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Passivity Based Control of Continuous Bioreactors
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Abstract: In this paper, a passivity based model of a general set of bio-reactions
in open reactors with new energy functions is derived. A change of coordinates is
done, based on the stoichiometric invariance principle, which simplifies the number
of equations to be taken care of and shows directly the passivity of the system.
The passivity based control will be obtained in terms of systematic controller design
techniques. The energy functions can be said to be in close proximity with the Gibbs
free energy function used in port-Hamiltonian model of enzymatic reactions and are
far from the traditional non-physical quadratic functions.
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1 Introduction

Passivity is a fundamental property of physical systems which are able to transform and
dissipate energy. For such systems, passivity balances the energy of a system quantifying
the external input and generated output. Hence, passivity is also related to the stability
of the system by the fact that the system is said to be passive if the input energy is
always more than or equal to the stored energy (closed systems) or output energy (open
systems). Port-Hamiltonian (PH) modelling has been one of the most physical passivity
based modelling technique which has inherent structural properties clearly defining the
interconnection and dissipation of energy. Bond graph (BG) modelling technique can be
considered as the graphical representation of the PH models . However, it is possible to
propose only quasi-port-Hamiltonian representations for chemical and enzymatic systems
using different energy functions and subsequent controllers (entropy, enthalpy, Gibbs free
energy, etc., see e.g. [1], [2]) or pseudo bond graph models, e.g. [3].
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When it comes to bioreactions, a true energetic representation becomes impossible,
as these involve a high number of microbial reactions, which are generally lumped into a
mathematical reaction term without any thermodynamical meaning. On a macroscopic
level, different kinetics are being proposed based on empirical data fitting, e.g. Monod
kinetics, which reflect energy dissipation phenomena and can contribute to passivity
based structure. [4] have tried different coordinate transformations allowing a generic but
artificial obtention of a passive system where the examples use again quadratic energy
functions. [5] explored different possibilities of unphysical Hamiltonian functions such
as constant, logarithmic and quadratic functions. Nevertheless, adequate coordinate
transformation is needed for better understanding of the mechanisms. The authors in
this paper contributed through a new specific passivity based model taking advantage
of the structure, based on decoupling of dynamics and the use of invariants extended
to continuous reactors in [6]. It is shown that the passivity-based model involves non
quadratic storage functions. A general formulation leads to easy application for a large
number of systems. The case of multiple equilibria and bifurcation analysis can be seen
e.g. in [7].

Passivity based control (PBC), as discussed above, exploits system’s physical prop-
erties while exploring the possibilities of managing its energy and takes into account
physical terms while choosing the control action. PBC of continuous chemical reactors
generally relies on non-physical energy functions (e.g. quadratic functions) [1] . Sub-
sequently, in [4] the authors proposed a systematic design of a real PH structure with
an efficient control design. However, the energy function is given as a pure meaning-
less quadratic form, and the PH model is given by an artificial decomposition of the
nonlinear model without any real world insight. In [8] it was shown that internal en-
tropy production can be used as a storage function and also, a quasi port-controlled
Hamiltonian representation of chemical reactors was formulated. Hence, an original and
physical-based control design presented in this paper exploits the new passive model and
is applied to aniline degradation by Pseudomonas putida cells.

2 The General Dynamical Model of a Single Stream Bioreactor

Suppose there are j independent reactions involving n components, taking place inside
a perfectly mixed continuous reactor at constant volume and temperature. The biore-
actor has only one single stream for all the concentrations coming in or going out (e.g.
wastewater treatment). The inlet dilution rate is equal to outlet dilution rate to main-
tain constant volume. Dilution rate D is the control parameter. The state space of the
concentrations is:

[z] = [ξ1, ξ2 · · ·ξn]T .

[z] comprises a set of
[
S X P

]T . S represent substrates, X are biomasses, P are
products of reaction. The general dynamical model (GDM) of bioreactions is as follows:[

dz

dt

]
= [c] [r(z)] + [F ]− [Dz] , (1)

where z represents the concentration of components, F represents the inlet flow rate of
component z, c represents the yield coefficients and r(z) is the rate of reaction.

