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1 Introduction

Controllability concepts play a vital role in deterministic control theory. It is well known
that controllability of deterministic equation is widely used in many fields of science
and technology. Kalman [16] introduced the concept of controllability for finite dimen-
sional deterministic linear control systems. Then Barnett [3] and Curtain [5] introduced
the concepts of deterministic control theory in finite and infinite dimensional spaces.
Balachandran [2] and Dauer et al. [7] studied the controllability of nonlinear systems in
infinite dimensional spaces. The controllability of linear and nonlinear systems in infinite
dimensional spaces has been extensively studied by many authors, when the operator A
is densely defined, see [2, 7, 15, 19, 21, 23, 26]. On the other hand, we sometimes need
to deal with non-densely defined operator. It is a very important case, which occurs in
many practical situations. For example, the space C1 with null values on the bound-
aries is not dense in the space of continuous functions, see [6]. For more examples and

∗ Corresponding author: mailto:urvashiaroraiitr@gmail.com

c© 2017 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/http://e-ndst.kiev.ua 5

mailto: urvashiaroraiitr@gmail.com
http://e-ndst.kiev.ua


6 URVASHI ARORA AND N. SUKAVANAM

details on non-densely defined operators, one can refer [6, 8]. Xianlong [10] considered
this case and studied the controllability of the semilinear system with delay, in which the
nonlinear function was uniformly bounded. Recently many authors have discussed this
case [17, 20].

Moreover, nonlocal conditions have a better effect on the solution and are more pre-
cise for physical measurements than classical condition x(0) = x0 alone. Byszewski and
Lakshmikantham [4] introduced nonlocal conditions into the initial value problems and
argued that the corresponding models more accurately describe the phenomena since
more information was taken into account at the oneset of the experiment, thereby re-
ducing the ill effects incurred by a single initial measurement. Also, in controllability
literature, it is common to use fixed point theory to prove the controllability of the sys-
tem, which makes it necessary to assume certain inequality conditions involving system
constants.(For example, see inequality (3) in [9]). In this paper, it is shown that for
certain type of nonlinear functions, the non-densely defined semilinear control system
with nonlocal conditions is approximately controllable without assuming any inequality
conditions on the system constants.

Let U and V be two Banach spaces. Y = L2[0, T ;U ] and Z = L2[0, T ;V ] be the
corresponding function spaces respectively defined on J = [0, T ], 0 ≤ T < ∞. Consider
the semilinear control system with nonlocal conditions:

dy(t)

dt
= Ay(t) +Bv(t) + f(t, y(t)) for t ∈ (0, T ],

y(0) = y0 + g(y),

}

(1.1)

where the state y(t) takes values in space V and v : [0, T ] → U is the control function.
B is a bounded linear operator from U into V . The map f : [0, T ]× V → V is a purely
nonlinear function and g(y) is a continuous function from C(J, V ) → V . A : D(A) ⊂
V → V is a closed (not necessarily bounded) linear operator whose domain D(A) need
not be dense in V . The linear system corresponding to (1.1) is given by

dy(t)

dt
= Ay(t) +Bu(t) for t ∈ (0, T ],

y(0) = y0 + g(y),

}

(1.2)

where u : [0, T ] → U is the control function for the linear system.

2 Preliminaries

We introduce the integrated semigroup.

Definition 2.1 Let V be a Banach space. A one parameter family of bounded linear
operators {S′(t) : t ≥ 0} from V into itself is said to be an integrated semigroup on V if

1. S′(0) = 0.

2. t → S′(t) is strongly continuous.

3. S′(s)S′(t) =

∫

s

0

{S′(t+ r) − S′(r)}dr = S′(t)S′(s); for all t, s ≥ 0.

Definition 2.2 [10] A function y : [0, T ] → V is said to be an integrated solution of
the system (1.1) if the following conditions hold
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1. y is continuous on [0, T ].

2.

∫

t

0

y(s)ds ∈ D(A); for all t ∈ J .

3. y(t) = (y0 + g(y)) +A

∫ t

0

y(s)ds+

∫ t

0

[Bv(s) + f(s, y(s))]ds.

