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Abstract: In this paper, hybrid projective synchronization (HPS) of two identi-
cal new hyper chaotic systems is defined and scheme of HPS is developed by using
tracking control method. A new hyper chaotic system has been constructed and then
response system. Numerical simulations verify the effectiveness of this scheme, which
has been performed by mathematica.
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1 Introduction

Chaos is a dynamical regime in which a system becomes extremely sensitive to initial
conditions and reveals an unpredictable and random-like behavior, even though the
underlying model of a system exhibiting chaos can be deterministic and very simple.
Small differences in initial conditions yield widely diverging outcomes for chaotic
systems, rendering long term prediction impossible in general. Chaotic behavior can
be observed in many natural phenomenon such as weather etc. Pecora and Carroll
introduced a paper entitled Synchronization in Chaotic Systems in 1990. By that time,
if there was a system challenging the capability of synchronizing that was a chaotic
one. They demonstrated that chaotic synchronization could be achieved by driving or
replacing one of the variables of a chaotic system with a variable of another similar
chaotic device. Chaotic synchronization did not attract much attention until Pecora
and Carroll [8] introduced a method to synchronize two identical chaotic systems
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with different initial conditions. From then on, enormous studies have been done by
researchers on the synchronization of dynamical systems [5–7,26]. In the last two decades
considerable research has been done in non-linear dynamical systems and their various
properties. One of the most important properties is synchronization. Synchronization
techniques have been improved in recent years and many different methods are applied
theoretically as well as experimentally to synchronize the chaotic-systems including
adaptive control [9–11], back stepping design [12–14], active control [15–17], nonlinear
control [18,19] and observer based control method [20]. Using these methods, numerous
synchronization problem of well-known chaotic systems such as Lorenz, Chen, Lü and
Rössler system have been worked on by many researchers.

Also, several types of chaos synchronization are well known, which include com-
plete synchronization (CS), antisynchronization (AS), phase synchronization, general-
ized synchronization (GS), projective synchronization (PS), and modified projective
synchronization (MPS). Among all type of synchronization, Projective synchronization
(PS) [21, 24, 25] has been extensively considered because it can obtain faster communi-
cation. The drive and response system could be synchronized up to a scaling factor in
projective synchronization. In this continuation of study, in order to increase the degree
of secrecy for secure communications, in hybrid projective synchronization same scaling
factor can be replaced by vector function factor. In this paper, we have constructed a
new hyper chaotic system and verified the chaotic behavior of this system by time series
analysis and drawing chaotic attractors via mathematica. Hyperchaotic behavior of this
system is discovered within some system parameter range, which has not yet been re-
ported previously. Since hyperchaotic systems have the characteristics of high capacity,
high security and high efficiency, it has been studied with increasing interest in recent
years [23, 24] in the fields of non-linear circuits, secure communications, lasers, control,
synchronization, and so on. So we have studied Hybrid Projective Synchronization be-
havior for this new hyper chaotic systems, which is ofcourse more effective and useful
in secure communication as HPS is more useful in secure communication as compare to
others because of its unpredictability. Here we have used tracking control scheme for
HPS. Numerical simulations have been done by using Mathematica.

2 Preliminaries

In this section, we mention some definitions and scheme of the main work.

Definition 2.1 Hybrid Projective Synchronization(HPS) between two chaotic sys-
tem achieved if there exist an n×n matrix A such that lim

t→∞
‖e(t)‖ = lim

t→∞
‖Ay − x‖ = 0,

where ‖ · ‖ is the Euclidean norm.

2.1 Methodology for HPS

In this section, we put a glimpse of methodology and problem formulation for hybrid pro-
jective synchronization for identical hyperchaotic systems via tracking control. Consider
the following n-dimensional hyperchaotic system as drive (master) system

dx
dt = f(x), (2.1)
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where x ∈ Rn, f : Rn −→ Rn is a differentiable function. Now construct the following
identical response system

dy
dt = g(y) + Ψ(y, x), (2.2)

where y ∈ Rn and g : Rn −→ Rn is a differentiable function and Ψ(y, x) is vector
controller to be designed via tracking control method.