Remark 2.1 The GDM in this paper can be said to be a specific case of the GDM
shown in (1) in which there is only single inlet stream Dz with only one feed instead of
multiple inlet flow rates (F ).
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A generalised first order time derivative of concentration model of a set of bioreactions
in an open reactor with single dilution rate at constant volume and temperature can be
written as: [

dz

dt

]
= [c] [r(z)] + [Dzin−Dzout] , (2)

where z are the n components, c is the matrix of constant yield coefficients associated
with the reaction. r are the rates of reaction. zin and zout are the inlet and outlet con-
centrations of n components. zin are mostly substrates altogether coming in one stream
with dilution rate D. For the concentrations not fed from outside, such as products
and biomasses, zin will be zero. Similarly, zout is the concentration coming out of the
reactor which will be the same as the concentration inside the reactor i.e. z. The model
(2) is valid for all types of microbial kinetics. The inputs u will be: u ∈ [D,Dzin].

2.1 A useful coordinate transformation

This coordinate transformation is chosen to simplify the model by finding invariants,
making it easier to passivate. The important point here is that the new set of coordinates
will be independent of kinetics which are restricted to appear in the kinetics, extending
the work of [6] to the general dynamical model of bioreactors [9].

Suppose, state vector z can be divided into two vectors of dimensions j and k= n−j,
[z] =

[
ξ φ

]T , [c] =
[
cj ck

]
so that:[

ξ̇
]

= [cj ] [r(z)] + [Dξin−Dξ] , (3)

[
φ̇
]

= [ck] [r(z)] + [Dφin−Dφ] . (4)

The coordinate transformation will lead to a new vector of k = n− j elements and will
be represented by state W , where [A] is a constant matrix:

[W ]n−j×1 = [A]n−j×n
(

[ξin−ξ]j×1

)
+ [φin−φ]n−j×1. (5)

Proposition 2.1 For the relation of W proposed in (5), j independent reactions
(cj is full rank), if matrix [A] and functions of ξin and φin are chosen in a way that
[A] [cj ] + [ck] = 0 and [A] ξ̇in+ φ̇in = 0, the state space model takes the form:[

ξ̇

Ẇ

]
=
[ [cj ]j×j [0]j×n−j

[0]n−j×j [−DI]n−j×n−j

]
n×n

[
r(ξ,W )
W

]
n×1

+
[
Dξin−Dξ

0

]
. (6)

Proof : On differentiating (5) with respect to time we get:[
Ẇ
]

= [A]
(
ξ̇in− ξ̇

)
+
(
ξ̇in− φ̇

)
. (7)

Further substitution for
[
ξ̇
]
,
[
φ̇
]

from (3) and (4) respectively will lead to:[
Ẇ
]

= [A]n−j×j
(
−[cj ]j×j [r(ξ,W )]j×1 + [Dξin−Dξ]j×1

)
−[ck]n−j×j [r(ξ,W )]j×1 + [Dφin−Dφ] .

(8)
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Substituting [A] [cj ] =− [ck] and [A] ξ̇in =−φ̇in in (8) will give:

Ẇ =−DW . (9)

With state space as
[
ξ W

]T
, the bioreactor model becomes same as shown in (6).

Note that this solution necessarily needs cj to be a full rank square matrix by careful
choice of the components of ξ . It is always possible to find such a matrix A by the
stoichiometric invariance principle if the j reactions are truly independent. Further, other
assumptions on inlet concentrations φin,ξin are weak, since they are always verified
when these are constant, which will be assumed in the sequel.

Corollary 2.1 If ∀D : D > 0, W is a reaction invariant, i.e. W will exponentially
converge to zero.

Proof : Consider a continuously differentiable non-negative storage function H =
1
2W

2 and H :W → R with H(0) = 0 . Differentiating H w.r.t. time and substituting
(9) will give Ḣ =−DW 2 =−2DH. Hence for D > 0, H and W → 0 as t→∞.