Definition 2.3 [27] An operator A is called a generator of an integrated semigroup
if there exists ω ∈ R such that (ω,∞) ⊂ ρ(A) (the resolvent set of A) and there exists
a strongly continuous exponentially bounded family {S′(t) : t ≥ 0} of bounded linear

operators such that S′(0) = 0 and (λI −A)−1 =

∫

∞

0

e−λtS′(t)dt for all λ > ω.

Let y(T, y0, v) denote the state value of the system (1.1)at time T corresponding to the
control v ∈ Y and the initial value y0. Now, we introduce the set defined by

KT (f) = {y(T, y0, v); v ∈ Y }

which consists of all the possible final states and is called the reachable set of the system.

Definition 2.4 A control system is said to be approximate controllable on [0, T ], if
KT (f) is dense in D(A), that is KT (f) = D(A).

Throughout this paper, the operatorA is assumed to satisfy the following Hille-Yosida
condition(without being densely defined), see [25]:
(H0) there exists a constant M ≥ 0 and ω ∈ N such that (ω,∞) ⊂ ρ(A) and

sup{(λ− ω)n||R(λ,A)n|| : n ∈ N and λ > ω} ≤ M, (2.1)

where R(λ,A) = (λI −A)−1.
It is well known that the above condition is equivalent to the fact that operator A is

the generator of a locally Lipschitz integrated semigroup {S′(t) : t ≥ 0} on V , see [18].
Let A0 be the part of A defined on the domain

D(A0) = {x ∈ D(A) : Ax ∈ D(A) and A0x = Ax, for all x ∈ D(A0)}.

Then D(A0) = D(A) and the generator A0 generates a C0- semigroup {T0(t) : t ≥ 0} on
D(A), see [18]. If the integral solution, as given in Definition 2.2 exists then it is given
by

y(t) = T0(t)(y0 + g(y)) + lim
λ→∞

∫ t

0

T0(t− s)C(λ)[Bv(s) + f(s, y(s))]ds, (2.2)

where C(λ) = λR(λ,A) = λ(λI −A)−1.
Now, we define the following functions:

F : Z → Z as
(Fy)(t) = f(t, y(t)), y ∈ Z,

and K : Z → Z as

(Ky)(t) = lim
λ→∞

∫ t

0

T0(t− s)C(λ)y(s)ds.
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3 Controllability Results with Monotone Nonlinearity

In this section, we prove the controllability results of the system when the nonlinear
function satisfies monotone condition. To prove the approximate controllability of the
system (1.1), we assume the following conditions:

(H1) There exists a constant µ > 0 such that for all x ∈ D(A)

< −Ax, x >V ≥ µ||x||2V .

(H2) Linear system is approximate controllable up to D(A).

(H3) The semigroup {T0(t), t ≥ 0} generated by A is compact on D(A) and there is a
constant M ≥ 0 such that

||T0(t)|| ≤ M, for all t ∈ [0, T ].

(H4) f satisfies monotone condition, that is, there is a positive constant β such that

< f(t, x)− f(t, y), x− y >V ≤ −β||x− y||2
V
.

(H5) ||Fy||Z ≤ a+ b||y||Z where a and b are constants.

(H6) R(F ) ⊆ R(B).

(H7) The function g is a continuous function and there exists a constant M1 such that

||g(y)|| ≤ M1 for all y ∈ D(A).

This section has two cases. In subsection 3.1, the controllability is proved for the
case when the control operator B is an identity operator and subsection 3.2 contains the
general case.

3.1 Controllability of semilinear system when B = I

In this subsection, it is proved that the semilinear control system (1.1) in which B

is an identity operator is approximate controllable under simple sufficient conditions.
Obviously, here V = U . In this case, the semilinear control system (1.1) becomes

y′(t) = Ay(t) +Bv(t) + f(t, y(t)); 0 ≤ t ≤ T,

y(0) = y0 + g(y),

}

(3.1)

and the system (1.2) becomes

y′(t) = Ay(t) +Bu(t); 0 ≤ t ≤ T,

y(0) = y0 + g(y).

