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Abstract: The purpose of this paper is to obtain new sufficient conditions guaran-
teeing the Hyers-Ulam stability of Laguerre differential equation

xy′′ + (1 − x)y′ + ny = 0

and Bessel differential equation of order zero

xy′′ + y′ + xy = 0.

Our findings make a contribution to the topic and complete those in the relevant
literature.
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1 Introduction

Differential equations of second order can serve as excellent tools for description of math-
ematical modelling of systems and processes in the fields of engineering, physics, chem-
istry, economics, aerodynamics, and polymerrheology, etc. Therefore, the qualitative
behaviors of solutions of differential equations of second order, stability, boundedness,
oscillation, etc., play an important role in many real world phenomena related to the
sciences and engineering technique fields. However, we would not like to give the details
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of the applications related to differential equations of second order here.This information
indicates the importance of investigating the qualitative properties, Hyers-Ulam stability,
Lyapunov stability, etc., of solutions of differential equations of second order.

The stability of functional equations was originally raised by Ulam in 1940 in a
talk given at Wisconsin University (Ulam [17]). He discussed a number of unsolved
important problems in that presentation. Later, Hyers [5] answered to the questions of
Ulam [17]. Hence, the concepts related to the Hyers-Ulam stability arose in the literature.
Later, the result of Hyers [5] has been generalized by Rassias [15]. In 1998, Alsina and
Ger [3] studied the Hyers–Ulam stability of the fundamental linear differential equation.
They proved that the linear differential equation has the Hyers–Ulam stability. After
that, many researchers have studied the Hyers–Ulam stability of the various linear and
partially differential equations. For more details on the Hyers–Ulam stability of various
linear ordinary and partially differential equations, one can see Abdollahpour et al. [1],
Alqifiary [2], Alsina and Ger [3], Biçer and Tunç [4], Hyers [5], Jung [6-11], Liu and
Zhao [12], Lungu and Popa [13-14], Rassias [15], Tunç and Biçer [16], Ulam [17] and the
references therein.

In these sources, the Hyers–Ulam stability of solutions to various linear ordinary,
functional and partially differential equations was discussed by direct method, iteration
method, fixed point method with a Lipschitz condition, integrating factor method, open
mapping theorem, the Gronwall inequality, power series method, the Laplace transform
method and etc.

The following works are notable. Jung [11] investigated general solution of the inho-
mogeneous Bessel differential equation of the form

x2y′′(x) + xy′(x) + (x2 − γ2)y(x) =

∞∑
m=0

amx
m,

where the parameter γ is non-integral number.
Jung [10] solved the inhomogeneous differential equation of the form

xy′′ + (1− x)y′ + ny =

∞∑
m=0

amx
m

by the power series method, where n is positive integer, and applied this result to obtain
a partial solution to the Ulam stability of the differential equation

xy′′ + (1− x)y′ + ny = 0.

Abdollahpour at al. [1] discussed the Hyers-Ulam stability of the differential equation

xy′′ + (1 + v − x)y′ + λy =

∞∑
m=0

amx
m

by means of the power series method. They studied the Hyers-Ulam stability of the
associated homogeneous Laguerre differential equation in a subclass of analytic functions.

Alqifiary and Jung [2] investigated Hyers-Ulam stability of the differential equation

y(n)(t) +

n−1∑
k=0

αky
(k)(t) = f(t)
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by applying the Laplace transform method, where αk is a scalar.
In this paper, we investigate the Hyers-Ulam stability of Laguerre differential equation

of the form

xy′′ + (1− x)y′ + ny = 0, (1)

where n is positive integer, and Bessel differential equation of order zero

xy′′ + y′ + xy = 0. (2)

Motivated by the mentioned sources, the aim of this paper is to prove the Hyers-Ulam
stability of Laguerre and Bessel equations given by (1) and (2) by the Laplace transform
method. It is worth mentioning that, to the best of our knowledge, the Laplace transform
method is a very effective method to discuss the Hyers-Ulam stability of these equations,
equation (1) and equation (2). In addition, to the best of our information till now, the
Hyers-Ulam stability of equation (1) and equation (2) was not discussed in the literature
by the Laplace transform method. This paper is the first attempt in the literature on
the topic for the mentioned equations. Our results will also be differ from those obtained
in the literature (see, [1-19] and the references therein). By this way, we mean that this
paper has made a contribution to the subject in the literature, and the paper may be
useful for researchers working on the qualitative behaviors of solutions like the Hyers-
Ulam stability to various differential and partially differential equations. In view of all the
mentioned information, the novelty and originality of the current paper can be checked.