Remark 2.2 For the general model (1), the representation after coordinate trans-
formation, originated from the stoichiometric invariance principle, was independent of
kinetics and was referred to as a ”‘nice” representation in [9]. However, the model in
(9), which considers the case of a single stream input flow, also allows to find a reaction
invariant. Hence, the model splits the dynamics into a stable bilinear subsystem (W )
and a control affine subsystem (ξ) which are weakly coupled. The convergence of W to
zero extends the so-called ”useful” change of coordinates in [9].

3 Passivity Based Model

A passive system is a system which cannot store more energy than is supplied by some
source. The difference between the stored energy and supplied energy is the dissipated
energy:

Definition 3.1 [4] Consider the system:

ẋ= f (x) +g (x)u, y = h(x) , (10)

where u, y are the input and output of the system respectively, f(x), g(x) and h(x)
are matrices and vector fields that define the interconnection between physical-meaning
elements (state, inputs, and outputs ). With a storage function V (x):V (x∗) = 0, where
x∗ is the steady state value of x and V (x)> 0 at x 6= x∗, this system is passive if:

dV

dt
≤ uTy. (11)

The passive system satisfying the condition presented in Definition 3.1 is written as:

ẋ=Q(x,u) ∂V
∂x

+γ(x)v, y = γT (x)∂V
∂x

. (12)

Here v is the modified input, Q and γ are the modified interconnection matrices.
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Lemma 3.1 [4], Consider the system shown in equation (12), which with a storage
function V (x): V (x∗) = 0, where x∗ is the steady state value of x and V (x) > 0 at
x 6= x∗, will be passive if Q≺ 0.

In biochemistry, most of the microbial reactions are coupled but can be turned into
decoupled reactions either as a linear combination of functions of single state variable or
such a transformation can be achieved through decoupling process. The proposed pas-
sivization methodology is suitable for such reactions in terms of physical and structural
understanding. Decoupling also leads to further simplification of the model by getting
rid of many complex terms using minor assumptions without considerable change in the
actual kinetics. The following section will explain the general process of decoupling of
coupled bioreactions and derive their passivity based model.

3.1 Decoupling of coupled bioreactions

A decoupled reaction has its rate terms depending only on single state or many states if
they can be separated (decoupled) algebraically so that they become a linear combination
of functions of single state only. It is supposed that there exist j independent reactions
with a full rank stoichiometric cj which allow for the nice representation described above.
It would also be possible to achieve a partial stabilization of the system using passivity
properties [10], [11].

The bioreactor systems chosen here are single stream bioreactors having inlet concen-
tration of each component to be constant. Dilution rate D is the only control input in
such systems. We assume that we can split the rate term of ξ, i.e. cjr(ξ,W ) into two
parts, u and c standing for uncoupled and coupled curu(ξu,W ) and ccrc(ξ,W ), where
curu(ξu,W ) is the sum of decoupled rate terms c̄upu(ξu) and function fu(ξu,W ),
with ∂(pu)i

∂(x)j = ∂(fu)i

∂(x)j = 0 if j 6= i, (.)i standing for the ith component of a vector.

ccrc(ξ,W ) is the sum of a decoupled modified rate term c̄crc(ξ), where ∂(pc)i

(∂x)j = 0,
if j 6= i and a remaining coupled term depends on the whole ξ, fc(ξ,W ). Concisely, one
can write:

 ξ̇uξ̇c
Ẇ

=

 c̄j 0
0 −DI

 pu (ξu)
pc (ξc)
W

+

 fu (ξu,W )
fc (ξ,W )

0

+

D (ξuin− ξu)
D (ξcin− ξc)

0

 . (13)

At this stage, equation (13) shows the decoupling process, as the d first equations are only
coupled by the vanishing reaction invariantW . In practical applications, the correspond-
ing variables are substrates concentrations, for which the kinetics is only coupled with
one or several biomass concentrations. Now, the input concentrations can be controlled
to obtain a more interesting configuration for the coupled dynamics ξc.