}

(3.2)

Before proving the main result, we prove one lemma.

Lemma 3.1 Under the condition (H1), the operator K which is defined on Z satisfies
the condition

< Kx, x >Z≥ µ||x||2Z for all x ∈ Z. (3.3)
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Proof. Let x ∈ Z. Now, let us define a function φ as follows

φ(t) = lim
λ→∞

∫ t

0

T0(t− s)C(λ)x(s)ds

since

< Kx, x >Z=

∫ T

0

< Kx(t), x(t) >V dt =

∫ T

0

< φ(t), x(t) >V dt. (3.4)

But

φ′(t) = lim
λ→∞

[

C(λ)x(t) +A

∫ t

0

T0(t− s)C(λ)x(s)ds

]

= x(t) +Aφ(t)

⇒ x(t) = φ′(t)−Aφ(t). (3.5)

From the equations (3.4) and (3.5), we get

< Kx, x >Z =

∫

T

0

< φ(t), φ′(t)−Aφ(t) >V dt

=

∫

T

0

< φ(t), φ′(t) >V dt+

∫

T

0

< φ(t),−Aφ(t) >V dt. (3.6)

Since

d

dt
< φ(t), φ(t) >V = < φ(t), φ′(t) >V + < φ′(t), φ(t) >V dt

= 2 < φ(t), φ′(t) >V

⇒
∫ T

0

d

dt
< φ(t), φ(t) >V dt = 2

∫ T

0

< φ(t), φ′(t) >V dt

⇒
∫ T

0

< φ(t), φ′(t) >V dt =
1

2
||φ(T )||2V ≥ 0 (3.7)

and by the condition (H1), we have

∫

T

0

< φ(t) −Aφ(t) >V dt ≥ µ||x||2. (3.8)

Therefore, from the equations (3.6),(3.7) and (3.8), we get

< Kx, x >Z≥ µ||Kx||2Z .

Theorem 3.1 Under the conditions (H0)−(H4), the semilinear control system (3.1)
is approximate controllable in the time interval [0, T ].

Proof. Let x(t) be the integral solution of the system (3.2) corresponding to the
control u. Consider the following semilinear system

y′(t) = Ay(t) + u(t)− f(t, x(t)) + f(t, y(t)); 0 ≤ t ≤ T,

y(0) = y0 + g(y).

}

(3.9)



10 URVASHI ARORA AND N. SUKAVANAM

Comparing (3.1) and (3.9), it can be seen that the control function v(t) is chosen that

v(t) = u(t)− f(t, x(t)). (3.10)

The integral solutions of systems (3.2) and (3.9) can be written as

x(t) = T0(t)(y0 + g(y)) + lim
λ→∞

∫

t

0

T0(t− s)C(λ)u(s)ds, (3.11)

y(t) = T0(t)(y0 + g(y)) + lim
λ→∞

∫

t

0

T0(t− s)C(λ)[u(s)− f(s, x(s)) + f(s, y(s))]ds. (3.12)

Substracting (3.12) from (3.11), we get

x(t)− y(t) = lim
λ→∞

∫ t

0

T0(t− s)C(λ)[f(s, x(s)) − f(s, y(s))]ds, (3.13)

which in operator theoretic terms can be written as

x− y = KFx−KFy.

Taking inner product on both sides in Z with Fx− Fy, we get

< x− y, Fx− Fy >Z=< KFx−KFy, Fx− Fy >Z . (3.14)

Note, that the left-hand side satisfies the condition (H4) and it is less than or equal
to −β||x−y||2

Z
and the right-hand side is nonnegative, from Lemma 3.1. This is possible

only when x = y in Z, which implies that F (x) = F (y), where F is Nemytskii operator
defined by f . Therefore, from the equation (3.13), it follows that x(t) = y(t) for all
t ∈ [0, T ]. Thus, any mild solution of the linear system (3.2) is also a mild solution of
the semilinear system (3.1), that is, KT (f) ⊃ KT (0), which is dense in D(A). Hence,
system (3.1) is approximate controllable on [0, T ].