2 Hyers-Ulam Stability of Laguerre Equation

Let I = (0,∞). Our first main result is the following theorem.
Theorem 1. If the function y satisfies the differential inequality

| xy′′ + (1− x)y′ + ny |≤ ε (3)

for all x ∈ I and for some ε > 0, then there exists a solution y0 : I → < of equation (1)
such that

| y(x)− y0(x) |≤ 1

n
ε.

Proof. It is clear from (3) that

−ε ≤ xy′′ + (1− x)y′ + ny ≤ ε.

If we apply the Laplace transform to the last inequality, then we have

L(−ε) ≤ L[xy′′ + (1− x)y′ + ny] ≤ L(ε).

Hence, since a Laplace transform is linear, it is clear that

L(−ε) ≤ L(xy′′) + L((1− x)y′) + L(ny) ≤ L(ε).

In view of the basic information related to the properties of a Laplace transform, it can
be written that

−ε
s
≤ − d

ds
[s2Y (s)− sY (0)− Y ′(0)] + sY (s)− Y (0) +

d

ds
[sY (s)− Y (0)] + nY (s) ≤ ε

s
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and

−ε
s
≤ −2sY (s)− s2 dY

ds
+ sY (s) + Y (s) + s

dY

ds
+ nY (s) ≤ ε

s

so that

−ε
s
≤ (s− s2)

dY

ds
+ (n+ 1− s)Y (s) ≤ ε

s
.

Assume that (s2 − s) > 0. Dividing the above inequality by (s2 − s) and then multi-

plying the last inequality by the term sn+1

(s−1)n , we obtain

− εsn−1

(s− 1)n+1
≤ dY

ds

sn+1

(s− 1)n
+

(s− n− 1)

(s2 − s)
sn+1

(s− 1)n
Y (s) ≤ εsn−1

(s− 1)n+1
.

From this, we have

− εsn−1

(s− 1)n+1
≤ d

ds
[
sn+1

(s− 1)n
Y (s)] ≤ εsn−1

(s− 1)n+1
.

For any s1 > s, integrating the above inequality from s to s1, we get

− ε
n

[(
s

s− 1
)n − (

s1
s1 − 1

)n] ≤ sn+1
1

(s1 − 1)n
Y (s1)− sn+1

(s− 1)n
Y (s) ≤ ε

n
[(

s

s− 1
)n − (

s1
s1 − 1

)n]

so that

− ε
n

[(
s

s− 1
)n − 2(

s1
s1 − 1

)n] ≤ sn+1
1

(s1 − 1)n
Y (s1)− sn+1

(s− 1)n
Y (s) +

ε

n
(

s1
s1 − 1

)n

≤ ε

n
(

s

s− 1
)n,

− ε
n

(
s

s− 1
)n ≤ sn+1

1

(s1 − 1)n
Y (s1)− sn+1

(s− 1)n
Y (s) +

ε

n
(

s1
s1 − 1

)n ≤ ε

n
(

s

s− 1
)n.

Multiplying the last inequality by the term (s−1)n
sn+1 , we obtain

− ε

ns
≤ sn+1

1

(s1 − 1)n
Y (s1)

(s− 1)n

sn+1
+
ε

n
(

s1
s1 − 1

)n
(s− 1)n

sn+1
− Y (s) ≤ ε

ns
.

Appling the inverse Laplace transform, we have

L−1(− ε

ns
) ≤ L−1[

sn+1
1

(s1 − 1)n
Y (s1)

(s− 1)n

sn+1
] + L−1[

ε

n
(

s1
s1 − 1

)n
(s− 1)n

sn+1
]− L−1[Y (s)]

≤ L−1(
ε

ns
)

and

− ε
n
≤ [

ε

n
+ s1Y (s1)](

s1
s1 − 1

)nL−1[
(s− 1)n

sn+1
]− y(x) ≤ ε

n
.

Since

L−1[
(s− 1)n

sn+1
] = 1− nx+

(
n

2

)
x2

2!
−
(
n

3

)
x3

3!
+ ...+ (−1)n+1x

n

n!
,
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it follows that

− ε
n
≤ [

ε

n
+ s1Y (s1)](

s1
s1 − 1

)n[1− nx+

(
n

2

)
x2

2!
−
(
n

3

)
x3

3!
+ ...+ (−1)n+1x

n

n!
]− y(x)

≤ ε

n
.