Lemma 3.2 Let us consider the equilibrium point ξ∗ of the system (13). If
(D−D∗)(ξcin−ξc) +D∗

(
ξ∗cin−ξc

)
+fc (ξ,W )−fc (ξ∗) = 0,
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then system (13) can be written as: ξ̇u
ξ̇c
Ẇ

=

 c̄j 0
0 −DI

 pu (ξu)−pu
(
ξ∗u
)

pc (ξc)−pc
(
ξ∗c
)

W

+

 (D−D∗)(ξuin− ξu) +D∗
(
ξ∗u− ξu

)
0
0

 .
(14)

Proof : At equilibrium, ξ∗ =
[
ξu
∗ ξc

∗ 0
]
. As ξ̇ = 0, this in

turn implies c̄upu (ξu∗) + fu (ξu∗) = −D∗ (ξuin− ξu
∗) and c̄cpc (ξc∗) + fc (ξ∗) =

−D∗ (ξcin∗− ξc
∗).

Adding and subtracting pu(ξu∗), pc(ξc∗) in the corresponding equation (13) and
replacing the compensation yield the final result. The above set of equations will be
decoupled if one can cancel the fc term, using control terms. These control terms can be
either the dilution rate D, or the inlet concentrations ξ∗cin (provided that the equation
[A] ξ̇in+ φ̇in = 0 is verified). The states are only coupled by the stoichiometric matrix
c̄j and W (W → 0). The next section will show the passivization procedure using a
physical energy (storage) function.

3.2 Passivity based model of a general decoupled bioreactor

Proposition 3.1 Suppose the system:

ξ̇u = c̄jpu (ξu)− c̄jpu (ξu∗) +fu (ξu,W )−fu (ξu∗)+
(ξuin−ξu)︸ ︷︷ ︸

g

(D−D∗)︸ ︷︷ ︸
u

+D∗ (ξu∗−ξu) (15)

is passive with storage function V (ξu, t), input u and output y : y = gT ∂V
∂ξu

, and
fu (ξu,W )−fu (ξu∗) is a vanishing perturbation: lim

t→∞
fu (ξu,W )−fu (ξu∗) = 0. As-

sume that there exists a neighbourhood Z of ξu∗ such that the reduced system:

ξ̇u = c̄jpu (ξu)− c̄jpu (ξu∗) + (ξuin− ξu)(D−D∗) (16)

has ξu∗ as an exponentially stable equilibrium point and for ξ̄u = ξu−ξu∗, the storage
function V (ξu, t) satisfies the following conditions:
∃k3,k4 > 0,k3 ‖ ξ̄u ‖≤ ∂V

∂ξu
≤ k4 ‖ ξ̄u ‖,

∃γ : γ+D∗ > 0 ‖ f ′ (ξu,W )−fu (ξu∗) ‖≤ (γ+D∗) ‖ ξ̄u ‖.
Then the full system (15) is also locally exponentially stable at ξ∗ if:

(−λmink3−k3 +k4(γ+D∗)λmax)< 0, where λmin, λmax are the minimum and maximum
eigenvalues of −c̄j .

Proof : One knows from the exponential stability conditions that 3 k1,k2 > 0,
k1 ‖ ξ̄u ‖≤ V ≤ k2 ‖ ξ̄u ‖. Since dV

dt = ∂V
∂ξu

∂ξu
∂t , it follows from the assumption:

∂V
∂ξu

T
c̄j(pu (ξu)−pu (ξu∗))≤ (−λmin−1)k3 ‖ ξ̄u

2 ‖,
∂V
∂ξu

T (fu (ξu,W )−fu (ξu∗,0))≤ k4(γ+D∗)λmax ‖ ξ̄u
2 ‖ .

Now, dVdt ≤ (−λmink3−k3 +k4(γ+D∗)λmax) ‖ ξ̄u
2 ‖+uTy ≤ uTy if
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(−λmink3−k3 +k4(γ+D∗)λmax) < 0, Hence, the reduced system (16) is exponentially
stable and according to Theorem 3.12 in [12], the full system will be exponentially stable.

Now, Proposition 3.1 tells that the full system will be exponentially stable if the
reduced unperturbed system is exponentially stable. From Proposition 3.1 one can take
fu (ξu,W )−fu (ξu∗,0) +D∗(ξu∗−ξu) = 0 and the system (13) is written as (17). ξ̇u

ξ̇c
Ẇ

=

 c̄j 0
0 −DI

 pu (ξu)−pu
(
ξ∗u
)

pc (ξc)−pc
(
ξ∗c
)

W

+

 (D−D∗)(ξuin− ξu)
0
0

 . (17)

This presentation is straightforward and physically linked to passivity.