3.2 Controllability of semilinear system when B 6= I

In this subsection, the approximate controllability of the system (1.1) is proved under
some sufficient conditions on the operators A, B and f .

Since R(F ) ⊆ R(B), (see condition (H6)), for any given ǫ1 > 0, there exists a ω in
L2[0, T ;U ] such that

||Fx−Bw||Z ≤ ǫ1. (3.15)

Before proving the main result, we prove one lemma.

Lemma 3.2 The solution of the system (1.1) and the corresponding control v = u−w

satisfy the following inequality

||y(t)||V ≤ [M(1 + bMM
√
T )(||y0||+M1) +MM

√
T{(1 +MMbT )||Bu||Z + a+ ǫ1}

+MMaT ]eMMbT ,

where M is a positive constant such that ||T0(t)|| ≤ M , for each t ∈ [0, T ] and M is
defined in (2.1).
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Proof. Let y(t) be the integral solution of the system (1.1) corresponding to the
control v = u− w. Then the integral solution of the system (1.1) can be written as

y(t) = T0(t)(y0 + g(y)) + lim
λ→∞

∫

t

0

T0(t− s)C(λ)B(u − w)(s)ds +

lim
λ→∞

∫

t

0

T0(t− s)C(λ)f(s, y(s))ds.

Taking V -norm on both sides and using the fact that limλ→∞ ||C(λ)|| = M , we get

||y(t)||V ≤ M ||y0||+M ||g(y)||+MM

∫

t

0

||B(u− w)(s)||V ds

+MM

∫

t

0

||f(s, y(s))||V ds

≤ M ||y0||+M ||g(y)||+MM
√
T (||Bu||Z + ||Bw||Z )

+MM

∫

t

0

(a+ b||y(s)||V )ds

≤ M ||y0||+MM1 +MM
√
T (||Bu||Z + ||Fx||Z + ǫ1) +MMaT

+MMb

∫

t

0

||y(s)||V ds

≤ M ||y0||+MM1 +MM
√
T (||Bu||Z + a+ b||x||Z + ǫ1) +MMaT

+MMb

∫

t

0

||y(s)||V ds

≤ M ||y0||+MM1 +MM
√
T (||Bu||Z + a+ bM ||y0||+ bMM1

+MMbT ||Bu||Z + ǫ1) +MMaT +MMb

∫ t

0

||y(s)||V ds

≤ M ||y0||+MM1 +MM
√
T{(1 +MMbT )||Bu||Z + a+ bM ||y0||+ bMM1

+ǫ1}+MMaT +MMb

∫ t

0

||y(s)||V ds

≤ (1 + bMM
√
T )M ||y0||+MM1 +MM

√
T{(1 +MMbT )||Bu||Z + a

+bMM1 + ǫ1}+MMaT +MMb

∫ t

0

||y(s)||V ds

≤ M(1 + bMM
√
T )(||y0||+M1) +MM

√
T{(1 +MMbT )||Bu||Z + a+ ǫ1}

+MMaT +MMb

∫ t

0

||y(s)||V ds.

Now, Gronwall’s inequality implies that

||y(t)||V ≤ [M(1 + bMM
√
T )(||y0||+M1) +MM

√
T{(1 +MMbT )||Bu||Z + a+ ǫ1}

+MMaT ]eMMbT ,

which completes the proof.
The main result of this chapter is given below.
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Theorem 3.2 Under the conditions (H0)− (H7), the semilinear system (1.1) is ap-
proximate controllable in the time interval [0, T ].

Proof. Let x(t) be the integral solution of the system (1.2) corresponding to the
control u, which can be written as

x(t) = T0(t)(y0 + g(y)) + lim
λ→∞

∫

t

0

T0(t− s)C(λ)(Bu)(s)ds. (3.16)

Let y(t) be the integral solution of the system (1.1) corresponding to the control
v = u− w, which can be written as

y(t) = T0(t)(y0 + g(y)) + lim
λ→∞

∫ t

0

T0(t− s)C(λ)B(u − w)(s)ds

+ lim
λ→∞

∫ t

0

T0(t− s)C(λ)f(s, y(s))ds. (3.17)

From the equations (3.16) and (3.17), we get

x(t)−y(t) = lim
λ→∞

∫ t

0

T0(t−s)C(λ)Bw(s)ds− lim
λ→∞

∫ t

0

T0(t−s)C(λ)f(s, y(s))ds, (3.18)

which in operator theoretic terms can be written as

x− y = KBw −KFy

= K(Bw − Fx) + (KFx−KFy).