In order to achieve the hybrid projective synchronization between two hyperchaotic
systems, we choose the system (2.1) as a drive system and construct a response system
as follows:

dy
dt = A−1[f(Ay) + Ψ(y, x)], (2.3)

where A−1 is the inverse matrix of the invertible matrix A and y ∈ Rn are state vector
of the response system(2.2) and Ψ(y, x) is controller which will be designed. Now define
the HPS errors between two given systems (2.1)and (2.3) as

e(t) = Ay − x,

where e=(e1, e2...en)T , and A =


a11 a12 ...a1n
a21 a22 ...a2n
· · ·

an1 an2 ...ann

 .

So,

ei =
( ∑n

j=1 aijyj
)
− xi, (i, j = 1, 2, ...n). (2.4)

Let

f(Ay)− f(x) = F (x, e). (2.5)

Now, we assume that the error vectors e can be divided into ek=(e1, e2...ek)T and
ek+1=(ek+1, ek+2...en)T such that F (x, e) has the following form

F (x, e) =

(
Bkek + h1(x, ek, ek+1)

Bk+1ek+1 + h21(x, ek, ek+1) + h22(x, ek, ek+1)

)
, (2.6)

where h1(x, ek, ek+1) ∈ Rk, h21(x, ek, ek+1) ∈ Rn−k, h22(x, ek, ek+1) ∈ Rn−k and
lim
ek→0

h21(x, ek, ek+1) = 0, respectively and Bk ∈ Rk×k, Bk+1 ∈ Rn−k×n−k are real con-

stant matrix. Now, following theorem is based on the Lyapunov stability theory, which
gives the final destination of the problem formulation.

Theorem 2.1 If controller Ψ(y, x) in response system (2.3) is

Ψ(y, x) =

(
Ψk(x, y)

Ψk+1(x, y)

)
=

(
Λkek − h1(x, ek, ek+1)

Λk+1ek+1 − h22(x, ek, ek+1)

)
, (2.7)

where Λk ∈ Rk×k and Λk+1 ∈ Rn−k×n−k are suitable chosen constant matrices. If all
eigenvalues of Bk + Λk and Bk+1 + Λk+1 have negative real parts, then hybrid projective
synchronization between drive and response systems can be achieved.
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3 System Description

3.1 Hyper chaotic Rabinovich-Fabrikant system

The Rabinovich-Fabrikant chaotic system is a set of three coupled ordinary differential
equations exhibiting chaotic behavior for certain values of parameters. They are named
after Mikhail Rabinovich and Anatoly Fabrikant, who described them in 1979 [22]. The
equations of system are :

ẋ1 = x2(x3 − 1 + x21)+γx1,

ẋ2 = x1(3x3 + 1− x21)+γx2,

ẋ3 = −2x3(x1x2+α),

 (3.1)

where α and γ are constant parameters that control the evolution of the system. For
some values of α and γ, the system is chaotic but for other it tends to a stable periodic
orbit. Now, we construct a new hyper chaotic system by introducing one more differential
equation with a new parameter δ in the above system as follow:

ẋ1 = x2(x3 − 1 + x21)+γx1,

ẋ2 = x1(3x3 + 1− x21)+γx2,

ẋ3 = −2x3(x1x2+α),

ẋ4 = −3x3(x2x4 + δ) + x24.


(3.2)

This new system shows hyper chaotic behavior with some values of parameters and tend
to stable periodic orbits with other values of parameters. We have investigated system’s
behavior for different values of δ. Figures are given below:

4 Results and Discussions

In this section, we perform hybrid projective synchronization for hyper chaotic Rabi-
novich Fabrikant system. If we take this system as a drive system, then according to
methodology, response system is

dy
dt = A−1[f(Ay) + Ψ(y, x)], (4.1)

which leads to response system as follows(
dy1
dt
,
dy2
dt
,
dy3
dt
,
dy4
dt

)T

= A−1[f(Ay) + Ψ(x, y)], (4.2)

yields

A



dy1
dt

dy2
dt

dy3
dt

dy4
dt


=
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Figure 1: Chaotic behavior of the system (3.2) with α = 0.14,γ = 1.1 and −0.01 ≤ δ ≤ 7650
tending to stable periodic orbits.
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Figure 2: Time series analysis of x1[t] with α = 0.14,γ = 1.1 and −0.01 ≤ δ ≤ 7650.
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Figure 3: Time series analysis of x2[t] with α = 0.14,γ = 1.1 and −0.01 ≤ δ ≤ 7650.
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Figure 4: Time series analysis of x3[t] with α = 0.14,γ = 1.1 and −0.01 ≤ δ ≤ 7650.
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Figure 5: Time series analysis of x4[t] with α = 0.14,γ = 1.1 and −0.01 ≤ δ ≤ 7650.
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Figure 6: Chaotic Behavior of the system (3.2) with α = 0.87,γ = 1.1 and δ = 1890.
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Figure 7: Time series analysis of x1[t] with α = 0.87,γ = 1.1 and δ = 1890.
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Figure 8: Time series analysis of x2[t] with α = 0.87,γ = 1.1 and δ = 1890.
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Figure 9: Time series analysis of x3[t] with α = 0.87,γ = 1.1 and δ = 1890.
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Figure 10: Time series analysis of x4[t] with α = 0.87,γ = 1.1 and δ = 1890.
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Figure 11: Chaotic Behavior of the system (3.2) with α = 0.87,γ = 1.1 and δ = −0.2.
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Figure 12: Time series analysis of x1[t] with α = 0.87,γ = 1.1 and δ = −0.2.
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Figure 13: Time series analysis of x2[t] with α = 0.87,γ = 1.1 and δ = −0.2.
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Figure 14: Time series analysis of x3[t] with α = 0.87,γ = 1.1 and δ = −0.2.
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Figure 15: Time series analysis of x4[t] with α = 0.87,γ = 1.1 and δ = −0.2.
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∑4
j=1 a2jyj

∑4
j=1 a3jyj −

∑4
j=1 a2jyj +

∑4
j=1 a2jyj

∑4
j=1 a

2
1jy

2
j + γ

∑4
j=1 a1jyj

3
∑4

j=1 a1jyj
∑4

j=1 a3jyj +
∑4

j=1 a1jyj −
∑4

j=1 a
3
1jy

3
j + γ

∑4
j=1 a2jyj

−2
∑4

j=1 a3jyj
∑4

j=1 a2jyj
∑4

j=1 a3jyj − 2α
∑4

j=1 a3jyj

−3
∑4

j=1 a3jyj
∑4

j=1 a2jyj
∑4

j=1 a4jyj − 3δ
∑4

j=1 a3jyj +
∑4

j=1 a
2
4jy

2
j


+ Ψ(x, y). (4.3)

Now, according to definition of HPS error dynamics we have,

de

dt
= A

dy

dt
− dx

dt
= f(Ay)− f(x) + Ψ(x, y). (4.4)

Let
f(Ay)− f(x) = F (x, e). (4.5)

From equation (4.4) and (4.5), we have following

de

dt
= F (x, e) + Ψ(x, y). (4.6)

Our goal is to find F (x, e) and to design controller Ψ(x, y) to achieve the HPS.
Equation (4.5) gives F (x, e) =

∑4
j=1 a2jyj

∑4
j=1 a3jyj −

∑4
j=1 a2jyj +

∑4
j=1 a2jyj

∑4
j=1 a

2
1jy

2
j + γ

∑4
j=1 a1jyj

3
∑4

j=1 a1jyj
∑4

j=1 a3jyj +
∑4

j=1 a1jyj −
∑4

j=1 a
3
1jy

3
j + γ

∑4
j=1 a2jyj

−2
∑4

j=1 a3jyj
∑4

j=1 a2jyj
∑4

j=1 a3jyj − 2α
∑4

j=1 a3jyj

−3
∑4

j=1 a3jyj
∑4

j=1 a2jyj
∑4

j=1 a4jyj − 3δ
∑4

j=1 a3jyj +
∑4

j=1 a
2
4jy

2
j



−


x2x3 − x2 + x2x

2
1 + γx1

3x1x3 + x1 − x31 + γx2

−2x1x2x3 − 2αx3

−3x2x3x4 − 3δx3 + x24


which yields, F (x, e)

