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Abstract: In this paper, the problem of Q-S synchronization for arbitrary dimen-
sional chaotic dynamical systems in continuous-time is investigated. Based on new
control scheme and Lyapunov stability theory, a simple synchronization approach
is designed to achieve Q-S synchronization between n-D and m-D continuous-time
chaotic systems in arbitrary dimension d. In order to verify the effectiveness of the
proposed method, our approach is applied to some typical chaotic systems and nu-
merical simulations are given to validate the derived results.
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1 Introduction

Since the discover of synchronization [1, 2], chaos synchronization has played important
roles in sciences and enginering, due to its potential applications in secure communication
and telecommunications [3–6], control theory [7,8], biology [9,10], lasers [11], and so on.
Chaos synchronization has received increasing interest and various methods have been
proposed for synchronization of chaotic dynamical systems such as adaptive control [12],
backstepping design [13], sliding mode control [14], and generalized hamiltonian systems
approach [15, 16] etc. Many types of chaos synchronization have been presented such
as complete and anti-synchronization [17,18], hybrid function projective synchronization
[19], reduced order function projective combination synchronization [20], etc. Among
all types of synchronization, Q-S synchronization is an interesting generalized-type of
synchronization which has been extensively considered [21, 22]. In Q-S synchronization,
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different dimensional chaotic systems can be synchronized in arbitrary dimensions due to
functional relationships between the states of the master and the slave chaotic systems.
Recently, Q-S synchronization has received a great deal of attention and a series of works
on Q-S synchronization have been published for chaotic dynamical systems in continuous-
time [23–26], and discrete-time [27–29].

The main aim of the present work, is to propose a new general control scheme to
study the problem of Q-S synchronization for coupled continuous-time chaotic systems.
Based on nonlinear control method, we would like to present a constructive scheme to
investigate Q-S synchronization between two different dimensional chaotic systems in
arbitrary dimension. The new derived synchronization result is proved using Lyapunov
stability theory and numerical examples are used to show the effectiveness of the proposed
control method.

The rest of this paper is arranged as follows. In Section 2, the problem of Q-S syn-
chronization in arbitrary dimension is formulated. In Section 3, we present our approach
of Q-S synchronization. In Section 4, numerical examples and simulations are used to
show the effectiveness of the proposed method. Finally, conclusion is given in Section 5.

2 Problem formulation

Consider the following master chaotic system

Ẋ (t) = F (X (t)), (1)

where X (t) = (xi (t))1≤i≤n is the state vector of the master system (1) and F =
(Fi)1≤i≤n is a differentiable vector function. As a slave system, we consider the fol-
lowing chaotic system

Ẏ (t) = G(Y (t)) + U, (2)

where Y (t) = (yi (t))1≤i≤m , is the state vector of the slave system (2), G = (Gi)1≤i≤m is
a differentiable vector function and U = (ui)1≤i≤m is a vector controller to be determined.
The definition of Q-S synchronization for the master system (1) and the slave system (2)
is given below.

Definition 2.1 The master system (1) and the slave system (2) are said to be Q-
S synchronized, in dimension d, if there exists a controller U = (ui)1≤i≤m and two
continuously differentiable vector functions Q (Y (t)) = (Qi (Y (t)))

1≤i≤d
, S (X (t)) =

(Si (X (t)))
1≤i≤d

, respectively, such that the synchronization error

e (t) = (e1 (t) , e2 (t) , ..., ed (t))
T = Q (Y (t))− S (X (t)) , (3)

satisfies the condition lim t−→+∞ ‖e (t)‖ = 0.

In order to study Q-S synchronization between the master and the slave systems
given in equations (1) and (2), we discuss the asymptotic stability of zero solution of
synchronization error system e (t) = Q (Y (t))− S (X (t)) i.e., we find the controllers ui,
i = 1, 2, · · · ,m, such that the solutions of the error system ei(t) = Qi (Y (t))−Si (X (t))
go to 0, i = 1, 2, · · · , d, as t goes to +∞.
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3 A New Q-S Synchronization Approach

The error system (3), between the master system (1) and the slave system (2), can be
derived as

ė (t) = DQ (Y (t))× (G(Y (t)) + U)−DS (X (t))× F (X (t)), (4)

where DQ (Y (t)) ∈ R
d×m, DS (X (t)) ∈ R

d×n are the Jacobian matrices of the functions
Q and S, respectively,

DQ (Y (t)) =

















∂Q1

∂y1

∂Q1

∂y2

· · · ∂Q1

∂ym

∂Q2

∂y1

∂Q2

∂y2

· · · ∂Q2

∂ym

...
...