Taking inner products on both sides in Z with Fx− Fy, we get

< x− y, Fx− Fy >Z = < K(Bw − Fx) + (KFx−KFy), Fx− Fy >Z

= < K(Bw − Fx), Fx− Fy >Z

+ < (KFx−KFy), Fx− Fy >Z . (3.19)

Since, by condition (H4), the left-hand side of the equation (3.19) is less than or equal
to −β||x−y||2 and from Lemma 3.1, the second term of the right-hand side is nonnegative,
if < K(Bw − FxL), FxL − Fx >Z is negligbly small, then from the equation (3.19), it
follows that ||x− y||Z is also arbitrary small.

Now, we show that < K(Bw − FxL), FxL − Fx >Z is arbitrarily small. For it, by
using Cauchy-Schwarz inequality, we have

| < K(Bw − Fx), Fx− Fy >Z | ≤ ||K(Bw − Fx)||Z ||Fx− Fy||Z
≤ MMT ||Bw − Fx||Z{||Fx||Z + ||Fy||Z}
≤ MMTǫ1{a+ b||x||Z + a+ b||y||Z}. (3.20)

From the equation(3.20) and Lemma 3.2, we get

| < K(Bw − Fx), Fx− Fy >Z | ≤ MMCTǫ1, (3.21)

where C = 2a+ b[M ||y0||+MM1 +MMT ||Bu||Z ] + b[M(1 + bMM
√
T )(||y0||+M1) +

MM
√
T {(1 +MMbT )||Bu||Z + a + ǫ1} +MMaT ]eMMbT . Thus, for given u and ǫ1, C
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is finite. Since ǫ1 is arbitrarily small, it implies that < K(Bw − Fx), Fx − Fy >Z is
arbitrary small.

Hence, from the equations (3.19), (3.20) and condition (H4), it follows that ||x−y|| ≤
ǫ2 is arbitrary small, for some ǫ2 > 0.

Further, we prove that ||x(T )− y(T )||V is arbitrary small. Now,

x(t) − y(t) = KBw(t) −K(Fy)(t)

= K{Bw(t)− (Fx)(t)} +K{(Fx)(t)− (Fy)(t)}. (3.22)

Taking norm on both sides in V , we have

||x(t) − y(t)||V = ||K{Bw(t)− (Fx)(t)} +K{(Fx)(t)− (Fy)(t)}||V
≤ ||K{Bw(t)− (Fx)(t)}||V + ||K{(Fx)(t)− (Fy)(t)}||V .

Now,

||K{Bw(t)− (Fx)(t)}||V =

∣

∣

∣

∣

∣

∣

∣

∣

lim
λ→∞

∫ t

0

T0(t− s)C(λ){Bw(s) − (Fx)(s)}ds
∣

∣

∣

∣

∣

∣

∣

∣

V

≤ MM

∫

t

0

||{Bw(s)− (Fx)(s)}ds||V

≤ MM
√
T ||Bw − Fx||Z

≤ MM
√
Tǫ1

and

||K{(Fx)(t)− (Fy)(t)}||V =

∣

∣

∣

∣

∣

∣

∣

∣

lim
λ→∞

∫

t

0

T0(t− s)C(λ){(Fx)(s) − (Fy)(s)}ds
∣

∣

∣

∣

∣

∣

∣

∣

V

≤ MM
√
T ||Fx− Fy||Z . (3.23)

The right-hand side of the equation (3.23) can be made arbitrarily small as ||x−y|| ≤
ǫ2 and F is continuous on Z. Therefore, it is concluded that for a given ǫ and x, there
exists a y such that

||x(t)− y(t)|| ≤ ǫ for all t ∈ [0, T ]. (3.24)

Thus, ||x(t) − y(t)|| can be made arbitrarily small by choosing suitable ω. It follows
that reachable set of the system (1.1) is dense in the reachable set of the system (1.2),
which is dense in D(A) due to condition (H3). Hence the theorem is proved.

