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Abstract: A nonlinear dynamic system with several degrees of freedom, which is
represented by a system of differential equations with polynomial structure, is consid-
ered. The system contains non-linear polynomials. It is assumed that the spectrum
of the eigenvalues of the linear part matrix starts with a pair of complex conjugate
eigenvalues having negative real parts with minimum modulus. A polynomial trans-
formation of the equations is performed in order to simplify the mathematical model
by reducing the number of non-linear terms in the differential equations. Nonlinear
oscillations of an object with constant parameters are investigated. Estimations of
motion are obtained by the method of differential inequalities for positive definite
Lyapunov function at different ratios between the constant parameters of the system.
An example is presented .
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1 Introduction

The paper deals with nonlinear analysis in classical and modern mechanics [1–5].
We use a Poincare-Dulac approach [6–9] and consider a nonoscillatory nonlinear sta-

tionary mechanical system with one degree of freedom. The system has autonomous
nonlinear polynomial characteristics associated with its phase variables. This fact leads
to the linear form, alternative to the extended model method shown in [10].
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2 Transformation of Polynomial Equations

We consider a nonlinear autonomous system of equations of perturbed motion in the
case when all roots of the characteristic equation of the corresponding linear system are
different [11–13]. Let us transform it into a canonical form

ẏs = λsys +

m∑
k=2

∑
ν1+...+νn=k

p(ν1,...,νn)s yν11 . . . yνnn
(
s = 1, n

)
, (1)

where ys are real and complex variables; λs are roots of the characteristic equation of

the linear part of the system; p
(ν1,...,νn)
s are small coefficients; m are odd numbers.

Suppose λ1 and λ2 are complex-conjugate pure imaginary roots or roots with real
parts much less than those of the other roots and the imaginary parts of these roots

λ1,2 = α± βi, where α ≷ 0, |α| < β.

The real parts of the other roots are essentially negative |Reλs| < 0, s = 3, n.
It should be noted that in such case the variables y1, y2 will be complex-conjugated.
Such systems are often used to describe nonlinear oscillations in engineering and physics.
Suppose the roots λ1 . . . λn are such that within the limits of some number of digit order
numbers k = 3,m they do not vanish at any values of indices ν1, . . . , νn complying with
the condition (2), except for the values (3) where Reλ1, Re λ2 are small.

λ
(ν1,...,νn)
s = ν1λ1 + ν2λ2 + . . .+ (νs − 1)λs + νs+1λs+1 + . . .+ νnλn,(
s = 1, n; ν1 + . . .+ νn = k, νi ≥ 0

)
.

(2)

s = 1, ν1 = (k + 1) /2, ν2 = (k − 1) /2, k − odd,
s = 2, ν1 = (k − 1) /2, ν2 = (k + 1) /2, ν3 = . . . = νn = 0 , k = 3,m,
s = 3, n; ν1 = ν2 = (k − 1) /2, νs = 1,
ν3 = . . . = νs−1 = νs+1 = νs+2 = . . . = νn = 0.

(3)

With these hypotheses, we approximately integrate system (1) in the neighborhood∑n
s=1 |ys|2 ≤ ε2. Let us make polynomial transformation of variables.

zs = ys +

m∑
k=3

∑
ν1+...+νn=k

A(ν1,...,νn)
s yν11 . . . yνnn

(
s = 1, n

)
. (4)

The transformation coefficients are constant and are defined from the condition that the
system (1) in new variables has the following form

żs =

(
λs +

m∑
k=3

a(k)s rk−1

)
zs + Z(m+1)

s , r = |z1| =
√
z1z2. (5)

The right-hand parts of this system contain linear as well as nonlinear terms correspond-
ing to special values of indices with undefined coefficients and remainder terms of (m+1)

smallness order. We make coefficients A
(ν1,...,νn)
s corresponding to special values (3) equal

to zero (instead of them the coefficients a
(k)
s are introduced). In order to calculate all

undefined coefficients, we apply

r2 =
∑

B(ν1,...,νn)yν11 . . . yνnn , B(ν1,...,νn) =
∑
ν′r

A

(
ν
′
1,...,ν

′
n

)
1 A

(
ν1−ν

′
1,...,νn−ν

′
n

)
2 . (6)
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Having put every sum in the form
∑
Q(ν1,...,νn) yν11 . . . yνnn and equating the coefficients

of similar powers Cν11 . . . Cνnn , we obtain the following equations:

λ
(ν1,...,νn)
s A

(ν1,...,νn)
s + p

(ν1,...,νn)
s =

k∑
k′=ν

a
(k′)
s

∑(
ν
(i)
r ,ν′′r

)
k′−1

2∏
i=1

B

(
ν
(i)
1 ,...,ν(i)

n

)
A

(
ν
′′
1 ,...,ν

′′
n

)
s −

−
n∑
i=1

∑
ν
′
j

ν
′

ip

(
ν1−ν

′
1,...,νi−ν

′
i+1,νi+1−ν

′
i+1,...,νn−ν

′
n

)
i A

(
ν
′
1,...,ν

′
n

)
s , s = 1, n, k′ is odd.