Proposition 3.2 Consider the system (17) with c̄j ≺ 0. Assume that there exists a
neighbourhood Z of ξ = ξ∗ such that:

1.
∑(ξu)i∫

0
(pu)i

(
(ξu)i

)
−

(ξu)i∫
0

(pu)i
(
(ξu∗)i

)> 0

2.
∑(ξc)i∫

0
(pc)i

(
(ξc)i

)
−

(ξc)i∫
0

(pc)i
(
(ξc∗)i

)> 0,

then the storage function V ′ =
n∑
i=1

V ′i =
nu∑
i=1

∫ (
(pu)i(ξu)i− (pu)i(ξ∗u)i

)
∂(ξu)i +

nc∑
i=1

∫ (
(pc)i(ξc)i− (pc)i(ξ∗c)i

)
∂(ξc)i +

n−j∑
i=1

1
2Wi

2 will make the reduced system (17)

asymptotically stable at ξ = ξ∗.

Proof : One has V ′ being always positive around ξ∗. On partially differentiating V ′
w.r.t. states ξu,ξc and W :

∂V ′

∂ξu
= pu (ξu)−pu (ξu∗) : ∂V

′

∂ξc
= pc (ξc)−pc (ξc∗) : ∂V

′

∂W
=W (18)

the system in (17) can be written in the form: ξ̇u
ξ̇c
Ẇ


︸ ︷︷ ︸

ξ̇

=

 c̄j 0
0 −DI


︸ ︷︷ ︸

Q′


∂V ′

∂ξu
∂V ′

∂ξc
∂V ′

∂W


︸ ︷︷ ︸

∂V ′
∂ξ

+

 (ξuin−ξu) 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

g

 (D−D∗)
0
0


︸ ︷︷ ︸

u′

.
(19)

The output of the system will be y′ = gT ∂V∂ξ . The time derivative of V ′ is:

V̇ ′ = ∂V ′

∂ξ
ξ̇ = ∂V ′

∂ξ

T

Q′
∂V ′

∂ξ
+ ∂V ′

∂ξ

T

gu′ = ∂V ′

∂ξ

T

Q
∂V ′

∂ξ
+y′Tu′. (20)

Since c̄j ≺ 0 and D > 0 is making matrix Q′ negative definite, (19) is passive. V ′i is
minimum i.e. 0 at (ξ∗)i, the system (19) has a passive equilibrium point ξ = ξ∗.
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4 Passivity Based Control

Passivity based control is a generic design method which is extensively used in electro-
mechanical systems.

Proposition 4.1 [4] Consider the passive system of the form:

ẋ=Q(x,u) ∂V
∂x

+γ(x)v;y = γT (x)∂V
∂x

, (21)

where V (x) is the specified closed-loop storage function V (x): V (xd) = 0, xd 6= 0 is the
desired steady state value of x and V (x)> 0, Q≺ 0. Suppose that the model is zero state
detectable, then the feedback v =−C(x, t)y with C(x, t)≥ eI > 0 and constant e renders
x= xd globally asymptotically stable.

4.1 Passivity based control of a general decoupled bioreactor

The following proposition will give general formulations of passivity based control of a
decoupled bioreactor system.

Proposition 4.2 Consider the desired storage function V̄ , with conditions following:

V̄ =
n∑
i=1

V̄i =
nu∑
i=1

∫ (
pu (ξu)−pu

(
ξdu

))i
(∂ξu)i

+
nc∑
i=1

∫ (
pc (ξc)−pc

(
ξd
))i

(∂ξc)i+
n−j∑
i=1

1
2(W 2)i,

(22)

1.
nu∑
i=1

(ξu)i∫
0

(pu)i
(
(ξu)i

)
−

(ξu)i∫
0

(pu)i
(
(ξdu)i

)> 0,

2.
nc∑
i=1

(ξc)i∫
0

(pc)i
(
(ξc)i

)
−

(ξc)i∫
0

(pc)i
(
(ξdc )i

)> 0,

3. V̄
(
ξd
)

= 0

Hence, the system (19) is passive and the feedback ū=−C(x, t)ȳ with C(x, t)≥ eI > 0
renders (19) globally asymptotically stable at ξ = ξd.