4 Controllability Results with Integral Contractor Nonlinearity

In this section, approximate controllability of semilinear control system (1.1) is considered
when the nonlinear function f has integral contractor.

Let C be the Banach space of all continuous functions from [0, T ] to Banach space V
with supremum norm. The problem of controllability of infinite dimensional semilinear
control systems has been studied widely by many authors, when the nonlinear function
is uniformly Lipschitz continuous or monotone, see [11, 21, 22]. In this section, we study
the approximate controllability of the system (1.1), when the operator A is not densely
defined and the nonlinear function satisfies integral contractor condition, which is a
weaker condition in comparison with Lipschitz condition. The concept of contractor was
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introduced by Altman [1] as a functional analytic tool for solving deterministic operators
equations in Banach spaces and subsequently this tool was exploited by many authors
for the existence and uniqueness of the solution of nonlinear evolution equations, see [24].
Govindan and Joshi [14] employed this method to investigate optimal control problem
and stability problems of nonlinear stochastic control system. George [12] investigated
the approximate controllability of semilinear non-autonomous system with nonlinearity
satisfying integral contractor condition. Further, George et al. [13] obtained the exact
controllability of the third order dispersion equation through the approach of integral
contractor. In this section, our aim is to obtain a result similar to that of [28], for the
non-densely defined semilinear system (1.1) by replacing Lipschitz condition with integral
contractor.

Now, we define the integral contractor.

Definition 4.1 [12] Let Γ : J×V → BC(C) be a bounded continuous operator and
γ be a positive constant such that for any x, y ∈ C, we have
∣

∣

∣

∣

∣

∣

∣

∣

f(t,

(

x(t) + y(t) +

∫

t

0

T0(t− s)Γ(s, x(s))y(s)ds

)

−f(t, x(t))−Γ(t, x(t))y(t)

∣

∣

∣

∣

∣

∣

∣

∣

≤ γ||y(t)||
(4.1)

Then, we say that f has a bounded integral contractor {I+
∫

T0Γ} with respect to T0(t).
The constant γ will be called the contractor constant.

Remark 4.1 If Γ ≡ 0, the condition (4.1) reduces to the Lipschitz condition, as we
get

||f(t, x(t) + y(t))− f(t, x(t))|| ≤ γ||y(t)||. (4.2)

Definition 4.2 [12] A bounded integral contractor Γ is said to be regular if the
following integral equation

ŷ(t) = z(t) +

∫ t

0

T0(t− s)Γ(s, x̂(s))z(s)ds (4.3)

has a solution z in C for any x̂, ŷ ∈ C.

Let us assume the following conditions:

(H8) The nonlinear function has bounded integral contractor.

(H9) R(F ) ⊆ R(B).

Theorem 4.1 Under the conditions (H2),(H3), (H8) and (H9), the semilinear sys-
tem (1.1) is approximate controllable on the time interval [0, T ].

Proof. Let x(t) be the integral solution of the linear system (1.2) corresponding
to the control u. The integral solution of (1.2) is given by the nonlinear integral equation

x(t) = T0(t)(y0 + g(y)) + lim
λ→∞

∫

t

0

T0(t− s)C(λ)Bu(s)ds. (4.4)

Let y(t) be the integral solution of the semilinear system (1.2) corresponding to the
control v, which satisfies the equation (3.10). Then y(t) can be written as

y(t) = T0(t)(y0 + g(y))+ lim
λ→∞

∫ t

0

T0(t− s)C(λ)[Bu(s)− f(s, x(s))+ f(s, y(s))]ds. (4.5)
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From (4.4) and (4.5) for all t ∈ [0, T ], we have

y(t)− x(t) = lim
λ→∞

∫ t

0

T0(t− s)C(λ)[f(s, y(s)) − f(s, x(s))]ds. (4.6)