. . .
...

∂Qd

∂y1

∂Qd

∂y2

· · · ∂Qd

∂ym

















, (5)

DS (X (t)) =















∂S1

∂x1

∂S1

∂x2

· · · ∂S1

∂xn

∂S2

∂x1

∂S2

∂x2

· · · ∂S2

∂xn

...
...

. . .
...

∂Sd

∂x1

∂Sd

∂x2

· · · ∂Sd

∂xn















, (6)

and we assume that d ≤ m. The error system (4) can be described as follows

ėi (t) =

m
∑

j=1

(

∂Qi

∂yj
× (Gj (Y (t)) + uj)

)

−

n
∑

j=1

(

∂Si

∂xj

× Fj (X (t))

)

= −kiei (t) +Ri +

d
∑

j=1

(

∂Qi

∂yj
× uj

)

+

m
∑

j=d+1

(

∂Qi

∂yj
× uj

)

, 1 ≤ i ≤ d, (7)

where

Ri = ki (Qi (Y (t))− Si (X (t))) +

m
∑

j=1

(

∂Qi

∂yj
×Gj (Y (t))

)

−

n
∑

j=1

(

∂Si

∂xj

× Fj (X (t))

)

,

(8)
and ki ∈ R

+
∗ , (1 ≤ i ≤ d) are control constants. To achieve Q-S synchronization between

the systems (1) and (2), the vector controller U = (ui)1≤i≤m is chosen as follows

U = (u1, ..., ud, 0, ..., 0)
T , (9)

and by using equation (9) into equation (7), the error system (7) can be written as follow:

ėi (t) = −kiei (t) +Ri +
d

∑

j=1

(

∂Qi

∂yj
× uj

)

, 1 ≤ i ≤ d, (10)

rewriting the error system (10) in the compact form

ė (t) = −Ke (t) +R+ JV, (11)
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where e (t) = (ei (t))1≤i≤d , K = diag (k1, ..., kd) , R = (Ri)1≤i≤d ,

J =
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· · · ∂Q1

∂yd

∂Q2

∂y1

∂Q2

∂y2

· · · ∂Q2
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...
...

. . .
...

∂Qn

∂y1

∂Qn

∂y2

· · · ∂Qd

∂yd

















, (12)

and V = (u1, ..., ud)
T
. Now, we can choose V as follows

V = −J−1R, (13)

where J−1 is the inverse of (12). Substitute equation (13) into equation (11), then the
error system can be written as

ė (t) = −Ke (t) . (14)

To study the asymptotic stability of zero solution of the error system (14), we consider
the candidate Lyapunov function:

V (e(t)) =
1

2
eT (t) e (t) , (15)

then the derivative of the function (15) along the solution of the system (14) is given as
follows

V̇ (e (t)) = ėT (t) e (t) + eT (t) ė (t)

= −
1

2
KeT (t) e (t)−

1

2
KeT (t) e (t)

= −KeT (t) e (t)

=
d

∑

i=1

−kie
2
i (t) < 0,

and by Lyapunov stability theory, it is immediate that

lim
t→∞

ei (t) = 0, 1 ≤ i ≤ d, (16)

and from the fact
lim
t→∞

‖e (t)‖ = 0. (17)

Hence, we have proved the following result.

Theorem 3.1 The master system (1) and the slave system (2) are globally Q − S
synchronized under the control law (9)-(13).