Then, we can write

| y(x)− y0(x) |≤ ε

n
,

where

y0(x) = (s1Y (s1)− ε

n
)(

s1
s1 − 1

)n(1− nx+

(
n

2

)
x2

2!
−
(
n

3

)
x3

3!
+ ...+ (−1)n+1x

n

n!
).

This completes the proof of Hyers-Ulam stability of solutions of equation (1).
Our second and last main result is the following theorem.
Theorem 2. Let ε ∈ <, ε > 0. If the function y satisfies the differential inequality

| xy′′ + y′ + xy |≤ ε (4)

for all x ∈ I, then there exists a solution y0 : I → < of equation (2) such that

| y(x)− y0(x) |≤ 2ε.

Proof. It is clear from (4) that

−ε ≤ xy′′ + y′ + xy ≤ ε.

When we apply the Laplace transform to the last inequality, we get

L(−ε) ≤ L(xy′′) + L(y′) + L(xy) ≤ L(ε).

Then, it follows that

−ε
s
≤ − d

ds
[s2Y (s)− sY (0)− Y ′(0)] + sY (s)− Y (0)− d

ds
Y (s) ≤ ε

s
.

Hence

−ε
s
≤ −s2Y ′(s)− 2sY (s) + Y (0) + sY (s)− Y (0)− Y ′(s) ≤ ε

s

so that

−ε
s
≤ −(s2 + 1)Y ′(s)− sY (s) ≤ ε

s
.

Multiplying the last inequality with the term − 1√
s2+1

, we arrive at

− ε

s
√
s2 + 1

≤
√
s2 + 1Y ′(s) +

s√
s2 + 1

Y (s) ≤ ε

s
√
s2 + 1

so that

− ε

s
√
s2 + 1

≤ d

ds
(
√
s2 + 1Y (s)) ≤ ε

s
√
s2 + 1

.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 17 (4) (2017) 340–346 345

For any s1 > s, integrating the above inequality from s to s1, we get

−ε[ln(

√
s2 + 1 + 1

s
)− ln(

√
s21 + 1 + 1

s1
)] ≤

√
s21 + 1Y (s1)−

√
s2 + 1Y (s)

≤ ε[ln(

√
s2 + 1 + 1

s
)− ln(

√
s21 + 1 + 1

s1
)].

In view of the last inequality, we can write

−ε ln(

√
s2 + 1 + 1

s
) ≤

√
s21 + 1Y (s1)−

√
s2 + 1Y (s) ≤ ε ln(

√
s2 + 1 + 1

s
).

Multiplying the last inequality with term 1√
s2+1

, we obtain

− ε√
s2 + 1

ln(

√
s2 + 1 + 1

s
) ≤

√
s21 + 1√
s2 + 1

Y (s1)− Y (s) ≤ ε√
s2 + 1

ln(

√
s2 + 1 + 1

s
).

Since s > 0, we can write

− ε√
s2 + 1

√
s2 + 1 + 1

s
≤
√
s21 + 1√
s2 + 1

Y (s1)− Y (s) ≤ ε√
s2 + 1

√
s2 + 1 + 1

s

so that

−2ε

s
≤
√
s21 + 1√
s2 + 1

Y (s1)− Y (s) ≤ 2ε

s
.

If we apply the inverse Laplace transform, then we obtain

L−1(−2ε

s
) ≤ L−1(

√
s21 + 1√
s2 + 1

Y (s1))− L−1(Y (s)) ≤ L−1(
2ε

s
)

so that

−2ε ≤
√
s21 + 1Y (s1)J0(x)− y(x) ≤ 2ε,

where

J0(x) = 1− 1

1!

(
x

2

)2

+
1

(2!)2

(
x

2

)4

− 1

(3!)2

(
x

2

)6

+ ....

From this,we can obtain
| y(x)− y0(x) |≤ 2ε,

where

y0(x) = −
√
s21 + 1Y (s1)J0(x).

This completes the proof of Hyers-Ulam stability of solutions of equation (2).

3 Conclusion

A kind of linear differential equations of second order, namely Laguerre and Bessel equa-
tions, is considered. Sufficient conditions are established guaranteeing the Hyers -Ulam
stability of solutions of these equations. To prove the main results here, we benefit from
the Laplace transform method. The results obtained essentially complement the results
in the literature.
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