as their corresponding eigenfunctions, see [39].

Define an infinite-dimensional space V̂ by

V̂ =

{

u | u =

∞
∑

n=2

unφn, with

∞
∑

n=2

u2n <∞

}

.

The norm in V̂ is defined by

‖u‖V̂ =

(

∞
∑

n=2

u2n

)1/2

.

Define a continuous linear map B from V̂ to V as

Bu = 2u2φ1 +

∞
∑

n=2

unφn for u =

∞
∑

n=2

unφn ∈ V̂ .

Let us consider the following fractional order semilinear control system of the form

cDα
t y(t, x) =

∂2y(t, x)

∂x2
+Bu(t, x) + f(t, y(σ(t))); t ∈ [0, τ ], 0 < x < π

y(t, 0) = y(t, π) = 0; t > 0

y0(x) =
1

r

∫ 0

−r

exp (2s)y(s, x)ds. (6)

Let σ(t) = t2

t2+1 − r be time varying aftereffect such that σ(t) ≤ t for all t ∈ [0, τ ]. If
we take h(y)(t) = g(y) for y ∈ C0, t ∈ [−r, 0]; ϕ = y0, where g : C0 → V is such that

g(y)(x) = 1
r

∫ 0

−r
exp (2s)y(s, x)ds. Thus we are able to define a function χ ∈ C0 such that

χ(t) = 1
ky0 on [−r, 0] with k = 1

r

∫ 0

−r exp (2s)ds 6= 0 and

h(χ)(t) =
1

r

∫ 0

−r

exp (2s)

(

1

k
y0

)

ds = y0 = ϕ(t).

Thus the system (6) can be written in the abstract form given by (2). If the conditions
[H1]–[H3] are satisfied, then the approximate controllability of system (6) follows from
Theorem 4.1. For example, if we consider the function f as

f(t, z) = l‖z‖(φ3(z) + φ4(z)),

where l is a positive constant. Here it is clear that f satisfies [H3] with Lipschitz constant
l and R(f) ⊂ R(B). However, it should be noted that the nonlinear term is not uniformly
bounded.
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Example 5.2 Let us consider the following fractional order impulsive system with
finite delay

cDα
t y(t, x) =

∂2y(t, x)

∂x2
+Bu(t, x) + f(t, y(t− r, x)); t ∈ [0, τ ], 0 < x < π,

y(t, 0) = y(t, π) = 0; t > 0,

y(t, x) = ϕ; t ∈ [−r, 0],

y(t+k , x) − y(t−k , x) = Ik(y(t
−
k , x)); k = 0, 1, 2, · · · , (7)

where Ik > 0, k = 1, 2, · · · ,m and ϕ ∈ D = {ν : [−r, τ ] → V : ν(t) is continuous
everywhere except for some tk at which ν(t−k ) and ν(t

+
k ) exist and ν(t

−
k ) = ν(tk)}.

The system (7) can be reformulated in the abstract form given by (1). The ap-
proximate controllability of the system (7) follows from Theorem 4.2 if the conditions
[H1]–[H4] are satisfied.

Conclusion

The approximate controllability of nonlocal impulsive fractional order semilinear time
varying delay systems is proved. In literature, fixed-point theory has been used to estab-
lish the approximate controllability of semilinear control systems. This approach needs
certain inequality conditions involving various system parameters which are sometimes
difficult to be verified. Here, the approximate controllability of nonlocal impulsive frac-
tional order semilinear control system has been proved for a certain class of nonlinear
functions under simple sufficient conditions.
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