(7)

We designate the sum of upper indices in undefined coefficients A
(ν1,...,νn)
s as a coefficient

decade. In the right-hand part of the equations the sums depend on the coefficients with
decade smaller than k, as every factor “takes” its decade from the total “stock” of k.

The high-order digit {k′} of the coefficients a
(k′)
s is reached when the number of factors

under the product sign is the largest, which is possible if every factor has the lowest
order. By adding correlations we define that k′ = k, and by analysing every correlation
we can make sure that indexes ν have special values (3). So the high-order digit of the
coefficients equals k; besides, it may be obtained only with special values of indexes. It

is obvious that the coefficient a
(k)
s equals one.

System (7) represents a chain of linear algebraic equations which is solved starting
from the lower order k = 2 and from the lower number s = 1 to further ones. Indeed,
all equations corresponding to non-special values of indices are satisfied when choosing
undefined coefficients from the first term of the formula (7), and all “special” equations

where the factor A
(ν1,...,νn)
s equals zero or is very small are satisfied when choosing a

(k)
s .

The remainder functions Z
(m+1)
s should be equated to nonlinear terms of not lower

than (m+ 1) order that are contained in the equations obtained by means of formulas
(4) and (1) in (5). These functions may be transformed to zs variables by correlations
(4) previously solved with respect to ys.

3 Transformed System Analysis

Suppose that by means of (4), (7) the system (1) is transformed to (5). The latter system
may be integrated if the remainder terms of (m + 1) order are ignored. From the first
two equations we obtain the equation for variables module:

ṙ = αr +

m∑
k=3

α(k)rk where α = Reλ1 < 0, α(k) = Re a
(k)
1 . (8)

The special points of the equation (8) are defined in [t0, t] by equating the right-hand
part to zero, and general solution is defined by means of variables separation.

r

∫
r0

(
αr +

∑
α(k)rk

)−1
dr = t− t0 , (k are odd numbers). (9)

The second way of equality (8) integration is given in [14]. Suppose that using one of
the methods, we found the solution r = r (t, r0, t0). Then the solutions of the first and
second equations of system (5) are as follows:

z1,2 = re±iθ at θ = β(t− t0) +

m∑
k=3

β(k)
t

∫
t0

rk−1dt+ θ0, β(k) = Im a
(k)
1 . (10)
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The solution of the other equations is obtained according to the following formulas:

zs = zs0 exp

(
λs(t− t0) +

∑
k

a(k)s

t

∫
t0

rk−1dt

)
, s = 3, n. (11)

In order to find an approximate solution in variables ys we must solve the transfor-
mation (4) with respect to ys:

ys ≈ zs +
∑

B(ν1,...,νn)
s zν11 . . . zνnn , s = 1, n. (12)

The coefficients B
(ν1,...,νn)
s may be expressed in terms of A

(ν1,...,νn)
s by using (12) in

(4) and equating the coefficients with similar terms. Namely, the coefficients of lower
orders in (12) differ from the coefficients in (4) only by sign.

With regard to the obtained approximated solution, there is an idea that: if it is
allowed to ignore or add the terms of (m + 1) order and more in equations (1), then it
is always possible to select terms such that the obtained system will be integrated quite

accurately. These terms are selected from the condition of Z
(m+1)
s being equal to zero.

Remark 3.1 An additional condition for the characteristic coefficients (2) may be
annulled, if we introduce additional terms corresponding to the special values of indices
into the transformed system (5), as Dulak did in a non-special case. In this case, instead
of system (5), we have:

żs =

(
λs +

m∑
k=1

a(k)s rk−1

)
zs +

m∑
ν̃j

a(ν̃1,...,ν̃s−1)
s zν̃11 . . . z

ν̃s−1

s−1 + Z(m+1)
s . (13)

The equations that must be in accord with the undefined coefficients are calculated from
formulas (4) and (1) in (13) and by equating the coefficients of the corresponding terms;
they differ from equations (7) by the additional terms. The system (13) also represents
a chain of consequent approximately integrated equations.

We note that I.G. Malkin [15] analyzed the transformation of two equations system
to the form similar to the first two equations of system (5) by means of substitution
reverse to substitution (4).