=



e2e3 + e2e21 + e2x3 + e3x2 − e2 + e2x21 + 2e1e2x1 + x2e21 + 2e1x1x2 + γe1

e1 − e31 + 3e1e3 + 3x3e1 + 3x1e3 − 3x21e1 − 3x1e21 + γe2

−2x1x3e2 − 2x2x3e1 − 2x3e1e2 − 2x1x2e3 − 2x1e2e3 − 2e1e3x2 − 2e1e2e3 − 2e3α

−3x4x3e2 − 3x2x3e4 − 3x3e2e4 − 3x2x4e3 − 3x2e4e3 − 3e2e3x4 − 3e2e3e4 − 3e3δ + e24 + 2e4x4

 .

So, after putting all above values, we have

F (x, e) =

 B1e1 + h1(x, e1, e2)

B2e2 + h21(x, e1, e2) + h22(x, e1, e2)

 . (4.7)
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Obviously, lime1→0 h21(x, e1, e2) = 0. Now, according to theorem (2.1), we define feed-
back controller Ψ(x, y) as,

Ψ(y, x) =

(
Ψ1(x, y)

Ψ2(x, y)

)
=

(
Λ1e1 − h1(x, e1, e2)

Λ2e2 − h22(x, e2, e2)

)
. (4.8)

So from equations (4.7) and (4.8) error dynamical system (4.6) can be rewritten as,

de1
dt = (B1 + Λ1)e1,

de2
dt = (B2 + Λ2)e2 + h21(x, e1, e2).

}
(4.9)

So we choose now suitable B1 + Λ1 ∈ R1 and B2 + Λ2 ∈ R3×3, for which eigen values
are negative. As Eq.(4.9) is asymptotically stable with equilibrium point e1 = 0 and
e2 = 0. Obviously limt→∞ ‖e1‖ = 0 and lime1→0 h21(x, e1, e2) = 0, then the hybrid
projective synchronization between response system and master system can be achieved.

5 Numerical Simulations

2 4 6 8 10

0.05

0.10

0.15

0.20

0.25

0.30

Figure 16: Convergence of error e1, t ∈ [0, 10].
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Figure 17: Convergence error of e2, t ∈ [0, 10].

Parameters of the system are −0.01 ≤ δ ≤ 7650 with α = 0.14, γ = 1.1 and
−0.2 ≤ δ ≤ 1890 with α = 0.87,γ = 1.1 for which the systems are chaotic. In (4.9),
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Figure 18: Convergence of error e3, t ∈ [0, 10].
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Figure 19: Convergence of error e4, t ∈ [0, 10].

we have chosen Λ1 = (−2) and Λ2 =

 −2 0 0
0 −1 0
0 3 −1

, which leads to stability condi-

tions as eigenvalues of B1+Λ1 and B2+Λ2 are negative. The initial conditions for master
and slave systems [x1(0), x2(0), x3(0), x4(0)] = [8, 3, 1, 4] and [y(0), y2(0), y3(0), y4(0)] =

[0.1, 0.41, 0.31, 0.51], respectively, and A =


−1 0 −1 0

0 −1 −2 0
1 1 0 0
1 2 3 1

 . Then for

[e1(0), e2(0), e3(0), e4(0)] = [−8.41,−4.03,−0.51,−2.15] diagrams of convergence of er-
rors are the witness of achieving hybrid projective synchronization between master and
slave system.

6 Conclusion

In this paper, we have investigated hybrid projective synchronization behavior of a new
hyper chaotic Rabinovich-Fabrikant system. The results are validated by numerical simu-
lations using mathematica. It has more advantage over other synchronization to enhance
security of communication as hybrid projective synchronization is more unpredictable
and moreover it is performed for hyperchaotic system, which makes it more useful.
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