4 Numerical Examples

In order to show the effectiveness of the presented approach of synchronization, two
numerical examples are used to observe Q-S synchronization in 3D between two identical
dimensional (3D) chaotic systems and two different dimensional (3D and 4D) chaotic
systems , respectively.
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4.1 Example 1: Q-S synchronization between Rössler and Sprott-WINDMI

systems

In this example, we consider the Rössler system [31] as a master system and the
controlled Sprott-WINDMI system [30] as a slave system. The Rössler system and the
controlled Sprott-WINDMI system can be described, respectively, as follows

ẋ1 = −(x2 + x3), (18)

ẋ2 = x1 + 0.2x2,

ẋ3 = −5.7x3 + x1x3 + 0.2,

and

ẏ1 = y2 + u1, (19)

ẏ2 = y3 + u2,

ẏ3 = −y2 − 0.7y3 + 2.5− ey1 + u3,

where u1, u2 and u3 are synchronization controllers. In this case, we select the vector

functions Q and S respectively as

Q (y1, y2, y3) =

(

y1,
1

3
y32 + y2, y3

)T

, (20)

S (x1, x2, x3) = (x1, x2x3, x1 + x3)
T , (21)

so

DQ (y1, y2, y3) =





1 0 0
0 y22 + 1 0
0 0 1



 , (22)

DS (x1, x2, x3) =





1 0 0
0 x3 x2

1 0 1



 . (23)

According to our approach presented in Section 3, and by using (20), (21), (22) and
(23), the controllers u1, u2,and u3 can be constructed as follows

u1 = − (k1 + 1) y1 + k1x1 − x2 − x3, (24)

u2 =
−1

y22 + 1

[

k2

(

1

3
y32 + y2

)

+
(

y22 + 1
)

y3 − 0.2x2 + (5.5− k2)x2x3 − x1x3 − x1x2x3

]

,

u3 = y2 + (0.7− k3) y3 + ey1 + k3x1 − x2 + (5.7− k3)x3 + x1x3 − 2.3,

where the control constants (ki)1≤i≤3
are chosen as (k1, k2, k3) = (1, 2, 3) . The error func-

tions can be written as follows ė1 (t) = −e1 (t) , ė2 (t) = −2e2 (t) and ė3 (t) = −3e3 (t) .
Then, the numerical simulation of the error functions evolution is shown in Figure 2.
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Figure 1: Time evolution of Q-S synchronization errors between the master system (18) and
the slave system (19).

4.2 Example 2: Q-S synchronization between Lorenz and hyperchaotic Chen

systems

In this example, we consider the Lorenz system [32] as a master system and the controlled
hyperchaotic Chen system [33] as a slave system. The Lorenz system and the controlled
hyperchaotic Chen system can be described, respectively, as follows

ẋ1 = 10(x2 − x1), (25)

ẋ2 = 28x1 − x2 − x1x3,

ẋ3 = −8/3x3 + x1x2,

and

ẏ1 = −27.5y1 + 27.5y2 + u1, (26)

ẏ2 = 3y1 + 19.3y2 + y4 − y1y3 + u2,

ẏ3 = −2.9y4 + u3,

ẏ4 = −3.3y1 + y22 + u4,

where u1, u2, u3 and u4 are synchronization controllers. In this case, the vector functions
Q and S are chosen, respectively, as follows

Q (y1, y2, y3,y4) = (y1 + y4, y2 + y4, y4 + y3)
T , (27)

S (x1, x2, x3) = (x1x3, x2, x3)
T
, (28)
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so

DQ (y1, y2, y3,y4) =





1 0 0 1
0 1 0 1
0 0 1 1



 , (29)

DS (x1, x2, x3) =





x3 0 x1

0 1 0
0 0 1



 . (30)

According to the control law (9)-(13) proposed in Section 3, and by using (27), (28),
(29) and (30), the controllers u1, u2, u3 and u4 can be designed as follows

u1 = (k1 − 30.8)y1 + 27.5y2 + k1y4 + y22 + (
38

3
− k1)x1x3 (31)

−10x3x2 − x2
1x2,

u2 = −0.3y1 + (k2 + 19.3)y2 + (k2 + 1)y4 − y1y3 + y22 − 28x1

+(1− k2)x2 + x1x3,

u3 = −3.3y1 + k3y3 + (k3 − 2.9) y4 + y22 + (8/3− k3)− x1x2,

u4 = 0,

where the control constants (ki)1≤i≤4
are chosen as (k1, k2, k3, k4) = (0.1, 0.2, 0.3, 0.4) .