Proof : After replacing the equilibrium point ξ∗ with desired equilibrium point ξd,
the system (19) can take the form: ξ̇u

ξ̇c
Ẇ


︸ ︷︷ ︸

ξ̇

=

 c̄j 0
0 −DI


︸ ︷︷ ︸

Q′


∂V̄
∂ξu
∂V̄
∂ξc
∂V̄
∂W


︸ ︷︷ ︸

∂V̄
∂ξ

+

 (ξuin− ξu) 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

g

 (D−Dd)0
0


︸ ︷︷ ︸

ū

.
(23)

According to Proposition 3.2, this system is passive. The input of the system is ū and
the output ȳ is: ȳ = [g]T ∂V̄

∂ξ . By Proposition 4.1, the feedback ū = −C(x, t)ȳ with
C(x, t)≥ eI > 0 will render (23) globally asymptotically stable at ξ = ξd.
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5 Application to a Single Reaction with Monod Kinetics: Aniline Degrada-
tion by Pseudomonas Putida in CSTR

Aniline is among the toxic constituents of many industrial effluents (e.g. wastewaters in
chemical and dyeing industries). Biological processing for aniline degradation is a cheap
and green alternative to chemical removal processes such as solvent extraction, chemi-
cal oxidation, etc. In [13] the author has studied the model of aniline degradation by
Pseudomonas putida ATCC 21812 cells in batch reactors following a Monod model. Pseu-
domonas putida growth X and simultaneous aniline degradation S in a CSTR equations
are:

Ẋ = µX−DX, Ṡ =−µX
Y

+D (Sin−S) , (24)

where D is the dilution rate, Y is the cell/substrate yield coefficient and µ is the specific
growth rate. For Monod kinetics:

µ= µmS

Ks+S
, (25)

here µm is the maximum specific growth rate and Ks is the half velocity constant. The
state space will be [z] =

[
S X

]T and the model can be represented as:[
Ṡ
Ẋ

]
︸ ︷︷ ︸
ω̇

=
[
−1 0
0 1

]
︸ ︷︷ ︸

c

[
µX
Y
µX

]
︸ ︷︷ ︸

r

+
[
DSin−DS
−DX

]
︸ ︷︷ ︸
D(zin−zout)

. (26)

5.1 Coordinate transformation and a passivity based model

Divide the state space into two parts ξa and ξb such that:[
ξ̇
]

=
[
Ṡ
]

= [−1]︸︷︷︸
cj

[
µX

Y

]
︸ ︷︷ ︸
r

+[DSin−DS]︸ ︷︷ ︸
D(ξin−ξ)

,
[
φ̇
]

=
[
Ẋ
]

= [1]︸︷︷︸
ck

[µX]︸︷︷ ︸
r

+ [−DX]︸ ︷︷ ︸
D(ψin−ψ)

. (27)

The new coordinate W can be written as:

W =A(Sin−S) +Y (Xin−X) , (28)

where A= 1, Xin = 0 and Sin is a constant. Hence, differentiating (28) w.r.t. time and
substituting (27) will give Ẇ = −DW . With the new state space

[
S W

]T and the
substitution X = Sin−S−W the bioreactor model becomes:[

Ṡ
Ẇ

]
=
[
−1 0
0 −D

][
µ (Sin−S)

Y
W

]
+
[
µWY

0

]
+
[
D (Sin−S)

0

]
. (29)

Taking the steady state points of (S,W ) as (S∗,0) and then adding and substracting
equilibrium rate term µ(S∗) (Sin−S∗)

Y in (29), (29) can be written as:[
Ṡ
Ẇ

]
=
[
−1 0
0 −D

][
µ (Sin−S)

Y −µ(S∗) (Sin−S∗)
Y

W

]
+
[
µWY

0

]
+
[

(D−D∗)(Sin−S) +D∗(S∗−S)
0

]
.