From the first two equations we can obtain an equation similar to (8) but with an
additional term of (m+ 1) order

ṙ = rf
(
r2
)

+R(m+1), f
(
r2
)

= α+

m∑
k=3

α(k)rk−1, (14)

where k,m are odd. Let us take Lyapunov’s function and its derivative

V = r2 +

n∑
s=3

zsz̄s, V̇ = 2rṙ +

m∑
s=3

(ższ̄s + ˙̄zszs) .

Taking into consideration the equations (14) and (5), we obtain the inequality:

V̇ < 2
[
f (V ) +KV

m
2

]
V, 0 < V ≤ ε2. (15)

Function V decreases in this ring in accordance with the law

V

∫
V0

dV[
f
(
V +KV

m
2

)]
V
> 2(t− t0), 0 < V0 < ε2. (16)
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Example 3.1 Let us integrate approximately the Van-der-Pol equation

ẋ = εx− y − εxy2, ẏ = x. (17)

Here, λ1,2 ≈ α ± i, where α = ε/2 > 0 are the complex-conjugated roots of the
characteristic equation of the corresponding linear system with small real part. Let us
put system (17) into the canonical form:

ẏ1 = λ1y1 + p
(3,0)
1 y31 + p

(2,1)
1 y21y2 + p

(1,2)
1 y1y

2
2 + p

(0,3)
1 y32 , y2 = y1. (18)

Accurate to the ε2 order, we have:

p
(3,0)
1 = p

(0,3)
1 = −p(2,1)1 = −p(1,2)1 =

ε

2
; y1 = x+

(
−ε

2
+ i
)
y .

Let us make transformation of variables

z1 = y1 + A
(3,0)
1 y31 +A

(1,2)
1 y1y

2
2 +A

(0,3)
1 , y32 (19)

where the coefficients are defined from formulas (7), (2)

(ν1λ1 + ν2λ2 − λ1)A
(ν1,ν2)
1 + p

(ν1,ν2)
1 = 0, p

(2,1)
1 = a

(3)
1 (ν1 = 3, 1, 0; ν2 = 3− ν1) .

Therefrom, accurate to the 2nd order, we find:

A
(3,0)
1 = A

(1,2)
1 = −A(0,3)

1 = − εi
32
, a

(3)
1 = −ε

8
, (20)

z1 being a variable module, according to (8), satisfies the equation:

dr

dt
≈ ε

2
r − ε

8
r3,

which coincides with the equation for amplitude obtained by the method of Krylov and
Bogolyubov [16]. General solution is as follows:

r = 2
(
1 + ce−εt

)− 1
2 , where c =

4

r20
− 1. (21)

From formula (10), we obtain:

z1 = reiθ, z2 = z1 = re−iθ, where θ = t+ θ0, (22)

where the initial value θ0 can be defined on the basis of (18), (20), (21).
Formulas (21), (22) show that in complex plane z1 = ξ+iη the paths of representation

point and spiral coil from the inside and outside on the circumference r = 2 . As this
takes place, the angular speed of vector radius r is θ = 1. Based on (19) and (21) we
have:

y1 ≈ z1 −A(3,0)
1 z31 −A

(1,2)
1 z1z

2
2 −A

(0,3)
1 z32 = r eiθ − εi

32
r3
(
2e3iθ + 2e−iθ − e−3iθ

)
.

The original variable is determined as:

y =
y1 − y2

2i
= Im (y1) = r sin θ − ε

32
r3 (cos2θ + 2cosθ) , θ = t+ θ0.

The results are shown in Figure 1.
As t→∞, all solutions, except for zero, asymptotically tend to the periodic one

y = 2 sin θ − ε

2
cos θ − ε

4
cos 3θ, θ = t+ θ0.

This solution accurate to ε2 terms coincides with the solution defined by the method
of Krylov and Bogolyubov [6, 14,17].
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2 4 6 8 10
t

-2

-1

1

2

y[t]

Figure 1: (—) denotes an exact solution y(t) of (3.1), (· · · · · · ) stands for an approximate
solution,(−−−) means an approximation error.

4 Conclusion

Using the non-linear transformation of the polynomial model with adopted precision we
investigate a nonlinear vibrational autonomous system with finite degrees of freedom at
different ratios between the constants.

This transformation simplifies the form of differential equations, ultimately reduces
the number of non-linear terms in the model and forms a small number of high-quality
constant coefficients of monomials. The method is modified in order to exclude small
divisors. Nonlinear oscillations are investigated by means of analytical integration of the
transformed recurrence equations, as well as by integrating the differential inequalities
for the Lyapunov function. This method can be applied to a wide range of problems.
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