The error functions can be written as follows: ė1 (t) = −0.1e1 (t) , ė2 (t) = −0.2e2 (t) ,
ė3 (t) = −0.8e3 (t) and ė3 (t) = −0.4e3 (t) . Then, the numerical simulation of the error
functions evolution is shown in Figure 2.

Figure 2: Time evolution of Q-S synchronization errors between the master system (25) and
the slave system (26).
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5 Conclusion

In this paper, we have developed a new systematic and powerful synchroniza-
tion scheme, which is used to study Q-S synchronization between two n-D and m-D
continuous-time chaotic dynamical systems. Numerical examples are used to verify the
effectiveness of the proposed approach.
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[6] Inzunza González, E.Y. and Cruz Hernandez, C. Double hyperchaotic encryption for secu-
rity in biometric systems. Nonlinear Dynamics and Systems Theory 13 (1) (2013) 55–68.

[7] Pyragas, K. Continuous control of chaos by self-controlling feedback. Physics Letters A 170
(6) (1992) 421–428.

[8] Wu, C.W. and Chua, L.O. A unified framework for synchronization and control of dynam-
ical systems. International Journal of Bifurcation and Chaos 4 (4) (1994) 979–998.

[9] Han, S.K., Kurrer, C. and Kuramoto, Y. Dephasing and bursting in coupled neural oscil-
lators. Physical Review Letters 75 (17) (1995) 3190–3193.

[10] Elson, R. C., Selverston, A. I., Huerta, R., Rulkov, N. F., Rabinovich, M. I. and Abarbanel,
H.D. I. Synchronous behavior of two coupled biological neurons. Physical Review Letters

81 (25) (1998) 5692–5695.

[11] Fabiny, L., Colet, P., Roy, R. and Lenstra, D. Coherence and phase dynamics of spatially
coupled solidstate lasers. Physical Review A 47 (5) (1993) 4287–4296.

[12] Vincent, U. E. and Guo, R. Adaptive Synchronization for Oscillators in φ6 Potentials.
Nonlinear Dynamics and Systems Theory 13 (1) (2013) 93–106.

[13] Tan, X., Zhang, J. and Yang, Y. Synchronizing chaotic systems using backstepping design.
Chaos, Solitons and Fractals 16 (2003) 37–45.

[14] Yau, H.T. Design of adaptive sliding mode controller for chaos synchronization with uncer-
tainties. Chaos, Solition and Fractals 22 (2004) 341–347.

[15] Pei, L.J. and Liu, S.H. Application of generalized Hamiltonian systems to chaotic synchro-
nization. Nonlinear Dynamics and Systems Theory 9 (4) (2009) 415–432.

[16] Fu, S.H. and Pei, L. J. Synchronization of chaotic systems by the generalized hamiltonian
systems approach. Nonlinear Dynamics and Systems Theory 10 (4) (2010) 387–396.

[17] Ouannas, A. Chaos Synchronization Approach Based on New Criterion of Stability. Non-

linear Dynamics and Systems Theory 14 (4) (2014) 395–401.

[18] Filali, R. L., Hammami, S., Benrejeb, M. and Borne, P. On Synchronization, Anti-
synchronization and Hybrid Synchronization of 3D Discrete Generalized Hénon map. Non-
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controller. Physics Letters A 342 (2005) 309–317.

[28] Yan, Z. Q-S (complete or anticipated) synchronization backstepping scheme in a class of
discrete-time chaotic (hyperchaotic) systems. Chaos 16 (2006) 013119-6.

[29] Ouannas, A. A new Q-S synchronization scheme for discrete choatic systems. Far East

Journal of Applied Mathematics 84 (2) (2013) 89–94.

[30] Sprott, J. C. Chaos and Time-Series Analysis. Oxford University Press, New York, NY,

USA, 2003.

[31] LI Xin, L. and Yong, C. Generalized Projective Synchronization Between Rössler System
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