(30)
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From Proposition 3.1, µWY +D∗(S∗−S) = 0. Using the storage function:

V ′ =
∫
µ(S) (Sin−S)

Y
∂S−

∫
µ∗ (S∗) (Sin−S∗)

Y
∂S+ 1

2W
2, (31)

where µ∗,S∗ are the steady state values of µ,S, and doing some algebraic modifications,
the bioreactor model can be rewritten as:[

Ṡ
Ẇ

]
︸ ︷︷ ︸

ξ̇

=
[
−1 0
0 −D

]
︸ ︷︷ ︸

Q

[
∂V ′

∂S
∂V ′

∂W

]
+
[
Sin−S 0

0 1

]
︸ ︷︷ ︸

γ

[
(D−D∗)

0

]
︸ ︷︷ ︸

u′

.
(32)

The matrix Q will always be negative definite and it can be seen through careful obser-
vation that V ′ ≥ 0 and 0 at S = S∗, making the system (32) passive.

5.2 Passivity based control design

Replacing the steady state S∗ with desired steady state Sd and the new storage function
V̄ :

V̄ =
∫
µ(S) (Sin−S)

Y
∂S−

∫
µd
(
Sd
) (Sin−Sd)

Y
∂S+ 1

2W
2, (33)

where µd is the desired steady state values of µ, and doing some algebraic modifications,
the bioreactor model can be rewritten as:[

Ṡ
Ẇ

]
︸ ︷︷ ︸

ξ̇

=
[
−1 0
0 −D

]
︸ ︷︷ ︸

Q

[
∂V̄
∂S
∂V̄
∂W

]
︸ ︷︷ ︸

∂V̄
∂ξ

+
[
Sin−S 0

0 1

]
︸ ︷︷ ︸

γ

[
(D−Dd)

0

]
︸ ︷︷ ︸

ū

; ȳ = γT ∂V̄
∂ξ

.
(34)

Matrix Q≺ 0 and if V̄ ≥ 0, the system (34) is passive. V̄ = 0 at S = Sd and W = 0.
Since the system (34) is zero state detectable if the desired concentration of substrate
Sd = 0, the feedback ū=−Cȳ ensures asymptotical stability at S = Sd.

5.3 Simulations

An industrial incident, where 9 tons of aniline at 70 mg/l leaked from a chemical plant
into a river is considered, and 1 mg/l or less must be reached. Monod parameters
are Ks = 3.1 mg/l, µm = .12h−1, Y = 0.74. The dilution rate D is the control input
and substrate concentration is the only measurement. The simulation results compare
three control strategies i.e. chemostat control with steady state dilution rate, passivity
based control and passivity based adaptive control (not discussed here but similar to the
control designed in [14]). The new coordinate W converges to zero as shown in Figure 2,
ensuring proper control. The cell concentration will obviously increase at a similar rate
as substrate concentration will decrease as can be seen in Figure 4.
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Figure 1: Substrate Concentration; Bold:
Chemostat; Dotted: Passivity Based;
Dashed: Adaptive.
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Figure 2: W Concentration; Bold: Chemo-
stat; Dotted: Passivity Based; Dashed:
Adaptive.
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Figure 3: Dilution Rate; Bold: Steady
state, Dotted: Passivity Based; Dashed:
Adaptive.
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Figure 4: Cell Concentration; Bold:
Chemostat; Dotted: Passivity Based;
Dashed: Adaptive.

6 Conclusion

This paper is a successful attempt to maintain the structure and physical meaning of the
passivity based model of microbial reactions with Monod kinetics in continuous reactors
by using meaningful storage functions and obvious coordinate transformation on the
grounds of passivity. The general model implies that this technique can be directly
applied to a huge set of reactions. This paper is providing a physical view for all issues
related to robust control of a bioreaction. Simulations obtained justify and validate the
model. In the future, this technique can be extended to other kinetics involved and to
different types of reactors such as plug flow, etc. The physical meaning given to the
design of observers (as in e.g. [15]) and parameter estimation could be an interesting job
to work on.
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