By the regularity condition of the integral contractor Γ with x̂ = x and ŷ = y− x, there
exists z ∈ C such that

y(t)− x(t) = z(t) + lim
λ→∞

∫ t

0

T0(t− s)C(λ)Γ(s, x(s))z(s)ds. (4.7)

By the equation (4.6), we have

lim
λ→∞

∫ t

0

T0(t− s)C(λ)[f(s, y(s)) − f(s, x(s))]ds = z(t) (4.8)

+ lim
λ→∞

∫ t

0

T0(t− s)Γ(s, x(s))z(s)ds

⇒ z(t) = lim
λ→∞

∫ t

0

T0(t− s)C(λ)[f(s, y(s)) − f(s, x(s))− Γ(s, x(s))z(s)]ds.(4.9)

Since

||C(λ)|| ≤ λM

λ− ω
→ M as λ → ∞,

taking V-norm on both sides of (4.8), we have

||z(t)|| ≤ MM

∫

t

0

||f(s, y(s))− f(s, x(s))− Γ(s, x(s))z(s)||ds. (4.10)

By the condition (H7), the nonlinear function f has a regular integral contractor, we
have

∣

∣

∣

∣

∣

∣

∣

∣

f

(

t, x(t) + z(t) +

∫

t

0

T0(t− s)Γ(s, x(s))z(s)ds

)

−f(t, x(t))−Γ(t, x(t))z(t)

∣

∣

∣

∣

∣

∣

∣

∣

≤ γ||z(t)||.
(4.11)

Now, using the equation (4.6), we get

||f(t, y(t))− f(t, x(t)) − Γ(t, x(t))z(t)|| ≤ γ||z(t)||. (4.12)

From (4.10) and (4.12), we have

||z(t)|| ≤ γMM

∫

t

0

||z(s)||ds.

Thus, by using Gronwall’s inequality, we get ||z(t)|| = 0. Therefore by (4.7), we have
that x(t) = y(t) for all t ∈ [0, T ]. Hence the set of the solutions of the linear system (1.2)
is equal to the set of all solutions of the semilinear system (1.1). Here, Kτ (f) ⊃ Kτ (0),
which is dense in D(A). Therefore, system (1.1) is approximate controllable on [0, T ].
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5 Example

Consider the following partial differential equation with nonlocal conditions of the form

∂

∂t
y(t, x) = yxx(t, x) +Bv(t, x) + f(t, y(t, x)),

y(t, 0) = y(t, π) = 0,

y(0, x) = y0(x) + g(y), 0 ≤ x ≤ π, 0 ≤ t ≤ T. (5.1)

In order to write system (5.1) in the abstract form (1.1), choose V = C[0, π](with sup
norm) and consider the operator A defined by

Aw = w′′ =
d2w

dx2

with the domain

D(A) = {w ∈ V : w,w′ are absolutely continuous , w′′ ∈ V,w(0) = w(π) = 0}.

Then, D(A) = {w ∈ V : w(0) = w(π) = 0}. It is clear that D(A) 6= V , and the resolvent
set, ρ(A) ⊇ (0,+∞)

||(λI −A)−1|| ≤ 1

λ

for λ > 0. This implies that A satisfies the Hille-Yosida condition (H0) on V . It is well
known that A generates a C0 semigroup T0(t) on D(A) for all t ≥ 0, see [25] and linear
system corresponding to (5.1) is approximate controllable in the space D(A)(condition
H2 is satisfied). Hence, Theorem 4.1 implies the approximate controllability of system
(5.1) for any nonlinear function which has integral contractor.

6 Conclusion

In this paper, we introduced a set of sufficient conditions for the approximate controlla-
bility of the semilinear control system with nonlocal conditions (1.1) with an important
case in which operator A need not be densely defined. Two types of nonlinearity were
considered; namely nonlinearity satisfying a monotone condition and nonlinearity having
an integral contractor. Some approaches made by earlier authors led to certain inequality
conditions involving various system constants. But, in this approach, there is no need of
any inequality condition to prove the approximate controllability of system (1.1).
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